2020年《地源热泵系统工程技术规范》GB50366-2005解读

  • 格式:docx
  • 大小:646.04 KB
  • 文档页数:9

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XX有限公司

MS-CARE-01

社会责任及EHS手册

(1.0版)

制订:

审批:

2020-1-1发布 2020-1-1实施

国家标准《地源热泵系统工程技术规范》GB50366-20xx设计要点解析

中国建筑科学研究院空气调节研究所邹x 徐x 冯x

摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。

关键词:地源热泵系统、设计要点、系统优化

1 前言

实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。20x年x月x日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。该规范现已颁布,并于20x年x月x日起实施。

由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。为了加深对规范条文的理解,本文对其部分要点内容进行解析。

2 《规范》的适用范围及地源热泵系统的定义

2.1 《规范》的适用范围

该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。它包括以下两方面的含义:

(1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。该系统目前在北美地区别墅或小型商用建筑中应用,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅适于小规模应用。

(2)“采用蒸气压缩热泵技术进行……”意旨不包括吸收式热泵。

2.2 地源热泵系统的定义

地源热泵系统根据地热能交换系统形式的不同,分为地埋管地源热泵系统(简称地埋管系统)、地下水地源热泵系统(简称地下水系统)和地表水地源热泵系统(简称地表水系统)。其中地埋管地源热泵系统,也称地耦合系统(closed-loop ground-coupled heat pump system)

或土壤源地源热泵系统,考虑实际应用中人们的称呼习惯,同时便于理解,本规范定义为地埋管地源热泵系统。地表水系统中的地表水是一个广义概念,包括河流、湖泊、海水、中水或达到国家排放标准的污水、废水等。只要是以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统,统称为地源热泵系统。

3 地源热泵系统的设计特点

(1)地源热泵系统受低位热源条件的制约

●对地埋管系统,除了要有足够埋管区域,还要有比较适合的岩土体特性。坚硬的岩土体将

增加施工难度及初投资,而松软岩土体的地质变形对地埋管换热器也会产生不利影响。为此,工程勘察完成后,应对地埋管换热系统实施的可行性及经济性进行评估。

●对地下水系统,首先要有持续水源的保证,同时还要具备可靠的回灌能力。《规范》中强制

规定“地下水换热系统应根据水文地质勘察资料进行设计,并必须采取可靠回灌措施,确保置换冷量或热量后的地下水全部回灌到同一含水层,不得对地下水资源造成浪费及污染。

系统投入运行后,应对抽水量、回灌量及其水质进行监测。”

●对地表水系统,设计前应对地表水系统运行对水环境的影响进行评估;地表水换热系统设

计方案应根据水面用途,地表水深度、面积,地表水水质、水位、水温情况综合确定。

(2)地源热泵系统受低位热源的影响很大

低位热源的不定因素非常多,不同的地区、不同的气象条件,甚至同一地区,不同区域,低位热源也会有很大差异,这些因素都会对地源热泵系统设计带来影响。如地埋管系统,岩土体热物性对地埋管换热器的换热效果有很大影响,单位管长换热能力差别可达3倍或更多。

(3)设计相对复杂

●低位热源换热系统是地源热泵系统特有的内容,也是地源热泵系统设计的关键和难点。地

下换热过程是一个复杂的非稳态过程,影响因素众多,计算过程复杂,通常需要借助专用软件才能实现;

●地源热泵系统设计应考虑低位热源长期运行的稳定性。方案设计时应对若干年后岩土体的

温度变化;地下水水量、温度的变化,地表水体温度的变化进行预测,根据预测结果确定应采用的系统方案;

●地源热泵系统与常规系统相比,增加了低位热源换热部分的投资,且投资比例较高,为了

提高地源热泵系统的综合效益,或由于受客观条件限制,低位热源不能满足供热或供冷要求时,通常采用混合式地源热泵系统,即采用辅助冷热源与地源热泵系统相结合的方式。

确定辅助冷热源的过程,也就是方案优化的过程,无形中提高了方案设计的难度。

4 地源热泵系统设计要点

4.1 地埋管系统

由于地埋管系统通过埋管换热方式将浅层地热能资源加以利用,避免了对地下水资源的依赖,近年来得到了越来越广泛的应用。但地埋管系统的设计方法一直没有明确规定,通常设计