连续时间马尔可夫链的研究和应用
- 格式:docx
- 大小:37.46 KB
- 文档页数:3
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载马尔科夫链的发展与应用地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容马尔可夫链的发展与应用摘要在自然界中,常常用一个或几个随机变量来描述某些随机现象,从而研究它们的概率规律。
从几何上看,就是把某些随机现象作为直线上的随机点或者有限维空间上的随机点来研究。
对于实际问题中的更复杂的随机现象,对于一个不断随机变化的过程,用这样的研究方法显得不够了,往往需要用一族(无穷多个)随机变量来刻画这样一些随机现象,或者把它们作为无穷维空间上的随机点(随机函数)来研究。
某些现象,在发生之前只能知道该现象的各种可能性的发生结果,但是却无法确认具体将发生哪一个结果,这就是随机现象。
马尔可夫过程(MarKov Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。
无后效的随机过程称为马尔可夫过程。
马尔可夫过程中的时同和状态既可以是连续的,又可以是离散的。
我们称时间离散、状态离散的马尔可夫过程为马尔可夫链。
马尔可夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。
关键词概率论随机过程马尔可夫链马尔可夫过程简介马尔可夫过程(MarKov Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。
无后效的随机过程称为马尔可夫过程。
马尔可夫过程中的时同和状态既可以是连续的,又可以是离散的。
我们称时间离散、状态离散的马尔可夫过程为马尔可夫链。
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
马尔可夫链的应用与特性马尔可夫链是一种常见的数学模型,基于对随机事件的观察和统计,它可以用来描述系统状态的演化和变化过程,具有广泛的应用和重要的理论意义。
本文将介绍马尔可夫链的一些基本概念和重要特性,以及它在实际问题和学术研究中的一些应用案例。
一、基本概念和定义马尔可夫链指的是一类离散的随机过程,具有无后效性和可数的状态空间。
其转移概率矩阵是一个满足非负性和单位根性质的矩阵,表示了从一个状态到另一个状态的概率分布。
换句话说,如果当前处于某个状态,那么下一个状态只依赖于当前状态,而与过去的状态无关。
这种“不记忆”的特性使得马尔可夫链可以用来模拟很多随机现象,如天气、股票价格等。
马尔可夫链的状态可以是离散的或连续的,但必须满足可数性和 Markov 性质。
其中可数性是指状态空间的元素个数是可数的,而 Markov 性质则是指状态转移概率只与当前状态有关,而与时间和历史状态无关。
这是马尔可夫链的核心特性,也是它具有可解性和可控性的基础。
二、重要特性和性质马尔可夫链具有一些重要的数学特性和性质,为理解和应用它提供了一些基础知识。
1. 不可约性:如果系统中的任意两个状态都是可达的,那么该马尔可夫链就是不可约的。
这意味着该系统可以在任意一个状态之间自由转移,并且有可能出现循环或周期性行为。
不可约性是马尔可夫链分析的一个基本假设,它保证了系统的完整性和稳定性。
2. 非周期性:如果系统中任意一条从状态 i 到状态 i 的路径长度都是有限的,那么该马尔可夫链就是非周期的。
这意味着该系统不存在任何循环或周期性结构,而是呈现出一种无规律的变化过程。
非周期性是马尔可夫链的又一重要属性,它保证了系统的随机性和平稳性。
3. 遍历性:如果系统中从任意一个状态出发,都可以到达该系统中的任意一个状态,那么该马尔可夫链就是遍历的。
这意味着该系统具有完整的状态空间和多样的状态转移方式,可以满足更多的需求和条件。
遍历性是马尔可夫链的又一重要保证,它保证了系统具有全局性和可展性。
连续时间马尔可夫链I 马尔可夫链543210 1 2 3 4 5 T25.1 连续时间马尔可夫链定义5.1 设随机过程{X(t),t 0},状态空间I={0,1,2,},若对任意0t1<t2<<t n+1 及非负整数i1,i2, ,i n+1 I,有P{X(t n+1)=i n+1|X(t1)=i1, X(t2)=i2,, X(t n)=i n}=P{X(t n+1)=i n+1|X(t n)=i n},则称{X(t),t 0}为连续时间马尔可夫链。
转移概率:在s时刻处于状态i,经过时间t后转移到状态j的概率p ij(s,t)= P{X(s+t)=j|X(s)=i} 35.1 连续时间马尔可夫链定义5.2 齐次转移概率p ij(s,t)=p ij(t)(与起始时刻s无关,只与时间间隔t有关) •转移概率矩阵P(t)=(p ij(t)) ,i,j I,t 0,称为齐次马尔科夫过程性质:若i为过程在状态转移之前停留在状态i的时间,则对s, t0有P{ s t | s} P{ t}i(1)i i(2)i 服从指数分布45.1 连续时间马尔可夫链证(1) 事实上i i i its s+ti{ s} {X(u) i,0 u s | X(0) i} i{ s t} {X(u) i,0 u s,iX(v) i, s v s t | X(0) i}55.1 连续时间马尔可夫链P{ s t | s} P{X (u) i,0 u s,i iX (v) i,s v s t | X (u) i,0 u s} P{X (v) i,s v s t | X (u) i,0 u s}条件概率P{X (v) i,s v s t | X (s) i}马尔可夫性P{X (u) i,0 u t | X (0) i}齐次性P{ t}i65.1 连续时间马尔可夫链(2)设i的分布函数为F(x), (x0),则生存函数G(x)=1-F(x)P{ t} P{ s t | s }i i iP {isP { t,i s}Ps}iP { s t}t}P{ s}P {iiiG (s t) G(s)G (t)7 由此可推出G(x)为指数函数,G(x)=e -x,则F(x)=1-G(x)=1-e -x为指数分布函数。
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质: ;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足: ⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性. 5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有 ≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得 )()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p 5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ)()()(1010101t p p t p p t p +=,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dhdt q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh dt q i i h ij ij μλ,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得,2),()(,≥-=j i h o h p j i,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j jj μμμλλλπ,112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ.0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
马尔可夫链在商业大数据分析中的应用摘要随着商业活动的不断增加,商业大数据分析变得越来越重要。
马尔可夫链是一种用于模拟随机过程的数学工具。
在商业大数据分析中,马尔可夫链可以用来预测未来事件的发生概率、分析用户行为等。
本文中,我们将介绍马尔可夫链的概念和原理,并探讨其在商业大数据分析中的应用。
关键词:商业大数据分析;马尔可夫链;预测;用户行为分析引言商业活动的数量和规模都在不断增加,这使得商业大数据分析越来越重要。
商业大数据分析是指利用大数据进行商业决策和管理的过程。
它可以帮助企业发现市场趋势、分析用户行为、预测销售等。
为了实现商业大数据分析,需要使用各种数学工具和技术。
其中,马尔可夫链是一种常用的工具。
马尔可夫链是一种用于模拟随机过程的数学工具。
它由苏联数学家马尔可夫在20世纪初提出,并在物理学、生物学等领域得到了广泛的应用。
在商业大数据分析中,马尔可夫链可以用来预测未来事件的发生概率、分析用户行为等。
本文中,我们将介绍马尔可夫链的概念和原理,并探讨其在商业大数据分析中的应用。
一、马尔可夫链的概念马尔可夫链是一个随机过程,其未来状态仅由当前状态决定。
这个过程被称为“马尔可夫性质”。
如果一个过程满足马尔可夫性质,那么它可以用一个马尔可夫链描述。
马尔可夫链可以用有向图表示,每个状态被表示为一个节点,状态转移被表示为一条边。
如果状态可以转移到自身,称为“自环”。
马尔可夫链的一个重要特性是其具有“无记忆性”。
即,无论已经经过多少次转移,只有当前状态对下一步转移的概率有影响,过去的状态对未来状态没有影响。
因此,马尔可夫链可以用矩阵来表示转移概率。
如果状态有N种可能,那么转移概率矩阵就是一个N×N的矩阵,其中第i行第j列的元素表示状态i转移到状态j的概率。
二、马尔可夫链的原理马尔可夫链可以用于模拟一些随机过程。
对于一个马尔可夫链,我们可以通过计算其转移概率矩阵来预测未来状态的发生概率。
如果我们知道初始状态,那么我们可以通过矩阵乘法来计算出在任意时间步骤后各个状态的概率分布。
连续时间markov链的原理连续时间马尔可夫链是一个随机过程,其状态空间是离散的(有限个或可数个状态),并且状态的转移是依赖于连续时间而非离散的。
这种类型的马尔可夫链在许多应用中具有重要的作用,例如物理、生物、金融等领域都可以使用连续时间马尔可夫链对系统的动态特性进行建模和分析。
连续时间马尔可夫链的基本原理是状态之间的转移是基于指数分布的。
具体来说,对于一个连续时间马尔可夫链,每个状态都有一个转移率,表示从当前状态转移到其他状态的速率。
这些转移率可以表示为矩阵的形式,称为转移率矩阵。
转移率矩阵中的每个元素都代表了从一个状态转移到另一个状态的速率。
连续时间马尔可夫链的数学模型可以通过一组微分方程来描述。
假设该马尔可夫链有n个状态,那么对于任意时刻t,我们可以定义n个状态的概率分布向量P(t),其中P(t)的元素表示在时刻t处于各个状态的概率。
那么离散时间马尔可夫链的转移概率矩阵可以表示为Q,其中Q(i,j)表示从状态i转移到状态j 的速率。
那么状态向量P(t)满足以下微分方程:dP(t)/dt = P(t)Q上述方程表明,在给定的时刻t,状态向量P(t)在单位时间内的变化量等于当前状态向量P(t)与转移概率矩阵Q的乘积。
这个微分方程系统可以通过求解得到状态向量P(t)在任意时刻t的概率分布。
连续时间马尔可夫链的数学模型还与特定的概率分布函数相关联。
具体来说,假设某个状态的转移率为λ,那么从该状态转移到其他状态的时间间隔符合指数分布,其概率密度函数为f(t) = λexp(-λt),其中λ是转移率。
这个指数分布的性质使得连续时间马尔可夫链在模拟和预测系统状态的改变方面具有许多有用的特性。
在实际应用中,连续时间马尔可夫链可用于模拟和分析一些复杂的系统。
例如,在金融领域中,我们希望根据历史数据预测未来的市场走势。
通过构建一个连续时间马尔可夫链模型,我们可以根据当前市场状态和转移率矩阵预测未来的股票价格或市场波动性。
连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。
它受到时间的连续性限制,可以用于描述一些随机过程。
马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。
在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。
这个过程可以用一个状态转移概率矩阵来描述。
在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。
与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。
连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。
该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。
连续时间马尔可夫链的演变是通过指数分布来描述的。
在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。
连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。
设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。
矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。
在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。
转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。
连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。
•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。
•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。
稳态概率分布表示在长时间内各个状态的概率分布。
•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。
马尔可夫链法1. 简介马尔可夫链法(Markov Chain)是一种基于概率的数学模型,用于描述具有随机性质的离散事件序列。
它是根据马尔可夫性质而命名的,该性质指的是未来状态只与当前状态相关,与过去状态无关。
马尔可夫链法被广泛应用于各个领域,如自然语言处理、金融市场预测、信号处理等。
它的核心思想是通过建立状态转移矩阵来描述事件之间的转移关系,并利用概率计算不同状态出现的概率。
2. 历史背景马尔可夫链法最早由俄国数学家安德烈·马尔可夫在20世纪初提出。
他在研究随机过程时发现了一种特殊的概率性质,即未来状态只与当前状态有关,而与过去状态无关。
这一发现为后来的马尔可夫链方法奠定了基础。
20世纪50年代以后,随着计算机技术的快速发展和数学理论的深入研究,马尔可夫链方法得到了广泛应用。
尤其是在自然语言处理领域,马尔可夫链法被用于模拟文本生成、语音识别等任务,取得了显著的成果。
3. 基本概念3.1 状态空间马尔可夫链方法中,事件被抽象为若干个状态。
这些状态构成了一个状态空间,记作S。
每个状态表示系统在某一时刻的特定情况或状态。
3.2 状态转移概率马尔可夫链的核心是描述不同状态之间的转移关系。
假设当前时刻系统处于状态i,下一个时刻系统可能转移到另一个状态j。
这个转移的概率可以用条件概率P(j|i)表示,其中i和j都属于状态空间S。
3.3 转移矩阵将所有可能的状态转移概率按照一定规则组织起来形成一个矩阵,称为转移矩阵。
转移矩阵通常记作P,其元素P(i,j)表示从状态i到状态j的转移概率。
3.4 马尔可夫性质马尔可夫性质指的是未来状态只与当前状态相关,与过去状态无关。
具体而言,在马尔可夫链中,给定当前状态,过去状态对未来状态的影响可以通过当前状态来表示。
4. 马尔可夫链模型4.1 离散时间马尔可夫链离散时间马尔可夫链是指系统在离散时间点上的状态转移。
假设在每个时间点t,系统处于某个状态Si,那么在下一个时间点t+1,系统将以一定概率转移到另一个状态Sj。
第五章 连续时间的马尔可夫链第四章我们讨论了时间和状态都是离散的Markov 链,本章我们研究的是时间连续、状态离散的Markov 过程,即连续时间的Markov 链. 连续时间的Markov 链可以理解为一个做如下运动的随机过程:它以一个离散时间Markov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立。
5。
1 连续时间马尔可夫链的基本概念定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数1210n t t t +≤<<<及任意的非负整数121,,,n i i i I +∈,条件概率满足{}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++===={}11()|()n n n n P X t i X t i ++=== (5。
1)则称{(),0}X t t ≥为连续时间的Markov 链。
由定义知,连续时间的Markov 链是具有Markov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关。
记(5.1)式条件概率的一般形式为{()|()}(,)ij P X s t j X s i p s t +=== (5。
2)它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数。
一般地,它不仅与t 有关,还与s 有关。
定义 5.2 若(5。
2)式的转移概率函数与s 无关,则称连续时间Markov 链具有平稳的转移概率函数,称该Markov 链为连续时间的齐次(或时齐)Markov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =。
一、概述连续时间马尔可夫链是一种随机过程,它具有许多重要的应用场景,如系统建模、信号处理、金融领域等。
在连续时间马尔可夫链中,稳态概率是一个重要的概念,它描述了系统在长时间尺度上的行为。
本文将对连续时间马尔可夫链的稳态概率进行深入探讨。
二、连续时间马尔可夫链的基本概念连续时间马尔可夫链是一种状态空间和时间的随机过程。
在连续时间马尔可夫链中,系统在不同状态之间发生转移,并且转移的概率是与时间连续的。
假设系统有N种状态,则系统的状态空间可以表示为S={1,2,...,N}。
系统从状态i转移到状态j的转移概率可以表示为Pij(t),其中t为时间。
连续时间马尔可夫链满足马尔可夫性质,即系统的下一个状态只与当前状态有关,与过去的状态无关。
三、稳态概率的定义稳态概率描述了系统在长时间尺度上,各个状态的分布情况。
如果系统在一个特定的状态上停留的时间足够长,那么系统处于该状态的概率将会趋于一个固定的值。
这个固定的值就是稳态概率。
对于连续时间马尔可夫链,它的稳态概率可以通过求解系统的平稳分布得到。
四、连续时间马尔可夫链的平稳分布连续时间马尔可夫链的平稳分布满足以下方程:π(t)Q=0其中π(t)为系统的状态分布向量,Q为系统的转移速率矩阵。
通过求解上述方程,可以得到系统的平稳分布。
平稳分布表示了系统在长时间尺度上各个状态的分布情况,也就是系统的稳态概率。
五、求解稳态概率的方法求解连续时间马尔可夫链的稳态概率有多种方法,其中比较常用的方法包括幂迭代法、特征向量法和对数化法。
这些方法都是基于连续时间马尔可夫链的平稳分布方程进行求解的。
六、幂迭代法幂迭代法是求解稳态概率的一种常用方法。
它的基本思想是通过迭代计算系统的状态分布向量,直至收敛为止。
具体步骤如下:1. 初始化系统的状态分布向量π(0);2. 通过迭代计算得到π(k+1)=π(k)Q,直至π(k)收敛为止。
幂迭代法的收敛性和计算效率较高,是连续时间马尔可夫链稳态概率求解的一种有效方法。
随机过程的连续时间马尔可夫过程与转移概率随机过程是概率论中研究的重要课题,它描述了随机事件在时间上的演化规律。
马尔可夫过程是一类常见的随机过程,它具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关。
本文将重点讨论随机过程中的连续时间马尔可夫过程以及与之相关的转移概率。
一、连续时间马尔可夫过程的定义连续时间马尔可夫过程是指在时间上呈连续变化的随机过程,它的状态空间和状态转移概率在时间的任意一段内都保持不变。
具体而言,对于一个连续时间马尔可夫过程,其状态空间可以用S表示,状态转移概率可以用P(t)表示,其中t表示时间。
二、连续时间马尔可夫过程的特点1. 马尔可夫性质:连续时间马尔可夫过程具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关. 这一性质使得马尔可夫过程具有很好的简化性和计算性.2. 独立增量性质:连续时间马尔可夫过程具有独立增量性质,即在不重叠的时间间隔上的状态变量是相互独立的.3. 示性函数的连续性:连续时间马尔可夫过程中,随机变量状态的转移概率是连续函数,这也是它与离散时间马尔可夫过程的一个重要区别。
三、连续时间马尔可夫链与转移概率对于连续时间马尔可夫过程,其状态转移概率可以由转移概率矩阵来表示。
转移概率矩阵是一个关于时间t的函数,记作P(t)。
它的元素Pij(t)表示在时间t内从状态i转移到状态j的概率。
转移概率矩阵满足以下性质:1. Pij(t) ≥ 0,对于所有的i、j和t都成立。
2. 对于任意固定的i和t,有ΣjPij(t) = 1,即在固定时间t内,从状态i出发转移到所有可能状态j的概率之和为1。
3. 转移概率矩阵P(t)的乘积P(s+t)等于P(s)乘以P(t),即P(s+t) =P(s)P(t),其中s和t为任意的正实数。
根据转移概率矩阵P(t)的性质,我们可以得出连续时间马尔可夫过程的转移概率随时间的推移而改变,但在任意一段时间内始终保持一致。
连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的
转移仅依赖于当前状态,与过去状态无关。
在时间离散的情况下,马
尔可夫链的数学理论已经十分成熟且应用广泛。
然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。
为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的
焦点之一。
一、连续时间马尔可夫链的基本定义和性质
连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的
变化满足马尔可夫性质。
与离散时间马尔可夫链不同的是,在连续时
间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续
的时间区间内发生。
连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。
该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。
连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。
连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。
该矩
阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。
连续时间
马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。
二、连续时间马尔可夫链的稳定性与收敛性
连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分
布是否趋于稳定。
对于稳定的连续时间马尔可夫链,其状态转移概率
在时间的演化中不再发生显著改变。
连续时间马尔可夫链的稳定性与其转移速率矩阵相关。
转移速率矩
阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之
间转移的速率。
只有当连续时间马尔可夫链的转移速率矩阵满足一定
条件时,系统的状态分布才会趋于稳定。
在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的
可靠性、资源分配方案以及市场行为等。
利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。
三、连续时间马尔可夫链的应用案例
1. 金融市场预测
连续时间马尔可夫链可以应用于金融市场的预测和风险评估。
通过
分析历史数据,建立连续时间马尔可夫链模型,可以预测不同市场状
态下的价格波动情况,辅助投资者制定投资策略和风险管理方案。
2. 生产流程优化
在生产流程中,连续时间马尔可夫链可以用于评估不同设备状态之
间的转换概率和平均停机时间。
通过优化设备故障检测和维护策略,
提高生产效率和资源利用率。
3. 医疗决策支持
连续时间马尔可夫链可以用于预测患者在不同健康状态下的转移概率,从而辅助医生做出治疗和护理决策。
通过模拟和预测病人的状态变化,可以改善医疗资源的分配和治疗效果。
四、结语
连续时间马尔可夫链作为一种重要的数学工具,在随机过程建模和分析中有着广泛的应用。
通过研究和应用连续时间马尔可夫链,可以更好地理解和预测各个系统的演化行为,为决策提供准确和科学的依据。
在未来的研究中,我们可以进一步探索和发展连续时间马尔可夫链的理论,拓宽其在实际问题中的应用范围,为各个学科领域提供更多的解决方案。