第五章PLC的步进电机控制系统(应用举例)
- 格式:ppt
- 大小:701.50 KB
- 文档页数:121
PLC在步进电机控制中的应用探究PLC(可编程逻辑控制器)是一种常用于工业控制系统的计算机控制器,它能够实现对电气设备的自动控制,被广泛应用于工厂的生产线、机械设备等领域。
步进电机是一种可以根据输入信号来控制准确位置的电机,常常用于需要高精度位置控制的自动化设备。
本文将探究PLC在步进电机控制中的应用。
在步进电机控制过程中,PLC可以实现以下功能:1.位置控制:步进电机在工业生产中常常需要实现准确的位置控制,PLC可以通过编程来控制步进电机的位置。
PLC可以接收外部传感器的信号,根据输入的位置信号进行逻辑判断,然后输出控制信号给步进电机,使其准确地移动到指定的位置。
通过PLC实现位置控制,不仅可以提高步进电机的精度和稳定性,还可以实现自动化的生产流程,提高生产效率。
2.速度控制:步进电机的速度控制也是控制流程中的一个重要环节。
PLC可以通过编程来控制步进电机的转速。
PLC可以根据输入的速度控制信号来调节步进电机的转速,使其在不同的工作场景下达到最佳效果。
通过PLC的速度控制,不仅可以保证步进电机的工作效率,还可以节约能源,延长步进电机的使用寿命。
2.步进电机与其他设备的协同控制:在一些复杂的控制系统中,步进电机需要与其他设备进行协同控制。
PLC可以通过编程来实现步进电机与其他设备的联动控制。
将PLC与传感器、触摸屏等设备连接,通过PLC的控制,实现步进电机、传感器的自动配合,从而完成复杂的生产流程。
PLC在步进电机控制中的应用主要包括位置控制、速度控制、方向控制等基本功能。
PLC还具备控制步进电机的运动模式和与其他设备的协同控制能力。
通过PLC的应用,可以使步进电机在工业控制系统中发挥重要作用,提高生产效率和产品质量。
步进电机控制方法plc随着现代制造业的飞速发展,步进电机作为一种精密控制技术在自动化设备中得到广泛应用,而PLC(可编程逻辑控制器)则是控制步进电机的常见方案之一。
在工业生产中,步进电机的控制方法多种多样,其中结合PLC技术进行控制是一种高效可靠的方式。
本文将介绍一些常见的步进电机控制方法,并分析PLC在这些控制方法中的应用。
正转和反转控制正转和反转控制是步进电机最基本的控制方法之一。
通过控制电机输入的脉冲信号的频率和方向,可以实现步进电机的正转和反转。
在PLC中通常会使用计数器来记录脉冲信号的数量,从而控制电机的转动角度和方向。
通过设定计数器的值和控制脉冲信号的输出频率,可以精确控制步进电机的转动。
速度控制除了控制电机的方向外,控制步进电机的速度也是至关重要的。
在工业自动化系统中,需要根据不同的生产需求来调整步进电机的转速。
PLC可以通过调节输出脉冲信号的频率来实现步进电机的精确速度控制。
通过监控电机的转速并根据实际情况进行调整,可以保证生产过程的稳定性和效率。
位置控制在很多自动化系统中,需要步进电机按照预先设置的位置进行精确定位。
PLC在位置控制中发挥了关键作用。
通过监测电机的位置信息以及输入的控制指令,PLC可以精确地控制步进电机的位置。
在工业生产中,位置控制常常用于需要高精度定位的场景,如自动装配线和自动化仓储系统等。
脉冲控制步进电机的运动是通过输入一定数量的脉冲信号来实现的。
因此,脉冲控制是控制步进电机最基本的方法之一。
PLC通过输出一定频率和数量的脉冲信号,可以精确控制步进电机的运动。
在工业生产中,通常会根据实际需求设定脉冲信号的参数,如脉冲频率、脉冲数量和脉冲方向等,从而实现对步进电机的精确控制。
总结步进电机作为一种精密控制技术,在工业自动化领域具有重要的应用意义。
结合PLC技术可以实现对步进电机的高效控制,包括正转和反转控制、速度控制、位置控制和脉冲控制等。
通过合理设计控制方案并结合PLC的灵活性和可编程特性,可以实现对步进电机运动的精确控制,从而提高生产效率和产品质量。
PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。
如按A,C,B,A……通电,电机就反转。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
PLC脉冲控制步进电机技术一、步进电机、脉冲与方向信号步进电机作为一种常用的电气执行元件,广泛应用于自动化控制领域。
步进电机的运转需要配备一个专门的驱动电源,驱动电源的输出受外部的脉冲信号和方向信号控制。
每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。
脉冲的数量决定了旋转的总角度,脉冲的频率决定了旋转的速度。
方向信号决定了旋转的方向。
就一个传动速比确定的具体设备而言,无需距离、速度信号反馈环,只需控制脉冲的数量和频率即可控制设备移动部件的移动距离和速度;而方向信号可控制移动的方向。
因此,对于那些控制精度要求不是很高的应用场合,用开环方式控制是一种较为简单而又经济的电气控制技术方案。
另外,步进电机的细分运转方式非常实用,尽管其步距角受到机械制造的限制,不能制作得很小,但可以通过电气控制的方式使步进电机的运转由原来的每个整步分成m个小步来完成,以提高设备运行的精度和平稳性。
控制步进电机电源的脉冲与方向信号源常用数控系统,但对于一些在运行过程中移动距离和速度均确定的具体设备,采用PLC(可编程控制器)是一种理想的技术方案。
二、控制方案图1 PLC脉冲控制步进电机系统示意图在操作面板上设定移动距离、速度和方向,通过PLC的运算产生脉冲、方向信号,控制步进电机的驱动电源,达到对距离、速度、方向控制的目的,见图1。
操作面板上的位置旋钮控制移动的距离,速度旋钮控制移动的速度,方向按钮控制移动的方向,启/停按钮控制电机的启动与停止。
在实际系统中,位置与速度往往需要分成几挡,故位置、速度旋钮可选用波段开关,通过对波段开关的不同跳线进行编码,可减少操作面板与PLC的连线数量,同时也减少了PLC的输入点数,节省了成本。
一个n刀波段开关的最多挡位可达到2n。
在对PLC选型前,应根据下式计算系统的脉冲当量、脉冲频率上限和最大脉冲数量。
根据脉冲频率可以确定PLC高速脉冲输出时需要的频率,根据脉冲数量可以确定PLC的位宽。
PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。
如按A,C,B,A……通电,电机就反转。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
P L C控制步进电机的应用案例1(利用P L S Y指令)任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转。
控制要求:利用PLC 控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。
1、系统接线PLC控制旋转步进驱动器,系统选择/转,设置成N细分后,则1000脉冲/转。
Y1输出,Y3[S1.]用来指定脉冲频率(2~20000Hz),[S2.]指定脉冲的个数(16位指令的范围为1~32767,32位指令则为1~2147483647)。
如果指定脉冲数为0,则产生无穷多个脉冲。
指定脉冲输出完成后,完成标志M8029置1。
如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲。
若X10再次变为ON则脉冲从头开始输出。
注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC。
6、控制流程图7、梯形图程序(参考)8、制作触摸屏画面PLC控制步进电机的应用案例2(利用定时器T246产生脉冲)任务:利用步进电机驱动器可以通过PLC端的On和Off就能决定电机的正传或者反转;步进驱动器的其中一个。
Y2;PLC的COM1——GND;B绕组X0X4—频率增加,X5—频率4、制作触摸屏画面PLC控制步进电机的应用案例3(利用FX2N-1PG产生脉冲)任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制。
控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式。
PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个。
VIN端、CP+端、U/D+端——+24VDC; CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GNDA、A-——电机A绕组;B、B-2、I/O分配。
PLC控制步进电机的实例(图与程序)·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
步进电机控制系统的设计及应用案例步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
本文将为大家介绍步进电机控制系统的设计案例以及步进电机的经典应用集锦。
一种带有限位功能的步进电机控制器在基于图像处理评价函数的调焦系统中,常用的为爬山搜索法。
根据爬山搜索的原理,在开始搜索时,在搜索焦点的过程中,要防止由于图像噪声等干扰造成程序判断错误,导致调焦镜头越出调焦范围边界。
为了适应这种控制需求,对通用步进电机控制器进行了改进,使其在具有自动和手动控制功能的同时,引入限位信号反馈控制。
电机控制器使用硬件描述语言(HDL)编写,而限位信号则由位置感应电路中的光电开关器件自动反馈。
基于TMS320F28335的微位移步进电机控制系统设计本系统计划采用DSP控制步进电机推动轻装置移动实现测量装置的精准定位。
系统采用的主控制器为DSP28335,被控对象为最小步进角为1.8°的42步进电机,采用DSP输出PWM脉冲波通过电机驱动器摔制电机的运行。
系统根据具体控制要求改变对PWM参数的设置,并通过相关的算法对过程参数进行修正以完成系统目的。
电机控制系统的控制精度为线位移10μm,能够达到为实验室项目进行支持的目的,亦可广泛应用于电机控制领域。
基于CAN总线汽车组合仪表的设计与研究-步进电机驱动、存储电路设计及外围电路本系统步进电机VID29系列二相汽车仪表步进电机。
vID29-XX/VID29~xXp仪表步进电机是一种精密的步进电机,内置减速比180/1的齿轮系,主要应用于车辆的仪表指示盘,也可以用于其他仪器仪表装置中,将数字信号直接准确地转为模拟的显示输出,需要两路逻辑脉冲信号驱动。
PLC控制步进电动机运行案例PLC(可编程逻辑控制器)是一种用于自动化控制系统的工业电子设备,通过程序控制各种工业设备的运行和逻辑控制。
步进电动机是一种精密控制的电动机,可以根据脉冲信号的输入旋转指定的角度。
本文将介绍如何使用PLC控制步进电动机的运行,并给出一个实际的案例。
1.系统设计:要实现PLC控制步进电动机运行,首先需要设计一个系统,包括PLC 控制器、步进电动机、电源和传感器等。
PLC将通过编程控制步进电动机的旋转方向、速度和位置,从而实现精确的运动控制。
2.PLC编程:在PLC编程软件中,我们首先需要设置输入和输出点,用于连接步进电动机和传感器。
然后编写程序,通过控制输出点发送脉冲信号控制步进电动机的旋转。
例如,我们可以设计一个简单的程序,使步进电动机按照固定的角度旋转,然后停止。
步骤如下:1)设置输入点:连接PLC与步进电动机的控制信号线,用于接收启动和停止信号。
2)设置输出点:连接PLC与步进电动机的脉冲信号线,用于控制步进电动机的旋转方向和速度。
3)编写程序:在PLC编程软件中编写程序,设置脉冲信号的频率和方向,控制步进电动机按照指定的角度旋转。
4)调试程序:在调试模式下测试程序,验证步进电动机是否按照设计的参数正确运行。
3.实际案例:假设我们要控制一个步进电动机旋转180度,然后停止。
以下是一个简单的PLC程序示例:1)设置输入点I0为启动信号,输入点I1为停止信号;2)设置输出点Y0为脉冲信号控制步进电动机的旋转;3)编写程序如下:```LDI0OUTY0DELAY1000OUTY0NOP```4)启动程序后,PLC将检测I0信号,如果为高电平(启动信号),则输出Y0脉冲信号控制步进电动机旋转180度;然后延迟1秒后,停止输出脉冲信号,步进电动机停止旋转。
通过以上案例,我们可以看到如何使用PLC控制步进电动机的运行。
PLC具有灵活的编程功能和稳定的性能,可以实现精确的运动控制和自动化生产。
PLC控制步进电机的应用案例PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备。
步进电机是一种适用于许多工业应用的电动执行器。
它们的高精度、高可靠性和低成本使其成为PLC控制的理想选择。
以下是几个PLC控制步进电机的应用案例:1.机械加工在机械加工领域,步进电机经常用于驱动各种类型的机床,如铣床、车床和钻床。
通过PLC控制,可以根据设定的切削参数和工件要求来精确控制步进电机的转速和位置。
这种控制可确保机床的精度和稳定性,并实现自动化的加工过程。
2.包装和印刷包装和印刷设备通常需要高精度和高速度的运动控制。
步进电机可以接入PLC系统,通过控制电机的步进角和转速来实现准确的定位和运动。
这样可以确保包装和印刷设备的工作过程高效、准确且可靠。
3.自动化仓储系统在自动化仓储系统中,步进电机被广泛应用于各种类型的输送带、堆垛机和拆堆机。
通过PLC控制,可以精确控制步进电机的动作,如启动、停止、定位和速度调整,以实现自动化的物料搬运和仓储流程。
4.机器人工业步进电机与PLC结合可用于机器人工业中的各种关节控制。
机器人的关节通常由步进电机驱动,PLC控制电机的旋转角度和速度,从而实现机器人的精确定位和运动轨迹。
这种控制方法提供了更高的精度和可靠性,使机器人能够执行更复杂的任务。
5.自动化化工过程在化工工业中,PLC控制步进电机可以用于自动化的流体控制和精确的化学物料分配。
例如,在液体流体控制过程中,步进电机可以驱动阀门来控制流量和压力。
通过PLC控制,可以根据需要调整电机的转速和位置,以实现精确的流体控制。
总结起来,PLC控制步进电机的应用案例非常广泛,涵盖了机械加工、包装和印刷、自动化仓储系统、机器人工业以及化工过程等多个领域。
这些应用案例充分体现了PLC控制步进电机在工业自动化中的重要性和价值。
绪论课题背景近年来,数控机床及数控技术得到了飞速发展,在柔性、精确性、可靠性和宜人性等方面的功能越来越完善,已成为现代先进制造业的基础。
数控就是数字控制,数控技术在机床行业应用得多,就是依靠数字(电脑编程)来控制机床,具有效率高,精度高等主要特点。
数控技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。
它所控制的通常是位置、角度、速度等机械量和与机械能量流向有关的开关量。
数控的产生依赖于数据载体和二进制形式数据运算的出现。
1908年,穿孔的金属薄片互换式数据载体问世;19世纪末,以纸为数据载体并具有辅助功能的控制系统被发明;1938年,香农在美国麻省理工学院进行了数据快速运算和传输,奠定了现代计算机,包括计算机数字控制系统的基础。
数控技术是与机床控制密切结合发展起来的。
1952年,第一台数控机床问世,成为世界机械工业史上一件划时代的事件,推动了自动化的发展。
现在,数控技术也叫计算机数控技术,目前它是采用计算机实现数字程序控制的技术。
这种技术用计算机按事先存贮的控制程序来执行对设备的控制功能。
由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入数据的存贮、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成。
PLC控制步进电机旋转台研究的目的和意义数控机床以其精度高、效率高、能适应小批量多品种复杂零件的加工等优点,在机械加工中得到日益广泛的应用。
它有以下几方面优点。
1.适应性强。
2.精度高,质量稳定。
3.生产效率高。
4.能实现复杂的运动。
5.良好的经济效益。
6.有利于生产管理的现代化。
数控机床由程序编制及程序载体、输入装置、数控装置(CNC)、伺服驱动及位置检测、辅助控制装置、机床本体等几部分组成。
数控机床发展的概况从1952年至今,数控机床按照控制机的发展,已经历了五代。
1959年,由于在计算机行业中研制出晶体管元件,因而在数控系统中广泛采用晶体管和印刷电路板,从而跨入了第二代。