方程组同解的结论
- 格式:docx
- 大小:10.47 KB
- 文档页数:1
同解的充分必要条件
A=0与B=0同解的充要条件是r(A)=r(B)=r(A;B)(A,B上下放置)
可以转化成方程组理解一下,r(A;B)=r(A)就说明以A为系数矩阵的方程组和以(A;B)为系数矩阵的方程组的约束条件数量一致,说明A=0和B=0两个方程组等价。
即同解。
这是充分性。
必要性也一样可以通过方程组理解。
扩展资料
线性方程组的解法
1、克莱姆法则。
用克莱姆法则求解方程组有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。
用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。
2、矩阵消元法。
将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵
,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。
当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
关于两个线性方程组同解条件的再思考陈耀光【摘要】首先给出了两个线性方程组Ax=c及Bx=d的解与解之间的关系,通过对两个方程组有公共解的条件的研究,从而给出了两个方程组有同解的充分必要条件.根据所得结论,最后给出了两个线性方程组是否有同解的判别方法以及同解的求解方法.【期刊名称】《大学数学》【年(卷),期】2014(030)004【总页数】5页(P71-75)【关键词】线性方程组;公共解;同解;条件;方法【作者】陈耀光【作者单位】新疆大学数学与系统科学学院,新疆乌鲁木齐830046【正文语种】中文【中图分类】O151.1线性方程组是大学本科中工科线性代数的最重要也是最主要的部分,它贯穿于线性代数的始终,也可以说线性代数就是线性方程组的代数,因此在线性代数中对线性方程组的讨论已经比较充分,但在教学过程中,学生经常会问到两个线性方程组的解与解有什么关系?如何判断?如何求解?关于这一点工科线性代数中几乎没有讨论,在其它教材中也讨论甚少,即使有也不全面.而在文献[1]中,虽然对此进行了讨论,但所给结论的条件出现了漏洞.为此笔者通过查阅大量相关资料,并进行深入分析与研究,得到了本文相关结论及方法.1 预备知识设非齐次线性方程组Ax=b,(1)其中,,,, j=1,2,…,n.非齐次线性方程组的向量形式x1t1+x2t2+…+xntn=b.(2)引理1 非齐次线性方程组(1)有解的充分必要条件是R(A)=R(Ab).引理2 非齐次线性方程组(1)有解的充分必要条件是向量b可由向量组t1,t2,…,tn 线性表示.2 两个方程组的解与解的关系设有两个非齐次线性方程组Ax=c(3)及Bx=d,(4)其中,,,,,其所对应的齐次方程组Ax=0(5)及Bx=0(6)定义如果有n维向量x同时满足非齐次线性方程组(3)和(4),则称向量x为非齐次方程组(3)和(4)的公共解.如果方程组(3)的任意解都是方程组(4)的解,而方程组(4)的任意解都是方程组(3)的解,则称方程组(3)和方程组(4)是同解的.对于齐次方程组(5)和(6)也同样有非零公共解和非零同解的概念,这里就不再赘述了.3 两个非齐次方程组有公共解的充分必要条件引理3 齐次线性方程组(5)和(6)有非零的公共解的充分必要条件是引理4 非齐次线性方程组(3)和(4)有公共解的充分必要条件是引理5 非齐次线性方程组(3)和(4)有公共解的充分必要条件是向量可由的列向量组线性表示.由引理4(引理5)知,若非齐次线性方程组(3)和(4)有公共解,则非齐次线性方程组(3)和(4)都有解.即如果,则一定有RA=RAc和RB=RBd.反之,非齐次线性方程组(3)和(4)都有解,非齐次线性方程组(3)和(4)不一定有公共解.例如:方程组x+y=1有解,方程组x+y=2也有解,但方程组无解,即方程组x+y=1和方程组x+y=2无公共解.4 两个线性方程组同解的充分必要条件1.两个齐次线性方程组同解的充分必要条件.引理6 齐次线性方程组Ax=0与Bx=0同解的充分必要条件是. (参见文献[1]的定理3).引理7 齐次线性方程组Ax=0与Bx=0同解的充分必要条件是A的行向量组与B的行向量组等价.定理1 齐次线性方程组Ax=0与Bx=0有非零同解的充分必要条件是2.两个非齐次线性方程组同解的充分必要条件.在上面我们研究了两个线性方程组有公共解的问题.很明显,如果两个线性方程组同解,则这两个线性方程组一定有公共解.反之,当两个线性方程组有公共解时,这两个线性方程组不一定同解.而对于两个线性方程组同解的条件,文献[1]中对此进行了相应的讨论,并给出了如下两个结论(文献 [1]中的定理2):结论1 设非齐次线性方程组(3)和(4)都有解,则非齐次线性方程组(3)和(4)同解的充分必要条件是向量组α1,α2,…,αm与向量组β1,β2,…,βs等价.其中向量组α1,α2,…,αm是方程组(3)的增广矩阵Ac的行向量组,向量组β1,β2,…,βs是方程组(4)的增广矩阵Bd的行向量组.结论2 设非齐次线性方程组(3)和(4)都有解,则非齐次线性方程组(3)和(4)同解的充分必要条件是所对应的齐次线性方程组(5)和(6)同解.对于结论2,通过研究和讨论,其必要性是完全正确的,但其充分性是有问题的.对此,笔者从理论和实例两个方面来加以说明.首先设向量组a1,a2,…,am是齐次线性方程组(5)的系数矩阵A的行向量组,向量组b1,b2,…,bs是齐次线性方程组(6)的系数矩阵B的行向量组.注意向量组a1,a2,…,am与α1,α2,…,αm的差异,向量组b1,b2,…,bs与β1,β2,…,βs的差异.若齐次线性方程组Ax=0与Bx=0同解,由引理7知向量组a1,a2,…,am与向量组b1,b2,…,bs等价.而向量组a1,a2,…,am与向量组b1,b2,…,bs等价推不出向量组α1,α2,…,αm与向量组β1,β2,…,βs 等价(如(1,2,-1)与(2,4,-2)等价,但(1,2,-1,1)与(2,4,-2,3)不等价),从而推不出非齐次线性方程组(3)和(4)同解.再则也可以看一反例:方程组x+y=1有解,方程组x+y=2有解且它们所对应的齐次方程组x+y=0和x+y=0同解.但方程组无解,即方程组x+y=1与方程组x+y=2不同解.正因如此,我们对文献[1]中的结论2进行了更加深入的研究,并得出如下结论.定理2 设非齐次线性方程组(3)和(4)都有解,则方程组(3)和(4)同解的充分必要条件是所对应的齐次线性方程组(5)和(6)同解,且非齐次线性方程组(3)和(4)至少有一个公共解.证必要性参见文献[1].充分性.设RA=r.由已知非齐次线性方程组(3)和(4)所对应的齐次线性方程组(5)和(6)同解,所以RA=RB=r,并且Ax=0的基础解系ξ1,ξ2,…,ξn-r也是方程组Bx=0的基础解系.又因为Ax=c及Bx=d有解且至少有一个公共解,不妨设为η*,则x=k1ξ1+k2ξ2+…+kn-rξn-r+η*既是Ax=c的通解,也是Bx=d的通解,所以方程组(3)和(4)同解.定理3 设非齐次线性方程组(3)和(4)都有解,则方程组(3)和(4)同解的充分必要条件是此定理的证明可由引理4和引理6直接得到.定理4 设非齐次线性方程组(3)和(4)都有解,则方程组(3)和(4)同解的充分必要条件是所对应的齐次线性方程组(5)和(6)同解,且向量可由的列向量组线性表示. 此定理的证明可由引理5和引理6直接得到.5 两个方程组同解的判断及同解的求法以下我们仅对非齐次线性方程组加以讨论,而对于齐次线性方程组其方法类似. 设有两个非齐次线性方程组Ax=c(3)及Bx=d.(4)如果能判断出(3)和(4)同解,则它们的同解的求法就很简单了,只要求出(3)或(4)的通解就行了.而同解的判断可以根据定理3的结论来加以进行.下面就通过具体实例来说明这一方法.例1 设非齐次线性方程组及讨论这两个方程组是否有公共解,是否同解?如同解,则求其同解的通解形式. 解,所以.即已知的两个方程组都有解,且有公共解.而由以上易知RA=RB=2≠,即已知的两个方程组所对应的齐次方程组不同解,所以已知的两个方程组不同解. 本例说明,在定理2的充分条件中两个非齐次线性方程组所对应的齐次线性方程组(5)和(6)同解的条件不可缺少,而在第四部分中的反例说明在定理2的充分条件中两个非齐次方程组(3)和(4)至少有一个公共解的条件不可缺少.例2 设非齐次方程组及讨论这两个方程组是否有公共解,是否同解?如同解,则求其同解的通解形式. 解,易知RB=2. 所以.由定理2知,已知的两个线性方程组同解,且同解的通解形式为【相关文献】[参考文献][1] 罗家贵. 关于线性方程组同解的条件[J].大学数学,2012,28 (3):141—145.[2] 尹晓东. 线性代数习题课需要解决的几个问题[J].大学数学,2012,28 (2):139—141.[3] 同济大学. 线性代数 [M].5版.北京:高等教育出版社,2007.。
两个齐次线性方程组同解的充要条件作者:周津名来源:《文存阅刊》2018年第22期摘要:本文研究了两个齐次线性方程组同解的充要条件及其在代数图论里的一个简单应用。
关键词:齐次线性方程组;同解线性方程组是线性代数里的一个重要内容,不少线性代数教材中都详细讲解了线性方程组的解法及解的结构,但介绍同解线性方程组的内容却不多。
本文研究齐次线性方程组同解的充要条件,并给出在代数图论中零因子图中的一个应用。
下文中,对任意矩阵A,用r(A)表示A的秩,用En表示n阶单位阵。
本文主要定理如下:定理设A,B均为矩阵m×n,则齐次线性方程组Ax=0和Bx=0同解,当且仅当存在m阶可逆矩阵P使得B=PA。
证明先证充分性。
若P为M阶可逆矩阵且B=PA,显然有Ax=0Bx=P(Ax)。
再证必要性。
若Ax=0和Bx=0同解,则Ax=0和Bx=0的解空间具有相同的维数,即n-r (A)=n-r(B),从而可设r=r(A)=r(B)。
下面分两种情况进行讨论。
(1)若r=0,则由r(A)=r(B)=0可知A=B=0。
此时,任取m阶可逆矩阵P均有B=PA。
(2)若r>0,将矩阵A按行分块A=,不妨设a1,a2,……,ar为A的行向量组a1,a2,……,am的一个最大无关组。
由r(B)可知,存在初等矩阵P1,使得P1B的前行r为P1B的行向量组的一个最大无关组。
因此,不妨设P1B=,且β1,β2,……,βr为B的行向量组β1,β2,……,βm的一个最大无关组。
注意到Bx=0和P1Bx=0同解,故Ax=0和P1Bx=0同解,进而Ax=0和同解。
由于的解空间维数为n-r(A),且a1,a2,……,ar的前行线性无关,故ar+1,……,am,β1,β2,……,βm可由a1,a2,……,ar线性表示。
从而β1,β2,……,βr可由线性表示,又由于β1,β2,……,βr与a1,a2,……,ar均线性无关,故存在r阶可逆矩阵P2使得(β1,β2,……,βr)=(a1,a2,……,ar)。
二元一次方程组的同解问题、错解问题一、同解问题1、已知方程组2237x ayx y+=⎧⎨+=⎩的解也是二元一次方程x-y=1的一个解,则a的值是().A. 0B. 1C. 2D. 3答案:A解答:由题意得:2371x yx y+=⎧⎨-=⎩,解得:21 xy=⎧⎨=⎩,代入方程x+ay=2中得:2+a=2,∴a=0,选A.2、二元一次方程组2527x y kx y k+=⎧⎨-=⎩的解满足方程13x-2y=5,那么k的值为______.答案:53或123解答:①②2527x y kx y k+=⎧⎨-=⎩①②,①+②,得4x=12k,解得x=3k,①-②,得2y=-2k,解得y=-k,所以原方程组的解为3x ky k=⎧⎨=-⎩,把3x ky k=⎧⎨=-⎩代入方程13x-2y=5,得:13×3k-2(-k)=5,解得k=53.3、如果方程组31x yx y+=⎧⎨-=⎩与方程组84mx nymx ny+=⎧⎨-=⎩的解相同,则m=______,n=______.答案:3;2解答:根据题意,可先用加减消元法解方程组31 x yx y+=⎧⎨-=⎩,得21 xy=⎧⎨=⎩.把21xy=⎧⎨=⎩代入方程组84mx nymx ny+=⎧⎨-=⎩,得28 24 m nm n+=⎧⎨-=⎩,用加减消元法解得m=3,n=2.故答案为:m=3;n=2.4、已知方程组3124mx nyx y+=⎧⎨+=⎩与5236x ny nx y-=-⎧⎨-=⎩有相同的解,则m-n=______.答案:-11.5解答:∵方程组同解,∴2436x yx y+=⎧⎨-=⎩与3152mx nyx ny n+=⎧⎨-=-⎩同解,解得:20 xy=⎧⎨=⎩,代入含参方程组得:21 102mn=⎧⎨=-⎩,∴1212 mn⎧=⎪⎨⎪=⎩,∴m-n=-11.5.故答案为:-11.5.5、若方程组35661516x yx y+=⎧⎨+=⎩的解也是方程3x+ky=10的解,求k的值.答案:10.解答:①②356 61516x yx y+=⎧⎨+=⎩①②,②-①得,3x+10y=10,因为方程组的解也是方程3x+ky=10的解,所以k=10.6、已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求a2-2ab+b2的值.答案:1.解答:解方程组45321x yx y+=⎧⎨-=⎩得11xy=⎧⎨=⎩,把11xy=⎧⎨=⎩代入第二个方程组得31a ba b+=⎧⎨-=⎩,解得21ab=⎧⎨=⎩,则a2-2ab+b2=22-2×2×1+12=1.7、已知两个方程组254x yax by+=⎧⎨-=-⎩和546232x yax by-=⎧⎨+=⎩有公共解,求a、b的值.答案:12ab=-⎧⎨=⎩.解答:在方程组254x yax by+=⎧⎨-=-⎩和546232x yax by-=⎧⎨+=⎩中,∵有公共解,∴有25546x yx y+=⎧⎨-=⎩和4232ax byax by-=-⎧⎨+=⎩.由第一组可解得21xy=⎧⎨=⎩,代入第二组,得24432a ba b-=-⎧⎨+=⎩,解得12ab=-⎧⎨=⎩.故答案为:12ab=-⎧⎨=⎩.8、已知关于x 、y 的方程组14323ax by x y +=-⎧⎨+=⎩与353917x y ax by -=⎧⎨-=⎩的解相同,求a 、b 的值.答案:1,3.解答:根据题意得:43233539x y x y +=⎧⎨-=⎩①②,83x y =⎧⎨=-⎩,代入117ax by ax by +=-⎧⎨-=⎩即8318317a b a b -=-⎧⎨+=⎩,13a b =⎧⎨=⎩.二、同解问题的变形9、二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( ).A. 4B. -4C. 8D. -8答案:A解答:解二元一次方程组可得:x =1,y =-2.将x 和y 的值代入2x -ky =10可得:2+2k =10,解得k =4.10、若方程组()43518x y kx k y +=⎧⎨--=⎩的解中x 比y 的相反数大1,则k 的值为(). A. 2 B. 3 C. 4 D. 52答案:B解答:x 比y 的相反数大1,x =-y +1;4351x y x y +=⎧⎨=-+⎩解得:21x y =⎧⎨=-⎩;2k +(k -1)=8;k =3,选B.11、已知方程组221x y kx y+=⎧⎨+=⎩,的解满足x+y=3,则k的值为______.答案:8解答:解方程组①②321x yx y+=⎧⎨+=⎩①②,由①-②得:x=-2,将x=-2代入到①得:y=5,则方程组的解为:25xy=-⎧⎨=⎩,代入到x+2y=k,解得:k=8.12、关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为______.答案:-1解答:①②225y x m x m+=⎧⎨+=⎩①②由②,可得:x=5m-2③,把③代入①,解得y=4-9m,∴原方程组的解是5249x my m=-⎧⎨=-⎩,∵x+y=6,∴5m-2+4-9m=6,解得m=-1.故答案为:-1.13、已知方程组32223x y mx y m+=+⎧⎨+=⎩的解x、y互为相反数,求m的值,并求此方程组的解.答案:m=-1;11 xy=⎧⎨=-⎩.解答:由题意得y=-x,代入方程组得32223x x mx x m-=+⎧⎨-=⎩,得m =-1代入方程得x =1,y =-1,所以方程解为11x y =⎧⎨=-⎩.14、如果方程组3253x y k x y k -=-⎧⎨-=⎩的解x 与y 相等,求k 的值. 答案:1.解答:∵x 与y 相等,∴3253x y k x y k -=-⎧⎨-=⎩可化为3253x x k x x k -=-⎧⎨-=⎩①②, 解①得x =22k -, 解②得x =2k , ∴22k -=2k , 解得k =1∴k 的值为1.15、已知关于x 、y 的方程组35223x y m x y m +=+⎧⎨+=⎩,且x 与y 的和是2,求m 的值. 答案:m =4.解答:先消m ,得222x y x y +=⎧⎨+=⎩ 解得2 0x y =⎧⎨=⎩, 将x 、y 的值代入2x +3y =m 中,可得m =4.三、错解问题16、关于x 、y 的方程组75x ay bx y +=⎧⎨-=⎩,小明把a 看错了,解得31x y =⎧⎨=⎩,则b =______. 答案:2解答:小明只是把a 看错了,故将31x y =⎧⎨=⎩代入bx -y =5,得3b -1=5,解得b =2. 故答案为:2.17、已知方程组①②51542ax yx by+=⎧⎨+=-⎩①②,由于甲看错了方程①中的a,得到解为31xy=-⎧⎨=-⎩;乙看错了②中的b,得到解为54xy=⎧⎨=⎩,若按正确的a,b计算,则原方程组的解x与y的差为______.答案:41 5解答:由题意,知31xy=-⎧⎨=-⎩是方程②的解,54xy=⎧⎨=⎩是方程①的解,分别代入方程求得a=-1,b=-10,则原方程组为5154102x yx y-+=⎧⎨-=-⎩,解得14295xy=⎧⎪⎨=⎪⎩,故x-y=415.18、小飞哥和小仙女同解一个二元一次方程组()()16112mx nynx my⎧+=⎪⎨+=⎪⎩,小飞哥把方程(1)抄错,解得13xy=-⎧⎨=⎩,小仙女把方程(2)抄错,解得32xy=⎧⎨=⎩.求原方程组的解是x=______,y=______.答案:-926 77;解答:将13xy=-⎧⎨=⎩代入(2)得:-n+3m=1,将32xy=⎧⎨=⎩代入(1)得:3m+2n=16,联立解得:25mn=⎧⎨=⎩,即方程组为2516 521x yx y+=⎧⎨+=⎩,解得:97267xy⎧=-⎪⎪⎨⎪=⎪⎩.19、已知方程组()()151422ax yx by⎧+=⎪⎨-=-⎪⎩甲由于看错了第一个方程中的a,得到方程组的解为31x y =-⎧⎨=-⎩,乙由于看错了第二个方程中的b ,得到方程组的解为43x y =⎧⎨=⎩,若按正确的计算,求x +6y 的值.答案:16.解答:将x =-3,y =-1代入(2)得-12+b =-2,即b =10;将x =4,y =3代入(1)得4a +3=15,即a =3,原方程组为①②3154102x y x y +=⎧⎨-=-⎩①②,①×10+②得:34x =148,即x =7417, 把x =7417代入①得y =3317, 所以x +6y =7417+6×3317=16. 20、在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩. (1)求m ,n 的值.(2)求原方程组正确的解.答案:(1)m =2,n =3.(2)12x y =⎧⎨=⎩. 解答:(1)将7323x y ⎧=⎪⎪⎨⎪=⎪⎩代入mx +2y =6,解得m =2,将24x y =-⎧⎨=⎩代入2x +ny =8,解得n =3,∴m =2,n =3.(2)由(1)得,原方程组为226238x y x y +=⎧⎨+=⎩, 两式子相减,可得y =2,把y =2代入2x +2y =6,得x =1,∴原方程组的解为12x y =⎧⎨=⎩.21、已知方程组278ax by mx y +=⎧⎨-=⎩的解应为32x y =⎧⎨=-⎩,由于粗心,把m 看错后,解方程组得22x y =-⎧⎨=⎩,则a ·b ·m 的值为多少? 答案:-40.解答:将32x y =⎧⎨=-⎩代入方程组,得3223148a b m -=⎧⎨+=⎩, ∴m =-2,将22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2, ∴45a b =⎧⎨=⎩,∴a ·b ·m =4×5×(-2)=-40.故答案为:-40.22、回答下列问题(1)解方程组87ax y x by +=⎧⎨-=⎩时,由于粗心,小宝看错了方程组中的a ,得到解为35x y =-⎧⎨=⎩,小茹看错了方程组中的b ,得到解为110x y =-⎧⎨=⎩.求方程正确的解. (2)已知方程组1620224ax by cx y +=-⎧⎨+=-⎩的解应为810x y =⎧⎨=-⎩,小超解题时把c 抄错了,因此得到的解为1213x y =⎧⎨=-⎩,则a 2+b 2+c 2的值为______.答案:(1)32x y =⎧⎨=⎩;(2)34解答:(1)小宝看错了a 意味着b 是正确的,即解满足方程第二式,代入得-3-5b =7;小茹看错了b 意味着a 是正确的,即满足方程第一式,代入得-a +10=8.解得22a b =⎧⎨=-⎩,所以32x y =⎧⎨=⎩. (2)a 2+b 2+c 2=34.23、请回答下列问题:(1)已知方程组1620224ax by cx y +=-⎧⎨+=-⎩的解应为810x y =⎧⎨=-⎩,小明解题时把c 抄错了,因此得到的解为1213x y =⎧⎨=-⎩,则a 2+b 2+c 2的值为______.(2)解关于x ,y 的方程组87ax y x by +=⎧⎨-=⎩时,由于粗心,小明看错了方程中的a ,得到的解为35x y =-⎧⎨=⎩,小红看错了方程组中的b ,得到解为110x y =-⎧⎨=⎩,求方程组正确的解. 答案:(1)34;(2)32x y =⎧⎨=⎩.解答:(1)将正确的解代入方程组得到810168200224a b c -=-⎧⎨-=-⎩,化简得到4583a b c -=-⎧⎨=-⎩. 小明解题时把c 抄错,意味着a 、b 是正确的,即此时错误的解满足方程第一式12a -13b =-16④,④-3③得2b =8,得到343a b c =⎧⎪=⎨⎪=-⎩,代入得到a 2+b 2+c 2=9+16+9=34.(2)小明看错了a 意味着b 是正确的,即他的解满足方程第二式,代入得-3-5b =7;小红看错了b 意味着a 是正确的,即她的解满足方程第一式,代入得-a +10=8.解得22ab=⎧⎨=-⎩,代入原方程解得:32xy=⎧⎨=⎩.。
标题:两个方程组同解,行向量组等价一、概述上线性代数中,我们经常会遇到方程组和向量组的问题。
其中一个常见的问题就是判断两个方程组是否有相同的解,以及判断两个向量组是否等价。
在本文中,我们将会深入探讨两个方程组同解的概念,以及行向量组等价的相关知识。
二、两个方程组同解的概念1. 方程组的定义方程组是由几个方程组成的集合,通常用于描述多个未知数之间的关系。
一个最简单的方程组可以表示为:a1x + b1y = c1a2x + b2y = c2其中x和y为未知数,a1、b1、c1、a2、b2、c2为系数。
2. 同解的定义当两个方程组有相同的解时,我们称这两个方程组为同解方程组。
如果两个方程组中的未知数取值满足一个方程组的所有方程,则也一定满足另一个方程组的所有方程。
3. 判断两个方程组同解的方法要判断两个方程组是否有相同的解,通常会使用消元法和高斯消元法等数学方法进行计算和推导。
通过这些方法,我们可以找到方程组的解,并进而判断两个方程组是否同解。
三、行向量组等价的概念1. 向量组的定义向量组是由若干个向量组成的集合,通常用于表示空间中的几何关系。
一个最简单的向量组可以表示为:v1 = [a1, b1, c1]v2 = [a2, b2, c2]其中v1、v2为向量,a1、b1、c1、a2、b2、c2为分量。
2. 等价的定义当两个向量组具有相同的线性相关性质时,我们称这两个向量组为等价向量组。
如果一个向量组可以由另一个向量组线性表出,那么这两个向量组就是等价的。
3. 判断行向量组等价的方法要判断两个向量组是否等价,通常会使用矩阵的行变换、列变换等方法进行计算和推导。
通过这些方法,我们可以找到向量组的线性相关性质,并进而判断两个向量组是否等价。
四、两个方程组同解的性质1. 唯一解和无穷解当两个方程组同解时,它们可能具有唯一解,也可能具有无穷解。
唯一解意味着方程组只有一个解,无穷解意味着方程组有无穷多个解。
这取决于方程组的系数和常数项的具体取值。
两个方程组同解的充分必要条件
有些数学问题,比如两个或多个方程组能否具有同解这样的问题,为科学工作者提供了巨大的挑战和困难。
解决这个问题十分关键,因为从科学和技术到计算机程序,几乎所有工作者都有时必须假设有一个强有力的解决方案存在。
为此,研究者们利用这一概念来确定两个方程组是否可以同解。
共解的充分必要条件是:两个方程组必须具有相同的系数矩阵,即系数矩阵的值须完全相等;其次,它们必须具有相同的常数项向量,即常数项向量的值也要完全相等。
只有当两个方程组都满足这两个要求时,它们才能具有同解。
换句话说,两个方程组具有相同的系数矩阵和常量项向量,这样一来,它们可以用一组有效的参数解释同一类问题,从而得出同一组解,使用这一理念的技术有很多应用,不仅能更好地处理问题,而且能够推广到广泛的研究领域。
正是基于此,出现了大量的算法和技术,来验证两个或多个方程组之间的同解性。
例如通过构建一个同类问题一致性检查模型,以及通过建立一个模型来比较两个方程组之间的解以及系数,我们可以判断这两个方程组是否具有相同的解,或者说具有相同的充分必要条件,这种方法极大地拓展了研究者们对方程组问题的研究范围。
总之,验证两个方程组之间共解性的充分必要条件,即具有相同的系数矩阵和常量向量,是解决大量科学和技术上的问题的关键所在,这些技术允许科研人员建立模型,以验证两个方程组问题之间的充分必要条件,并进行进一步的研究。
二元一次方程组的同解、错解、参数等问题一. 解下列方程组:二.含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
1.、同解 两个二元一次方程组有相同的解,求参数值。
例:已知方程 与 有相同的解,则a 、b 的值为 。
2、错解 由方程组的错解问题,求参数的值。
例:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==23y x 由于看错了系数c,从而得到解⎩⎨⎧=-=22y x 试求a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。
3、参数问题 根据方程组解的性质,求参数的值。
例:1、m 取什么整数时,方程组的解是正整数?(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ①② ⎩⎨⎧=-=-0362y x my x方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。
4、根据所给的不定方程组,求比值。
2、求适合方程组⎩⎨⎧=++=-+05430432z y x z y x 的 z y x z y x +-++ 的值。
练习:2.已知关于x y 、的方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y 、都是整数,m 是正整数,求m 的值3、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩有整数解,即x y 、都是整数,a 是正整数, 求a 的值.4. 已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,求原方程组的解.5..关于x y 、的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值?6. 若()4360,2700,x y z x y z xyz --=+-=≠求代数式222222522310x y z x y z +---的值.7、先阅读,再做题:1.一元一次方程ax b =的解由a b 、的值决定:⑴若0a ≠,则方程ax b =有唯一解b x a=; ⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解;a 515 42x y x by +=⎧⎨-=-⎩① ②⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解.2.关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行: ⑴若1122a ba b ≠,则方程组有唯一解;⑵若111222a b c a b c ==,则方程组有无数多个解;⑶若111222a b c a b c ≠=,则方程组无解.请解答:已知关于x y 、的方程组()312y kx by k x =+⎧⎪⎨=-+⎪⎩分别求出k,b 为何值时, 方程组的解为: ⑴有唯一解; ⑵有无数多个解; ⑶无解?① 例2. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 2751.有无数多解,2.无解,3.有唯一的解。
非齐次线性方程组同解的讨论摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解.关键词 非齐次线性方程组 同解 陪集 零空间引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。
下面是一个非齐次线性方程组,我们用矩阵的形式写出11121121222212n n m m mn ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 令 A= 111212122212n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ ,b= 12m b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。
即非齐次线性方程组可写成Ax b =。
一 、线性方程组同解的性质引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等.证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为212,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。
从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等.引理[1]2 设A 、B 为m n ⨯矩阵,则齐次线性方程组0Ax =与0Bx =同解的充要条件是存在可逆矩阵P 使得PA B =.证明 充分性显然成立。
二元一次方程组的同解、错解、参数等问题解下列方程组:变式题仆己知二元一次方程组为二:,则x-y=( h x+y=()7. LZfeJx+2y+3z=54. 3x+y+2z=4712x+3y+z=31T那么代数式x+y*z的值是()二•含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
1•、同解两个二元一次方程组有相同的解,求参数值。
例:已知方程5x y 3(°与x 2y 5(3)有相同的解,ax 5y 4(2)5x by 1 (4)贝U a、b的值为______ 。
2、错解由方程组的错解问题,求参数的值。
ax by 2 x 3 x 2例:解方程组时,本应解出由于看错了系数c,从而得到解试求a+b+c的值。
cx7y8 y 2 y 2 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。
3、参数问题根据方程组解的性质,求参数的值。
例:1、m取什么整数时,方程组的解是正整数?2x my 6 ①x 3y 0 ②方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。
N己知关于X"的二元一次方稈细二二姿<的解满足二元一次方程专€=4求m的WU4、根据所给的不定方程组,求比值。
14.若3x~4丫=0,且xy* O・则2、求适合方程组2X 3y 4Z 0的X y Z的值。
3x 4y 5z 0 x y z练习:13, ^4x+5y=10,^5x+4y=8,HiJ^^=()2.已知关于x、y的方程组mX 2y 10有整数解,即x、y都是整数,m是正整数,求m的值3x 2y 03、已知关于x 、y 的方程组 4: a y 76有整数解,即x 、y 都是整数,a 是正整数,求a 的值.ax 5y 15 ① 4.已知方程组 4x by 2 ② :5乙看错了方程②中的b 得到方程组的解为,若按正确的a 、b 计算,求原方程组的解y 4 y 9:的解也是二元一次方程2x 3y 6的解则k 的值?7、先阅读,再做题:1.一元一次方程ax b 的解由a 、b 的值决定:⑴若a 0,则方程ax b 有唯一解x -;a⑵若a b 0,方程变形为Ox 0,则方程ax b 有无数多个解;由于甲看错了方程①中的a 得到方程组的解为5..关于x 、y 的二元一次方程组6.若4x 3y 6z 0,x 2y 7z 0 xyz5 2 2 2 2 0,求代数式2x x 3y y lOz ^的值-⑶若a 0,b 0,方程变为Ox b,则方程无解.2•关于x、y的方程组aiX°的解的讨论可以按以下规律进行:a2x b2y c2⑴若虫如,则方程组有唯一解;a2b2⑵若虫直纟,则方程组有无数多个解;a? b? C2⑶若虫如9,则方程组无解.a? b? C2y kx b请解答:已知关于X、y的方程组分别求出k,b为何值时,方程组的解为:y 3k 1 x 2⑴有唯一解;⑵有无数多个解;⑶无解?① 例2.选择一组a,c值使方程组5x y 7 1.有无数多解,2.无解,3.有唯一的解ax 2y c。
专题11 方程组同解的问题[例11.1] 已知齐次方程组同解,求a,b,c.[解法一] 设这两个方程组的系数矩阵分别为A和B,由Ax=0与Bx=0同解,知r(A)=r(B).显然r(B)<3,故|A|=0.于是由得到方程组(Ⅰ)的通解:k(-1,-l,1)T,其中k为任意常数.把x1=-k,x2=-k,x3=k代入方程组(Ⅱ),得[解法二] 因为Ax=0与Bx=0同解[例11.2] 已知齐次方程组同解,求a,b,c之值并求它们的通解.[解] 设方程组(Ⅰ)和(Ⅱ)的系数矩阵分别是A和曰,a,b,c恒有r(A)=r(B)=2.取x2,x4为自由变量,得到(Ⅰ)的基础解系η1=(-1,1 -4,0)T,η2=(-a,0,-3a,1)T.因为(Ⅰ)与(Ⅱ)同解,故η1,η2是(Ⅱ)的基础解系.代入(Ⅱ)有方程组(Ⅰ)和(Ⅱ)的通解均为k1(-1,1,-4,0)T+k2(2,0,6,1)T,其中k1,k2为任意常数.评注请你用[例11.1]的[解法二]再做一遍.[例11.3] 设A是m×n矩阵,B是n×s矩阵,秩r(A)=n,证明齐次方程组ABx=0与Bx=0同解.[证明] 设α是齐次方程组Bx=0的解,则Bα=0.那么ABα=A(Bα)=A0=0,即α是方程组ABx=0的解.若α是齐次方程组ABx=0的解,则ABα=0,那么Bα是齐次方程组Ax=0的解.因为秩r(A)=n,所以Ax=0只有0解.故Bα=O.从而α是齐次方程组Bx=0的解.因此ABx=0与Bx=0同解.[例11.4] 设A是m×n矩阵,如果齐次方程组Ax=0的解全是方程b1x1+b2x2+…+b n x n=0的解,证明向量β=(b1,b2,…,b n)可由A的行向量线性表出.[证明] 因为Ax=0的解全是b1x1+b2x2+…+b n x n=0的解,所以若是矩阵A行向量组α1,α2,…,αm的极大线性无关组,那么也是α1,α2,…,αm,β的极大线性无关组.因此β可由线性表出,亦即β可由A的行向量线性表出.[例11.5] 证明n元非齐次线性方程组Ax=b有解的充分必要条件是A T x=0的解全是b T x=0的解.[证明] (必要性)因为方程组Ax=b有解,设α是Ax=b的一个解,即Aα=b,即b T=(Aα)T=αT A T.若η是A T x=0的任一个解,则A Tη=0,那么b Tη=αT A Tη=αT0=0,即η是b Tη=0的解.(充分性)因为A T x=0的解全是b T x=0的解,所以A T x=0 与同解.那么即r(A)=r(A,b),因此方程组Ax=b有解.专题12 抽象矩阵的特征值与特征向量[例12.1] 设A是3阶矩阵,其特征值是1,2,-1,那么(A+2E)2的特征值是______.[分析] 设矩阵A属于特征值λi的特征向量是αi,那么(A+2E)αi=Aαi+2αi=(λi+2)αi,(A+2E)2αi=(A+2E)(λi+2)αi=(λi+2)(A+2E)αi=(λi+2)2αi.由于αi≠0,故αi是矩阵(A+2E)2属于特征值(λi+2)2的特征向量,即矩阵(A+2E)2的特征值是9,16,1.[例12.2] 已知若矩阵A与αβT相似,那么(2A+E)*的特征值是______.[分析] 记B=αβT,由于所以矩阵曰的特征方程为|λE-B|=λ3-2λ2=λ2(λ-2)=0,即B的特征值是2,0,0.那么矩阵A的特征值是2,0,0,从而2A+E的特征值是5,1,1.因此,|2A+E|=5·1·1=5.所以,(2A+E)*的特征值是1,5,5.[例12.3] 设A是秩为r的n阶实对称矩阵,满足A4-3A3+3A2-2A=0.那么,矩阵A的n个特征值是______.[分析] 设λ是矩阵A的任一特征值,α是矩阵A属于特征值λ的特征向量,即Aα=Aα,α≠0.那么,A nα=λnα.于是有(A4-3A3+3A2-2A)α=(λ4-3λ3+3λ2-2λ)α=0.从而λ4-3λ3+3λ2-2λ=0,即λ(λ-2)(λ2-λ+1)=0.因为实对称矩阵的特征值必为实数,所以矩阵A的特征值只能是2或0.又因为实对称矩阵必可相似对角化,故而r(A)=r(Λ)=r,从而矩阵A的特征值是2(r重),0(n-r重).[例12.4] 已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.[解法一] 由于A3+2A2α-3Aα=0,有A(A2α+2Aα-3α)=0=0(A2α+2Aα-3α).因为α,Aα,A2α线性无关,故必有A2α+2Aα-3α≠0.所以λ=0是A 的特征值,而k1(A2α+2Aα-3α)(k1≠O)是矩阵A属于特征值λ=0的特征向量.类似地,由A3α+2A2α-3Aα=0,有(A-E)(A2α+3Aα)=0=0(A2α+3Aα),(A+3E)(A2α-Aα)=0=0(A2α-Aα).所以,λ=1是A的特征值,而k2(A2α+3Aα)(k2≠0)是属于λ=1的特征向量;λ=-3是A的特征值,而k3(A2α-Aα)(k3≠0)是属于λ=-3的特征向量.[解法二] 由A(α,Aα,A2α)=(Aα,A2α,A3α)=(Aα,A2α,3Aα-2A2α)知矩阵B的特征值是0,1,-3,亦即A的特征值是0,1,-3.由(0E-B)x=0得基础解系β1=(-3,2,1)T;(E-B)x=0得基础解系β2=(0,3,1)T;(-3E-B)x=0得基础解系β3=(0,-1,1)T.如Bβ=λβ有(P-1AP)β=λβ,即 A(Pβ)=λPβ.所以[例12.5] 设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Ax=0的解,又知Aα2=α2+2α2,Aα3=α1-3α2+2α3.(Ⅰ) 求矩阵A的特征值与特征向量;(Ⅱ) 判断A是否和对角矩阵相似并说明理由;(Ⅲ) 求秩r(A+E).[解] (Ⅰ)据已知条件,有所以矩阵B的特征值是2,2,0,亦即矩阵A的特征值是2,2,0.对应于λ1=λ2=2,解齐次线性方程组(2E-B)x=0得基础解系ξ1=(1,2,0)T.如果Bα=λα,则(P-1AP)α=λα,有A(Pα)=λ(Pα),那么是矩阵A对应于特征值λ=2的特征向量.又Aα1=0=0α1,知α1是矩阵A对应于特征值λ=0的特征向量.从而矩阵A对应于λ1=λ2=2的特征向量是k1(α1+2α2),k1≠0;矩阵A对应于λ3=O的特征向量是k2α1,k2≠0.(Ⅱ)因为秩r(2E-B)=2,矩阵曰对应于λ1=λ2=2只有一个线性无关的特征向量,矩阵B不和对角矩阵相似,所以A不和对角矩阵相似.(Ⅲ)因为A-B,有A+E-B+E.从而r(A+E)=r(B+E)=3.专题13 关于P-1AP=B中的矩阵P[例13.1] 已知α1是矩阵A属于特征值λ=6的特征向量,α2和α3是矩阵A属于特征值λ=2的线性无关的特征向量,如果①P=(α3,-α2,2α1) ②P=(3α1,α3,α2)③P=(α2,α2-α3,α1) ④P=(α3,α1+α2,α1)那么正确的矩阵P是(A) ①,②.(B) ①,③.(C) ②,③.(D) ②,④.[分析]是矩阵A的特征值,而α1,α2,α3依次分别是α1,α2,α3的特征向量.根据特征值,特征向量的性质:1°若α,β是矩阵A属于特征值λ的特征向量,则kα+lβ(kl≠0)仍是矩阵A属于特征值λ的特征向量.2°若α,β是矩阵A不同特征值的特征向量,则kα+lβ(kl≠0)就不是矩阵A的特征向量.因为④中的α1+α2不是矩阵A的特征向量,而②中矩阵P的特征向量的排序与对角矩阵Λ中特征值的排序不协调,故②、④不正确,所以应选(B).[例13.2] 已知A是3阶实对称矩阵,若有正交矩阵P使得且α1=是矩阵A属于特征值λ=3的特征向量,则P=______.[分析] 因为实对称矩阵属于不同特征值的特征向量互相正交.设属于λ=-3的特征向量α3=(x1,x2,x3)T,则评注注意正交矩阵的几何意义,列向量应两两正客且长度为1.以往在用正交变化实对称矩阵为对角形的问题中,总有同学忘记正交化(若特征值有重根)或单位化,在枝节问题上丢分是非常可惜的.[例13.3] 已知矩阵与对角矩阵Λ相似,求a的值,并求可逆矩阵P,使P-1AP=Λ.[解] 由=(λ+1)(λ-3)2=0,得到矩阵A的特征值λ1=λ2=3,λ3=-1.由矩阵A的特征值有重根,而A与对角矩阵相似,可知λ=3必有2个线性无关的特征向量,因而秩r(3E-A)=1.于是由[例13.4] 已知矩阵试求可逆矩阵P,使P-1AP=B[分析] 因为A和B均与对角矩阵相似,可有[解] 由得到矩阵A的特征值:λ1=λ2=0,λ3=1.对应于λ1=λ2=0,解齐次线性方程组(0E-A)x=0,得基础解系:α1=(-2,1,0)T,α2=(-3,0,1)T.对应于λ3=1,解齐次线性方程组(E-A)x=0,得基础解系:α3=(1,0,0)T.λ1=λ2=0,λ3=1.对应于λ1=λ2=0,解齐次线性方程组(OE-B)x=0,得基础解系:β1=(1,1,0)T,β2=(-2,0,1)T.对应于λ3=1,解齐次线性方程组(E-B)x=0,得基础解系:β3=(2,1,O)T.专题14 由特征值、特征向量求矩阵中参数[例14.1] 已知有三个线性无关的特征向量,则a=______.[分析] 先求矩阵A的特征值,由知矩阵A的特征值是λ1=1,λ2=λ3=2.因为矩阵A有三个线性无关的特征向量,λ=2是二重特征值,故λ=2必有两个线性无关的特征向量,那么秩r(2E-A)=1.所以a=-10.[例14.2] 已知矩阵A第一行3个元素是3,-1,-2,又α1=(1,1,1)T,α2=(1,2,0)T,α3=(1,0,1)T是矩阵A的三个特征向量,则矩阵A=______.[分析] 设矩阵A的三个特征值依次为λ1,λ2,λ3,则利用第1行相乘,可知λ1=0,类似可知λ2=λ3=1,那么 A(α1,α2,α3)=(0,α2,α3).所以[例14.3] 设,向量是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.[解] 由A-1α=λ0α两边左乘A得λ0Aα=α,即则有 a(b-6)=0.若a=0,由①、②解出c=-2,λ0=1,代入③得b=-2.若b=6,由①、③解出c=-4,λ0=-1,代入②得a=-2.评注虽α是A-1的特征向量誊但不要由A去求A-1那样会很繁琐,用恒等变形转换为A的特征向量会方便得多.[例14.4] 已知矩阵A和B相似,其中求a,b,c的值.[解] 由于矩阵A与对角矩阵B相似,知矩阵A的特征值是b,b,c.且λ=b有两个线性无关的特征向量,故秩r(bE-A)=1.矩阵A的特征多项式评注若A~B,则∑a ii=∑b ii,这是一个比较好用的必要条件.专题15 实对称矩阵的特征值[例15.1] 设A是3阶实对称矩阵,其主对角线元素都是0,并且α=(1,2,-1)T满足Aα=2α.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵P,使P-1AP为对角矩阵.[解]故(Ⅱ)由矩阵A的特征多项式评注若解方程组(2E-A)x=0求基础解系(1,1,0)T,(1,0,1)T,则因为这两个解不正交,而应当Schmidt 正交化处理,注意到已知条件的α=(1,2,-1)T与(1,0,1)T正交,选它们则计算量略小.[例15.2] 设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α1=(2,3,-1)T与α2=(1,a,2a)T,A*是A的伴随矩阵,求齐次方程组(A* -2E)x=0的通解.[分析] 若α是矩阵A属于特征值λ=0的特征向量,则Aα=0α=0,即α是齐次方程组Ax=0的非零解,反之亦然.在已知条件是特征值、特征向量这一情况下,求齐次方程组的解应考虑λ=0的特征向量.[解] 由A的特征值是1,2,-l,可知行列式|A|=-2,那么A*的特征值是-2,-1,2.于是所以r(A* -2E)=r(A)=2.那么,(A* -2E)x=0的基础解系由一个线性无关的解向量所构成.又因矩阵A属于λ=-1的特征向量就是A*属于λ=2的特征向量,亦即A* -2E属于λ=0的特征向量.由于A是实对称矩阵,不同特征值的特征向量相互正交.设矩阵A属于特征值λ=-1的特征向量是α3=(x1,x2,x3)T,则有评注本题也可以通过特征值、特征向量先把矩阵A反求出来,然后再求A*,进而求方程组的通解,但那样做比较复杂,应当知道AX=0的解与特征向量之间的联系.[例15.3] 已知3阶矩阵A有三个互相正交的特征向量,证明A是对称矩阵.[证明] 设α1,α2,α3是矩阵A的相互正交的特征向量,若k1α1+k2α2+k3α3=0,用左乘得因为α1≠0,α1与α2,α3均正交,故于是有k1||α1||2=0.所以k1=0.类似可知k2=0,k3=0.即α1,α2,α3线性无关,那么矩阵A有3个线性无关的特征向量,所以矩阵A可以相似对角化.则Q是正交矩阵,并有Q-1AQ=Λ.于是 A=QΛQ-1。
同解说明基础解系向量个数一样多题目:同解说明基础解系向量个数一样多概念:在线性代数中,同解是一个线性方程组中所有解构成的集合,而基础解系则是一个线性方程组中的特殊解的集合,它们的个数有着重要的意义。
评估:在研究同解说明基础解系向量个数一样多的问题时,我们需要首先了解同解和基础解系的概念。
同解是指线性方程组有无穷多个解,基础解系是同解中的一组特殊解。
通过深入研究和分析这两个概念,我们可以得出结论:同解说明基础解系向量个数一样多。
撰写文章:1. 背景引言在线性代数中,我们经常会遇到同解和基础解系的概念,它们在解决线性方程组问题时起着至关重要的作用。
本文将探讨同解说明基础解系向量个数一样多的原因和相关理论。
2. 同解的定义让我们来了解同解的概念。
在线性代数中,如果一个线性方程组有无穷多个解,这些解构成的集合就被称为同解。
同解是线性方程组的解集合,它可以包含无穷多个解。
同解的出现通常意味着线性方程组的自由变量存在,因此解空间是无穷维的。
3. 基础解系的定义接下来,让我们来了解基础解系的概念。
在同解中,如果存在一组特殊的解,它们可以线性表示其他解,且线性无关,那么这组特殊解就被称为基础解系。
基础解系是同解中的一组特殊解,它可以用来表示同解中的其他解,且它们之间线性无关。
4. 同解与基础解系的关系现在,让我们来探讨同解说明基础解系向量个数一样多的原因。
同解中的解是通过基础解系线性组合而成的。
因为基础解系中的向量线性无关,所以同解中基础解系向量的个数和同解的维数是相同的。
如果同解的维数是n,那么基础解系中的向量个数也是n。
5. 举例说明为了更加直观地理解同解说明基础解系向量个数一样多的原理,让我们举一个例子来说明。
假设有一个包含三个变量和两个方程的线性方程组,它的同解维数是2。
那么在同解中,基础解系应该包含两个向量,这两个向量构成了同解空间的一组基。
6. 个人观点和总结个人观点上,我认为同解说明基础解系向量个数一样多反映了线性方程组的特定性质。
方程组同解指的是两个或多个方程组有完全相同的解集。
以下是方程组同解的结论:
1. 方程组同解的充分条件是它们的增广矩阵经过一系列初等变换后可以化为行简化阶梯形矩阵,并且最后一行形如[0, 0, ..., 0 | b],其中b 不为零。
2. 如果两个方程组同解,则它们的系数矩阵、增广矩阵和未知量个数必须完全相同。
3. 如果一个方程组存在自由未知量,则不同的自由未知量可以得到不同的解,因此该方程组与任意一个同解方程组的解集都不完全相同。
4. 如果一个方程组无解,则它与任意一个同解方程组的解集也必然不同。
5. 如果两个方程组同解,则它们所代表的线性方程组的几何意义也完全相同,即它们所表示的线性子空间相同。
总之,方程组同解的关键是它们的解集完全相同,而不是每个方程的形式。
因此,判断方程组是否同解需要比较它们的解集,而不是逐个比较方程。