四川省宜宾市九年级上期末数学试卷含答案解析
- 格式:docx
- 大小:305.40 KB
- 文档页数:24
一、选择题:(本大题8个小题,每小题3分,共24分)1.要使根式有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥32.下面计算正确的是()A. += B.×= C. =﹣3D.﹣=3.用配方法解方程x2+4x+1=0时,经过配方,得到()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x+2)2=34.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°5.下列事件是确定事件的是()A.任意打开一本200页的数学书,恰好是第50页B.打开电视机,任选一个频道,正在播放足球赛C.在空旷的操场上向上抛出的篮球一定会下落D.阴天一定会下雨6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1:2 B.1:3 C.1:4 D.1:57.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣18.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题:(本大题8个小题,每小题3分,共24分)9.化简: = .10.关于x的方程2x2+kx﹣4=0的一个根是﹣2,则方程的另一个根是.11.若m:n=5:4,则= .12.一次会议上,每两个参加会议的人员都相互握了一次手,有人统计共握了36次手,这次到会的人数为人.13.已知a,b,c是三角形的三边,且满足b2=(c+a)(c﹣a),5a=3c,则sinA= .14.如图,在△ABC中,D、E分别为边BC、AB的中点,AD、CE相交于O,AB=8,BC=10,AC=6,求OD= .15.如图,已知点A(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b= .16.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边DC于点E,AH⊥DE于点H,连接CH并延长交AB边于点F,连接AE交CF于点O,给出下列命题:①AD=DE ②DH=2EH ③△AEH∽△CFB ④HO=AE其中正确命题的序号是(填上所有正确命题的序号)三、解答题:(本大题8个小题,共72分)17.(1)计算:2sin45°+(π﹣1)0﹣+|1﹣|(2)解方程:2x2+5x﹣3=0.18.已知a=+1,b=﹣1,求a2+ab+b2.19.将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.20.已知关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0(1)请说明对于任意实数m方程总有两个不相等的实数根;(2)若方程两实数根为x1,x2,且满足(x1+x2)2=3﹣x1x2,求m的值.21.电动自行车成为市民日常出行的首选工具,据某市品牌电动车经销商7至9月份统计,该品牌电动自行车7月份销售200辆,9月份销售242辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的造价为2300元,售价2700元,则该经销商7月至9月共盈利多少元?22.如图,某滑板爱好者训练时的斜坡示意图,出于安全因素考虑,决定将训练的斜坡的倾角由45°降为30°,已知原斜坡坡面AB的长为5米,点D、B、C在同一水平地面上.(1)改善后斜坡坡面AD比原斜坡坡面AB会加长多少米?(精确到0.01)(2)若斜坡的正前方能有3米长的空地就能保证安全,已知原斜坡AB的前方有6米长的空地,进行这样的改造是否可行?说明理由.(参考数据:)23.如图,在正方形ABCD中,F是AD的钟点,BF与AC交于点G.(1)求证:△AGF∽△CGB;(2)请求出△BGC与四边形CGFD的面积之比.24.如图,在△ABC中,己知AB=AC=10,BC=16,点p在线段BC上运动(P不与B,C重合),连接AP,做∠APM=∠B,PM交AC于点M.(1)求证:△ABP∽△PCM;(2)在P点运动过程中,若PM∥AB,请求出线段BP的长;(3)探究:在P点运动过程中,连接BM,设△ABM的面积为S,试分析S是否存在最小值,如果存在,求出这个最小值;如果不存在,说明理由.2015-2016学年四川省宜宾市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题8个小题,每小题3分,共24分)1.要使根式有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可知当x﹣3≥0时,二次根式有意义.【解答】解:要使有意义,只需x﹣3≥0,解得x≥3.故选D.2.下面计算正确的是()A. += B.×= C. =﹣3D.﹣=【考点】二次根式的混合运算.【分析】计算各个选项的式子,然后对比选项中的式子即可得到问题的答案.【解答】解:∵,∴选项A错误;∵,∴选项B正确;∵,∴选项C错误;∵,∴选项D错误.故选B.3.用配方法解方程x2+4x+1=0时,经过配方,得到()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x+2)2=3【考点】解一元二次方程-配方法.【分析】在本题中,把常数项1移项后,应该在左右两边同时加上一次项系数4的一半的平方.【解答】解:把方程x2+4x+1=0的常数项移到等号的右边,得到x2+4x=﹣1,方程两边同时加上一次项系数一半的平方,得到x2+4x+4=﹣1+4配方得(x+2)2=3.故选:D.4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°【考点】解直角三角形的应用.【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,分别求出∠CAB,∠C′AB′,然后可以求出∠C′AC,即求出了鱼竿转过的角度.【解答】解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.5.下列事件是确定事件的是()A.任意打开一本200页的数学书,恰好是第50页B.打开电视机,任选一个频道,正在播放足球赛C.在空旷的操场上向上抛出的篮球一定会下落D.阴天一定会下雨【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、任意打开一本200页的数学书,恰好是第50页是随机事件,故A错误;B、打开电视机,任选一个频道,正在播放足球赛,是随机事件,故B错误;C、在空旷的操场上向上抛出的篮球一定会下落,是必然事件,故C正确;D、阴天一定会下雨,是随机事件,故D错误;故选:C.6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1:2 B.1:3 C.1:4 D.1:5【考点】相似三角形的判定与性质.【分析】易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的周长比等于相似比即可得到正确的结论.【解答】解:∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故选A.7.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.8.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)【考点】矩形的性质;坐标与图形性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△O BE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选:B.二、填空题:(本大题8个小题,每小题3分,共24分)9.化简: = 3 .【考点】算术平方根.【分析】根据算术平方根的定义求出即可.【解答】解: =3.故答案为:3.10.关于x的方程2x2+kx﹣4=0的一个根是﹣2,则方程的另一个根是 1 .【考点】一元二次方程的解.【分析】设方程的另一个根为t,根据根与系数的关系得到﹣2•t=,然后解一次方程即可.【解答】解:设方程的另一个根为t,根据题意得﹣2•t=,解得t=1,即方程的另一个根是1.故答案为1.11.若m:n=5:4,则= .【考点】比例的性质.【分析】由于m:n=5:4,于是可设m=5k,n=4k,利用把m=5k,n=4k代入中进行分式的混合运算即可.【解答】解:∵m:n=5:4,∴可设m=5k,n=4k,∴==.故答案为.12.一次会议上,每两个参加会议的人员都相互握了一次手,有人统计共握了36次手,这次到会的人数为9 人.【考点】一元二次方程的应用.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程求解即可.【解答】解:设这次参加会议的人有x人,依题意得: x(x﹣1)=36,整理得:x2﹣x﹣72=0解得x1=9,x2=﹣8(舍去).答:这次参加会议的人有9人.故答案为:9.13.已知a,b,c是三角形的三边,且满足b2=(c+a)(c﹣a),5a=3c,则sinA= .【考点】解直角三角形;勾股定理的逆定理.【分析】先利用勾股定理的逆定理证明△ABC为直角三角形,∠C=90°,然后根据正弦的定义求解.【解答】解:∵b2=(c+a)(c﹣a)=c2﹣a2,即a2+b2=c2,∴△ABC为直角三角形,∠C=90°,∴sinA=,而5a=3c,∴=,∴sinA=.故答案为.14.如图,在△ABC中,D、E分别为边BC、AB的中点,AD、CE相交于O,AB=8,BC=10,AC=6,求OD= .【考点】相似三角形的判定与性质;直角三角形斜边上的中线;勾股定理的逆定理;三角形中位线定理.【分析】根据勾股定理的逆定理得出∠BAC=90°,根据直角三角形斜边上中线性质求出AD,根据三角形中位线定理求出DE=AC,DE∥AC,推出△DOE∽△AOC,得出比例式,即可求出答案.【解答】解:∵AB=8,BC=10,AC=6,∴AB2+AC2=BC2,∴∠BAC=90°,∵D为BC的中点,∴AD=BC=×10=5,∵D、E分别为BC和AB的中点,∴DE=AC,DE∥AC,∴△DOE∽△AOC,∴==,∴DO=AD=.故答案为:.15.如图,已知点A(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b= 5 .【考点】解直角三角形;一次函数图象上点的坐标特征.【分析】首先根据直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,求出点C,点B的坐标各是多少;然后根据∠α=75°,∠BCA=45°,应用三角形的外角的性质,求出∠BAC 的度数是多少,进而求出b的值是多少即可.【解答】解:如图1,,∵直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,∴点C的坐标是(﹣b,0),点B的坐标是(0,b),∵∠α=75°,∠BCA=45°,∴∠BAC=75°﹣45°=30°,∴解得b=5.故答案为:5.16.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边DC于点E,AH⊥DE于点H,连接CH并延长交AB边于点F,连接AE交CF于点O,给出下列命题:①AD=DE ②DH=2EH ③△AEH∽△CFB ④HO=AE其中正确命题的序号是①③④(填上所有正确命题的序号)【考点】相似三角形的判定与性质;矩形的性质.【分析】根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=180°﹣45°﹣67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,AD=DE=,求出HE=,得到2HE=≠1,故②错误;通过角的度数求出△AOH和△OEH是等腰三角形,从而得到④正确;由△AFH≌△CHE,根据全等三角形的性质得到∠AHF=∠HC E,根据等腰三角形的性质得到∠HAO=∠AHO,求得∠HAO=∠BCF即可证得△AEH∽△CFB,故③正确.【解答】解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AD⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠AEB,∵AD∥BC,∴∠DAE=∠AEB,∴∠DAE=∠AED,∴AD=DE,故①正确;设DH=1,则AH=DH=1,AD=DE=,∴HE=,∴2HE=2≠1,故②错误;∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,故④正确;∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴∠AHF=∠HCE,∵AO=OH,∴∠HAO=∠AHO,∴∠HAO=∠BCF,∵∠B=∠AHE=90°,∴△AEH∽△CFB,故③正确.故答案为:①③④.三、解答题:(本大题8个小题,共72分)17.(1)计算:2sin45°+(π﹣1)0﹣+|1﹣| (2)解方程:2x2+5x﹣3=0.【考点】实数的运算;零指数幂;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2×+1﹣2+﹣1=0;(2)方程分解得:(2x﹣1)(x+3)=0,解得:x1=,x2=﹣3.18.已知a=+1,b=﹣1,求a2+ab+b2.【考点】二次根式的化简求值.【分析】所求的式子可以化成(a+b)2﹣ab,然后代入a和b的值求解即可.【解答】解:原式=(a+b)2﹣ab=(2)2﹣(+1)(﹣1)=8﹣1=7.19.将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.【考点】列表法与树状图法.【分析】(1)由将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数恰好是3的倍数的情况,再利用概率公式即可求得答案.【解答】解:(1)∵将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上,是奇数的有1,3;∴从中随机抽取一张卡片,该卡片正面的数字是奇数的概率为: =;(2)画树状图得:∵共有12种等可能的结果,组成的两位数恰好是3的倍数的有4种情况,∴组成的两位数恰好是3的倍数的概率是: =.20.已知关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0(1)请说明对于任意实数m方程总有两个不相等的实数根;(2)若方程两实数根为x1,x2,且满足(x1+x2)2=3﹣x1x2,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)先把方程(x﹣1)(x﹣2)﹣m2=0变形为x2﹣3x+2﹣m2=0,得出△=9﹣4(2﹣m2)=3+4m2>0,即可得出答案;(2)利用根与系数的关系可以得到x1+x2=3,x1•x2=2﹣m2,代入(x1+x2)2=3﹣x1x2,即可得到结果.【解答】解:(1)∵关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0,∴x2﹣3x+2﹣m2=0,∴△=9﹣4(2﹣m2)=3+4m2>0,∴对于任意实数m,方程总有两个不相等的实数根;(2)∵方程两实数根为x1,x2,∴x1+x2=3,x1•x2=2﹣m2,∵(x1+x2)2=3﹣x1x2,∴9=3﹣2+m2,∴m=±2.21.电动自行车成为市民日常出行的首选工具,据某市品牌电动车经销商7至9月份统计,该品牌电动自行车7月份销售200辆,9月份销售242辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的造价为2300元,售价2700元,则该经销商7月至9月共盈利多少元?【考点】一元二次方程的应用.【分析】(1)首先假设出平均增长率,进而利用9月份销售量为:7月销量×(1+x)2,进而求出答案;(2)利用(1)中所求,表示出8月份的销量,进而求出总利润.【解答】解:(1)设该品牌电动车销售量的月平均增长率为x,根据题意可得:200(1+x)2=242,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%,答:该品牌电动车销售量的月平均增长率为10%;(2)由(1)得:8月份的销量为:200(1+10%)=220(辆),则×=264800(元).答:该经销商7月至9月共盈利264800元.22.如图,某滑板爱好者训练时的斜坡示意图,出于安全因素考虑,决定将训练的斜坡的倾角由45°降为30°,已知原斜坡坡面AB的长为5米,点D、B、C在同一水平地面上.(1)改善后斜坡坡面AD比原斜坡坡面AB会加长多少米?(精确到0.01)(2)若斜坡的正前方能有3米长的空地就能保证安全,已知原斜坡AB的前方有6米长的空地,进行这样的改造是否可行?说明理由.(参考数据:)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)滑滑板增加的长度实际是(AD﹣AB)的长.在Rt△ABC中,通过解直角三角形求出AC的长,进而在Rt△ACD中求出AD的长得解;(2)分别在Rt△ABC、Rt△ACD中求出BC、CD的长,即可求出BD的长,进而可求出改造后滑滑板前方的空地长.若此距离大于等于3米则这样改造安全,反之则不安全.【解答】解:(1)在Rt△ABC中,BC=AC=AB•sin45°=(m),在Rt△ADC中AD==5(m),CD==(m),∴AD﹣AB≈2.07(m).改善后的斜坡会加长2.07m;(2)这样改造能行.∵CD﹣BC≈2.59(m),而6﹣3>2.59,∴这样改造能行.23.如图,在正方形ABCD中,F是AD的钟点,BF与AC交于点G.(1)求证:△AGF∽△CGB;(2)请求出△BGC与四边形CGFD的面积之比.【考点】相似三角形的判定与性质.【分析】(1)根据正方形的性质得到AF∥BC,根据相似三角形的判定定理即可得到结论;(2)设正方形的边长是a,可分别求得△BFC,△ABC,△AFG的面积,从而可求得四边形CGFD的面积,则不难求△BFC与四边形CGFD的面积之比.【解答】(1)证明:∵四边形ABCD是正方形,∴AF∥BC,∴△AGF∽△CGB;(2)解:∵F是AD的中点,∴AF=AD=BC,设正方形的边长是a,则△BFC的面积是a2,△ABC的面积是a2,AF=,S△ABF=××a=,=,∴S△AFG=S△AFB=,∴四边形CGFD的面积a2﹣a2﹣=,∴△BFC与四边形CGFD的面积之比是6:5.24.如图,在△ABC中,己知AB=AC=10,BC=16,点p在线段BC上运动(P不与B,C重合),连接AP,做∠APM=∠B,PM交AC于点M.(1)求证:△ABP∽△PCM;(2)在P点运动过程中,若PM∥AB,请求出线段BP的长;(3)探究:在P点运动过程中,连接BM,设△ABM的面积为S,试分析S是否存在最小值,如果存在,求出这个最小值;如果不存在,说明理由.【考点】相似形综合题.【分析】(1)根据三角形的外角的性质求出∠PAB=∠MPC,根据相似三角形的判定定理证明即可;(2)根据平行线的性质和相似三角形的性质列出比例式,得到关于x的一元二次方程,解方程即可;(3)作AH⊥BC于H,根据勾股定理和三角形的面积公式求出△ABC的面积,根据相似三角形的性质用x表示出AM,计算即可.【解答】(1)证明:∵∠APC=∠B+∠PAB,∠APM=∠B,∴∠PAB=∠MPC,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCM;(2)∵PM∥AB,∴∠APM=∠BAP,又∠APM=∠B,∴∠B=∠PAB,设BP=x,PM=y,则PC=16﹣x,PA=x,∵PM∥AB,∴=,即=,整理得,5x+8y=80,①∵△ABP∽△PCM,∴=,即=,整理得,10y=16x﹣x2,②x1=16(舍去),x2=,答:PM∥AB时,线段BP的长为;(3)作AH⊥BC于H,∵AB=AC=10,BC=16,∴BH=HC=8,由勾股定理得,AH=6,∴△ABC的面积为:×BC×AH=48,设BP=x,∵△ABP∽△PCM,∴=,MC=,则AM=10﹣MC=,∵=,∴=,则S=(x2﹣10x+100)=(x﹣5)2+36,∴S存在最小值是36.。
九年级上册宜宾数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0) 3.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 4.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④5.某篮球队14名队员的年龄如表:则这14名队员年龄的众数和中位数分别是( )A .18,19B .19,19C .18,4D .5,46.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56 7.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )A .14B .34C .15D .358.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .2 9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表: x2- 1- 0 1 2 y5 0 3- 4- 3-以下结论: ①二次函数2y ax bx c =++有最小值为4-;②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点; ④当13x时,0y <. 其中正确的结论有( )个 A .1B .2C .3D .4 10.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .6 11.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根12.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③二、填空题13.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.14.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.15.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.16.一组数据:2,5,3,1,6,则这组数据的中位数是________.17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.19.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.20.如图,已知△ABC 3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.23.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.24.如图,一次函数y =x 与反比例函数y =k x(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图,矩形OABC 中,A (6,0)、C (0,23)、D (0,33),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴正半轴上动点,满足∠PQO =60°.(1)①点B 的坐标是 ;②当点Q 与点A 重合时,点P 的坐标为 ;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.26.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.27.如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.28.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB 与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)29.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了 户贫困户;(2)本次共抽查了 户C 类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?30.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ;(3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.31.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点①求ADE ∆面积最大值并写出此时点D 的坐标;②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)32.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由. ②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D .【点睛】本题考查了根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y 轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y 轴的交点为(0,3),故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.3.C解析:C【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.4.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.5.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.6.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.7.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为35. 【详解】摸到红球的概率=33235=+, 故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键. 8.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.9.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.11.A解析:A【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.12.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .本题主要考查二次函数图象与系数的关系,对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.二、填空题13.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.14.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.15.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.16.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.18.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD ,∴CE OA 16OA ,DE AB 220==, 解得OA=16. 故答案为16. 19.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°, 又∵AC=3,AB=5,∴22534-=,∴tan ∠ABC=34AC BC =,又∵∠ADC=∠ABC ,∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.20.【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差解析:34- 【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH=HF=x,则EH=xtan30°=33x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+33x=1,解得x=33 33-=+.∴S△AEF=12×1×33-=334-.故答案为:33 -.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 22.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.23.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时,,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】 当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,=0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
九年级上册宜宾数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒4.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .155.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A.9 cm B.10 cm C.11 cm D.12 cm8.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为()A.6 B.7 C.8 D.99.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=60010.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣211.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:212.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题13.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.14.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y … -3 -3 -1 3 9 …关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.15.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .16.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;17.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;18.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.19.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).20.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.21.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.22.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.23.已知3a =4b ≠0,那么ab=_____. 24.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.三、解答题25.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大. 26.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.27.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm28.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.29.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y (件)与销售单价x(元/件)的关系如下表:x元/件⋯15202530⋯()件⋯550500450400⋯y()设这种产品在这段时间内的销售利润为w(元),解答下列问题:(1)如y是x的一次函数,求y与x的函数关系式;(2)求销售利润w与销售单价x之间的函数关系式;(3)求当x为何值时,w的值最大?最大是多少?30.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.31.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=032.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.C解析:C【解析】【分析】连接OA、OB、OC、OD、OE,如图,则由正多边形的性质易求得∠COD和∠BOE的度数,然后根据圆周角定理可得∠DBC和∠BCF的度数,再根据三角形的内角和定理求解即可.【详解】解:连接OA、OB、OC、OD、OE,如图,则∠COD=∠AOB=∠AOE=360725︒=︒,∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.5.D解析:D 【解析】 【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系.. 【详解】解:∵关于x 的方程x 2 -2x+d=0有实根, ∴根的判别式△=(-2) 2 -4×d ≥0, 解得d ≤1, ∵⊙O 的半径为r=1,∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.8.B解析:B 【解析】 【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数. 【详解】∵一组数据:4,6,6,6,8,9,12,13, ∴这组数据的中位数是()6821427+÷÷==, 故选:B . 【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.9.C解析:C 【解析】 【分析】设快递量平均每年增长率为x ,根据我国2018年及2020年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x , 依题意,得:600(1+x )2=950. 故选:C . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.D解析:D 【解析】 【分析】利用一元二次方程的定义判断即可. 【详解】解:A 、原方程为二元一次方程,不符合题意; B 、原式方程为二元二次方程,不符合题意; C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意, 故选:D . 【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.11.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC =. 故选D .12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD =,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB∴∠=︒BD∴==∵弦AD平分BAC∠CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=5=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.14.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 15.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.16.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.17.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin ∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图 ∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.18.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.19.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1,∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.20.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.21.2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案.【详解】解:如图所示,连接OA ,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.23..【解析】【分析】根据等式的基本性质将等式两边都除以3b ,即可求出结论.【详解】解:两边都除以3b ,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此 解析:43. 【解析】【分析】 根据等式的基本性质将等式两边都除以3b ,即可求出结论.【详解】解:两边都除以3b ,得a b =43,故答案为:43. 【点睛】 此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.24.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ A FD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF ,∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.三、解答题25.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x ++++==高 最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出, 最低气温的平均数:0x =低最低气温的方差为:2 3.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.26.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.27.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.28.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.29.(1)10700y x =-+;(2)(10)(10700)w x x =--+;(3)当40x =时,w 的值最大,最大值为9000元【解析】【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设y 与x 的函数关系式为y=kx+b把(15,550)、(20,500)代入得5501550020k b k b =+⎧⎨=+⎩解得10700k b =-⎧⎨=⎩ ∴10700y x =-+(2)∵成本为10元,故每件利润为(x-10)∴销售利润(10)(10700)w x x =--+(3)(10)(10700)w x x =--+=210(40)9000x --+∵-10<0,∴当40x =时,w 的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.30.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.31.(1)x1=4,x2=﹣6;(2)x1=6,x2=26【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x+1)2﹣25=0,(x +1)2=25,x +1=±5,x =±5﹣1,x 1=4,x 2=﹣6;(2)x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,∴△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =4262±=2±6, 即x 1=2+6,x 2=2﹣6.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.32.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%. (2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=,解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元), 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
2018-2019学年四川省宜宾市九年级(上)期末数学试卷一、选择题:(本大题共8个小题,每小题3分,共24分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.B.C.D.3.(3分)下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次4.(3分)用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4 5.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A.B.C.D.6.(3分)如图,在平行四边形ABCD中,点M为AD边上一点,且AM=2DM,连接CM,对角线BD与CM相交于点N,若△CDN的面积等于3,则四边形ABNM的面积为()A.8 B.9 C.11 D.127.(3分)五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A.400(1+x)=640B.400(1+x)2=640C.400(1+x)+400(1+x)2=640D.400+400(1+x)+400(1+x)2=6408.(3分)如图,矩形OABC的边OA在x轴上,OC在y轴上,点B(10,6),把矩形OABC 绕点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.B.C.D.二、填空题:(本大题共8个小题,每小题3分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)9.(3分)若二次根式有意义,则x的取值范围是.10.(3分)已知,则=.11.(3分)关于x的方程2x2﹣5x=0的两个解为.12.(3分)在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是.13.(3分)已知﹣3是关于x的一元二次方程ax2﹣2x+3=0的一个解,则此方程的另一个解为.14.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=12,BC=5,点D、E分别是AB、AC 的中点,CF是∠ACB的平分线,交ED的延长线于点F,则DF的长是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,cos A=,点D为AB边上一点,作DE⊥BC于点E,若AD=5,DE=8,则tan∠ACD的值为.16.(3分)如图,△ABC是等腰直角三角形,∠ACB=90°,以BC为边向外作等边三角形BCD,CE⊥AB,连接AD交CE于点F,交BC于点G,过点C作CH⊥AD交AB于点H.下列结论:①CF=CG;②△CFG∽△DBG;③;④tan∠CDA=2﹣.则正确的结论是.(填序号)三、解答题:(本大题共8个题,共72分).解答应写出相应的文字说明.证明过程或演算步骤.17.(10分)(1)计算:2cos30°+(π﹣3.14)0﹣(2)解方程:x2+4x=1218.(6分)如图,在边长为1的小正方形组成14×14的正方形网格中,△ABC的顶点坐标分别为A(﹣1,1)、B(﹣3,4)、C(﹣4,2).(1)以原点O为位似中心,在y轴的右侧画出△ABC放大2倍后的△A1B1C1.(2)设△A1B1C1的面积为S,则S=.19.(8分)正面标有数字﹣1,﹣2,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把(a,b)所有结果表示出来;(2)求出点(a,b)在函数y=﹣x+2图象上的概率.20.(8分)如图,点D、E分别在△ABC的边AB、AC上,若∠A=40°,∠B=65°,∠AED =75°.(1)求证:△ADE∽△ABC;(2)已知,AD:BD=2:3,AE=3,求AC的长.21.(8分)我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)22.(10分)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.(10分)已知关于x的一元二次方程x2+(m+1)x+﹣2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18﹣,求m的值.24.(12分)如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:.当CP=4时,并求CE•EQ的值.2018-2019学年四川省宜宾市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:=,A不是最简二次根式;B,是最简二次根式;=3,C不是最简二次根式;=a,D不是最简二次根式;故选:B.2.(3分)下列计算正确的是()A.B.C.D.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、2+无法计算,故此选项错误;C、2﹣,无法计算,故此选项错误;D、﹣=,正确.故选:D.3.(3分)下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次【分析】直接利用概率的意义以及三角形内角和定理分别分析得出答案.【解答】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故此选项错误;B、某种彩票的中奖率是,说明每买100张彩票,不一定有1张中奖,故此选项错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次,错误.故选:C.4.(3分)用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.5.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A.B.C.D.【分析】根据题意和题目中的数据,利用勾股定理可以求得BC的长,然后根据等积法可以求得CD的长,从而可以求得cos∠BCD的值.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.6.(3分)如图,在平行四边形ABCD中,点M为AD边上一点,且AM=2DM,连接CM,对角线BD与CM相交于点N,若△CDN的面积等于3,则四边形ABNM的面积为()A.8 B.9 C.11 D.12【分析】由AD∥BC,可得===,求出△ABD,△MND的面积即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM=2DM,∴AD=CB=3DM,∴===,∵△CDN的面积等于3,∴△NMD的面积为1,△BNC的面积为9,∴△BCD的面积为12,∴△ABD的面积为12,∴四边形ABNM的面积为12﹣1=11,故选:C.7.(3分)五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A.400(1+x)=640B.400(1+x)2=640C.400(1+x)+400(1+x)2=640D.400+400(1+x)+400(1+x)2=640【分析】设这两年的年净利润平均增长率为x,根据该集团2018年及2020年的净利润,即可得出关于x的一元二次方程,此题得解.【解答】解:设这两年的年净利润平均增长率为x,根据题意得:400(1+x)2=640.故选:B.8.(3分)如图,矩形OABC的边OA在x轴上,OC在y轴上,点B(10,6),把矩形OABC 绕点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.B.C.D.【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵点B(10,6),∴OA=10,OC=6,∴OA1=10,A1M=6,∴OM=8,∴设NO=3x,NC1=4x,则OC1=5x∵OC1=6,则5x=6,x=则NO=3x=,NC1=4x=,故点C的对应点C1的坐标为:(﹣,).故选:A.二、填空题:(本大题共8个小题,每小题3分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)9.(3分)若二次根式有意义,则x的取值范围是x≤3 .【分析】直接利用二次根式的性质得出3﹣x的取值范围,进而求出答案.【解答】解:∵二次根式有意义,∴3﹣x≥0,解得:x≤3.故答案为:x≤3.10.(3分)已知,则=.【分析】根据题意,设a=2k,b=5k.再代入,计算即可求解.【解答】解:设=k,则a=2k,b=5k,∴===.故答案为:.11.(3分)关于x的方程2x2﹣5x=0的两个解为0,2.5 .【分析】用因式分解法求出原方程的解即可.【解答】解:∵2x2﹣5x=0,∴x(2x﹣5)=0,∴x=0或2x﹣5=0,解得:x1=0,x2=2.5.故答案为:0或2.5.12.(3分)在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是.【分析】用红色小球的个数除以球的总个数即可得出答案.【解答】解:∵在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,∴从盒子中任意取出1个球,取出红球的概率是:.故答案为:.13.(3分)已知﹣3是关于x的一元二次方程ax2﹣2x+3=0的一个解,则此方程的另一个解为x=1 .【分析】将x=﹣3代入方程求得a=﹣1,据此可得方程,再根据两根之和求解可得.【解答】解:将x=﹣3代入方程得9a+6+3=0,解得a=﹣1,则方程为﹣x2﹣2x+3=0,设方程的另一个根为x2,则﹣3+x2=﹣2,解得x2=1,故答案为:x=1.14.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=12,BC=5,点D、E分别是AB、AC 的中点,CF是∠ACB的平分线,交ED的延长线于点F,则DF的长是 4 .【分析】根据勾股定理求出AC,根据三角形中位线定理求出DE、EC,根据等腰三角形的性质求出EF,计算即可.【解答】解:∵∠B=90°,AB=12,BC=5,∴AC==13,∵D,E分别是AB,AC的中点,∴DE=BC=,EC=AC=,DE∥BC,∴∠F=∠FCB,∵CF是∠ACB的平分线,∴∠FCB=∠FCE,∴∠F=∠FCE,∴EF=EC=,∴DF=EF﹣DE=4,故答案是:4.15.(3分)如图,在Rt△ABC中,∠ACB=90°,cos A=,点D为AB边上一点,作DE⊥BC于点E,若AD=5,DE=8,则tan∠ACD的值为.【分析】易证DE∥AC,所以cos A=cos∠EDB=,从而可知DB=10,再由由勾股定理可知:EB=6,由于cos A==,所以AC=12,由勾股定理可知:CB=9,从而可求出CE=3,易证∠ACD=∠CDE,所以tan∠ACD=tan∠CDE==.【解答】解:∵∠ACB=∠DEB=90°,∴DE∥AC,∴∠A=∠EDB,∴cos A=cos∠EDB=,∴,∴DB=10,∴由勾股定理可知:EB=6,∵AB=AD+DB=15,∴cos A==,∴AC=12,∴由勾股定理可知:CB=9,∴CE=3,∵∠ACD=∠CDE,∴tan∠ACD=tan∠CDE==,故答案为:.16.(3分)如图,△ABC是等腰直角三角形,∠ACB=90°,以BC为边向外作等边三角形BCD,CE⊥AB,连接AD交CE于点F,交BC于点G,过点C作CH⊥AD交AB于点H.下列结论:①CF=CG;②△CFG∽△DBG;③;④tan∠CDA=2﹣.则正确的结论是②③④.(填序号)【分析】①错误.通过计算证明∠CFG≠∠CGF即可;②正确.只要证明∠CFG=∠CBD=60°,∠CGF=∠DGB即可解决问题;、③正确.设EF=m,则AE=EC=m,通过计算证明即可;④正确.如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.通过计算证明即可;【解答】解:∵CA=CB,∠ACB=90°,CE∴⊥AB,∴∠ACE=∠BCE=45°,CE=AE=EB,∵△BCD是等边三角形,∴CD=CB,∠BCD=∠CBD=60°,∴CA=CD,∠ACD=90°+60°=150°,∴∠CAD=∠CDA=15°,∴∠CFG=∠CAF+∠ACF=60°,∠CGF=∠CDG+∠GCD=75°,∴∠CFG≠∠CGF,∴CF≠CG,故①错误,∵∠CGF=∠DGB,∠CFG=∠DBG=60°,∴△CFG∽△DBG,故②正确,∵∠CAE=45°,∠CAF=15°,∴∠EAF=30°,设EF=m,则AE=EC=m,∴CF=m﹣m,∴==﹣1,∴CF=(﹣1)EF,故③正确,如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.∵MC=MD,∴∠MCD=∠MDC=15°,∴∠CMN=15°+15°=30°,∴CM=MD=2a,MN=a,∴tan∠CDA===2﹣,故④正确,故答案为②③④.三、解答题:(本大题共8个题,共72分).解答应写出相应的文字说明.证明过程或演算步骤.17.(10分)(1)计算:2cos30°+(π﹣3.14)0﹣(2)解方程:x2+4x=12【分析】(1)利用特殊角的三角函数值和零指数幂的意义计算;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)原式=2×+1﹣2=+1﹣2=1﹣;(2)x2+4x﹣12=0,(x﹣2)(x+6)=0,x﹣2=0,x+6=0,所以x1=2,x2=﹣6.18.(6分)如图,在边长为1的小正方形组成14×14的正方形网格中,△ABC的顶点坐标分别为A(﹣1,1)、B(﹣3,4)、C(﹣4,2).(1)以原点O为位似中心,在y轴的右侧画出△ABC放大2倍后的△A1B1C1.(2)设△A1B1C1的面积为S,则S=14 .【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积,减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)设△A1B1C1的面积为S,则S=36﹣×2×6﹣×4×6﹣×2×4=14.故答案为:14.19.(8分)正面标有数字﹣1,﹣2,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把(a,b)所有结果表示出来;(2)求出点(a,b)在函数y=﹣x+2图象上的概率.【分析】(1)首先根据题意画树状图,然后由树状图即可求得所有等可能的结果;(2)根据树状图求得点(a,b)在函数y=﹣x+2图象上的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)列表如下:∴共有16种机会均等的结果;(2)∵点(﹣1,3),(﹣2,4),(3,﹣1),(4,﹣2)在函数y=﹣x+2的图象上,∴P(点(a,b)在函数y=﹣x+2的图象上)==.20.(8分)如图,点D、E分别在△ABC的边AB、AC上,若∠A=40°,∠B=65°,∠AED =75°.(1)求证:△ADE∽△ABC;(2)已知,AD:BD=2:3,AE=3,求AC的长.【分析】(1)根据三角形内角和定理以及相似三角形的判定定理即可求出答案.(2)根据相似三角形的性质即可求出答案.【解答】解:(1)∵∠A=40°,∠B=65°∴∠C=180°﹣40°﹣65°=75°,∴∠C=∠AED,∵∠A=∠A∴△ADE∽△ABC;(2)由△ADE∽△ABC得:∴,∴.21.(8分)我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可求得AE的长度,本题得以解决.【解答】解:过点C作CF⊥AB于点F,如右图所示,由题知:四边形CDBF为矩形,BD=12米,∴CF=DB=12米,∵在Rt△ACF中,∠ACF=45°,∴,∴AF=12米,∵在Rt△CEF中,∠ECF=30°,∴,∴,∴米,∴AE=AF+EF=(12+4)米,即条幅AE的长度为米.22.(10分)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【分析】(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据“1千克甲种苹果和1千克乙种苹果的进价之和为18元/千克,购买3千克甲种苹果和4千克乙种苹果共用82元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据题意得:,解得:.答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x)(100﹣10x)+(2+x)(140﹣10x)=960,整理得:x2﹣9x+14=0,解得:x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.23.(10分)已知关于x的一元二次方程x2+(m+1)x+﹣2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18﹣,求m的值.【分析】(1)利用判别式的意义得到△=(m+1)2﹣4(﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(m+1),,再利用x12+x22+x1x2=18﹣得到,接着解关于m的方程确定m的值.【解答】(1)解:=m2+2m+1﹣m2+8=2m+9.∵方程有两个实数根,∴△≥0,即2m+9≥0,∴.∴m的最小整数值为﹣4;(2)由根与系数的关系得:x1+x2=﹣(m+1),.由得:.∴m1=3,m2=﹣5.∵,∴m=3.24.(12分)如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:菱形.当CP=4时,并求CE•EQ的值.【分析】(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,则可证△ABE∽△DEC;(2)设AE=x,则DE=13﹣x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;(3)由折叠的性质可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP 是菱形,通过证△C'EQ∽△EDC,可得,即可求CE•EQ的值.【解答】证明:(1)∵CE⊥BE,∴∠BEC=90°,∴∠AEB+∠CED=90°,又∵∠ECD+∠CED=90°,∴∠AEB=∠ECD,又∵∠A=∠D=90°,∴△ABE∽△DEC(2)设AE=x,则DE=13﹣x,由(1)知:△ABE∽△DEC,∴,即:∴x2﹣13x+36=0,∴x1=4,x2=9,又∵AE<DE∴AE=4,DE=9,在Rt△CDE中,由勾股定理得:(3)∵折叠,∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,∵CE⊥BC',∠BC'P=90°,∴CE∥C'P,∴∠C'PQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP,∴CQ=CP=C'Q=C'P,∴四边形C'QCP是菱形,故答案为:菱形∵四边形C'QCP是菱形,∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD又∵∠C'EQ=∠D=90°∴△C'EQ∽△EDC∴即:CE•EQ=DC•C'Q=6×4=24。
九年级上册宜宾数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .33.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 724.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-15.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .46.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④ B .①③C .②③④D .①③④7.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数8.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .169.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .4 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-二、填空题13.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.14.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.15.若53x y x +=,则yx=______. 16.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .17.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.18.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.19.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m . 20.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 21.抛物线()2322y x =+-的顶点坐标是______.22.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.三、解答题25.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.26.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O与矩形ABCD的一边相切,求O的半径.27.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)28.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?29.如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .30.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .31.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式;(3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.32.解方程:3x2﹣4x+1=0.(用配方法解)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.3.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.4.C解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b m m a -=-=-, 又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴-m≤1,即m ≥-1 故选:C . 【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.5.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.6.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.7.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差8.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键. 9.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确,故选:B.【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题13.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.14.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.15.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换. 16.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n17.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°18.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.20.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:1212x 622±±===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.21.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .22.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.23.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF ,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=2222114562CF AC⎛⎫+=+=⎪⎝⎭∴PA+14PB ≥.145∴PA+14PB的最小值为145,故答案为1452.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.24.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.三、解答题25.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=716. 【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.26.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】 【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解; (2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解. 【详解】解:(1)①如图,PQ 是直径,E 在圆上, ∴∠PEQ=90°, ∴PE ⊥AQ, ∵AE=EQ, ∴PA=PQ, ∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP , ∵∠QPB=2∠AQP .\②解:如图,∵BE=BQ=3, ∴∠BEQ=∠BQE, ∵∠BEQ=∠BPQ, ∵∠PBQ=∠QBA, ∴△PBQ ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 2x (舍去),225 2x,∴ON=25 5,∴O 半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键. 27.(1)75cm (2)63cm 【解析】解:(1)在Rt △ACD 中,AC=45,CD=60,∴AD=22456075+=, ∴车架档AD 的长为75cm .(2)过点E 作EF ⊥AB ,垂足为点F ,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63. ∴车座点E 到车架档AB 的距离是63cm . (1)在Rt △ACD 中利用勾股定理求AD 即可.(2)过点E 作EF ⊥AB ,在Rt △EFA 中,利用三角函数求EF=AEsin75°,即可得到答案. 28.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-. (2)()22w 2x 120x 16002x 30200=-+-=--+, ∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值. 29.(1)△FAG 是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC =523. 【解析】 【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD =90°,∠C+∠CAD =90°,从而得到∠BAD =∠C ,然后利用等弧对等角等知识得到AF =BF ,从而证得FA =FG ,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC =∠AGB ,推出∠BAD =∠ABG ,得到F 为BG 的中点根据直角三角形的性质得到AF=BF=12BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD =AF ﹣DF =13﹣5=8,∴在Rt △BDF 中,BD =22135-=12, ∴在Rt △BDA 中,AB =22128+=413, ∵∠ABC =∠ABD ,∠BAC =∠ADB =90°, ∴△ABC ∽△DBA , ∴BC BA=ABDB , ∴413=41312, ∴BC =523, ∴⊙O 的直径BC =523. 【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.30.(1)见解析;(2)-2 【解析】 【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可. 【详解】 (1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -,设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-. 【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键. 31.(1)A(-4,0)、B (0,-2);(2)213y x-222x =+;(3)①(-1,3)或(-3,-2);②(-2,-3). 【解析】 【分析】(1)在122y x =--中由0y =求出对应的x 的值,由x=0求出对应的y 的值即可求得点A 、B 的坐标;(2)把(1)中所求点A 、B 的坐标代入212y x bx c =++中列出方程组,解方程组即可求得b 、c 的值,从而可得二次函数的解析式;(3)①如图,过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,由此易得△DFE ∽OBE ,这样设点D 的坐标为213(m,2)22m m +-,点F 的坐标为1(m,2)2m --,结合相似三角形的性质和DE :OE=3:4,即可列出关于m 的方程,解方程求得m 的值即可得到点D 的坐标;②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形,由此可得∠HAB=2∠BAC ,若此时∠DAB =2∠BAC=∠HAB ,则BD ∥AH ,再求出AH 的解析式可得BD 的解析式,由BD 的解析式和抛物线的解析式联立构成方程组,解方程组即可求得点D 的坐标. 【详解】解:(1)在122y x =--中,由0y =可得:1202x --=,解得:4x =-; 由0x =可得:2y =-,∴点A 的坐标为(-4,0),点B 的坐标为(0,-2);(2)把点A 的坐标为(-4,0),点B 的坐标为(0,-2)代入212y x bx c =++得: 8402b c c -+=⎧⎨=-⎩ ,解得:322b c ⎧=⎪⎨⎪=-⎩ , ∴抛物线的解析式为:213222y x x =+-; (3)①过点D 作x 轴的垂线交AB 于点F ,设点D 213(m,2)22m m +-,F 1(m,2)2m --,连接DO 交AB 于点E ,△DFE ∽OBE , 因为DE :OE=3:4, 所以FD :BO=3:4, 即:FD=34BO=32 ,所以21133m 222222FD m m ⎛⎫⎛⎫=---+-= ⎪ ⎪⎝⎭⎝⎭, 解之得: m 1=-1,m 2=-3 ,∴D 的坐标为(-1,3)或(-3,-2);②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形, ∴∠BAH=2∠BAC ,若∠DBA=2∠BAC ,则∠DBA=∠BAH , ∴AH//DB ,由点A 的坐标(-4,0)和点H 的坐标(0,2)求得直线AH 的解析式为:1y 22x =+, ∴直线DB 的解析式是:1y 22x =-, 将:2113y 2,y 2,222x x x =-=+-联立可得方程组:21y 2213y 222x x x ⎧=-⎪⎪⎨⎪=+-⎪⎩,解得:23x y =-⎧⎨=-⎩ ,∴点D 的坐标(-2,-3).【点睛】本题考查二次函数的综合应用,解第2小题的关键是过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,从而构造出△DFE ∽OBE ,这样利用相似三角形的性质和已知条件即可求得D 的坐标;解第3小题的关键是在x 轴的上方作OH=OB ,连接AH ,从而构造出∠BAH=2∠BAC ,这样由∠DBA=∠BAH 可得AH ∥BD ,求出AH 的解析式即可得到BD 的解析式,从而将问题转化成求BD 和抛物线的交点坐标即可使问题得到解决.。
九年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列二次根式中,是最简二次根式的是()A. 12B. 11C. 27D. a32.下列计算正确的是()A. 3+2=5B. 2+2=22C. 26−5=1D. 8−2=23.下列说法正确的是()A. “任意画一个三角形,其内角和为360∘”是随机事件B. 某种彩票的中奖率是1100,说明每买100张彩票,一定有1张中奖C. “篮球队员在罚球线上投篮一次,投中”为随机事件D. 投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次4.用配方法解方程x2+2x-3=0,下列配方结果正确的是()A. (x−1)2=2B. (x−1)2=4C. (x+1)2=2D. (x+1)2=45.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A. 725B. 2425C. 724D. 2476.如图,在平行四边形ABCD中,点M为AD边上一点,且AM=2DM,连接CM,对角线BD与CM相交于点N,若△CDN的面积等于3,则四边形ABNM的面积为()A. 8B. 9C. 11D. 127.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A. 400(1+x)=640B. 400(1+x)2=640C. 400(1+x)+400(1+x)2=640D. 400+400(1+x)+400(1+x)2=6408.如图,矩形OABC的边OA在x轴上,OC在y轴上,点B(10,6),把矩形OABC绕点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A. (−185,245)B. (−245,185)C. (−225,245)D. (−245,225)二、填空题(本大题共8小题,共24.0分)9.若二次根式3−x有意义,则x的取值范围是______.10.已知ab=25,则2a+ba=______.11.关于x的方程2x2-5x=0的两个解为______.12.在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是______.13.已知-3是关于x的一元二次方程ax2-2x+3=0的一个解,则此方程的另一个解为______.14.如图,在Rt△ABC中,∠ABC=90°,AB=12,BC=5,点D、E分别是AB、AC的中点,CF是∠ACB的平分线,交ED的延长线于点F,则DF的长是______.15.如图,在Rt△ABC中,∠ACB=90°,cos A=45,点D为AB边上一点,作DE⊥BC于点E,若AD=5,DE=8,则tan∠ACD的值为______.16.如图,△ABC是等腰直角三角形,∠ACB=90°,以BC为边向外作等边三角形BCD,CE⊥AB,连接AD交CE于点F,交BC于点G,过点C作CH⊥AD交AB于点H.下列结论:①CF=CG;②△CFG∽△DBG;③CF=(3−1)EF;④tan∠CDA=2-3.则正确的结论是______.(填序号)三、解答题(本大题共8小题,共72.0分)17.(1)计算:2cos30°+(π-3.14)0-12(2)解方程:x2+4x=1218.如图,在边长为1的小正方形组成14×14的正方形网格中,△ABC的顶点坐标分别为A(-1,1)、B(-3,4)、C(-4,2).(1)以原点O为位似中心,在y轴的右侧画出△ABC放大2倍后的△A1B1C1.(2)设△A1B1C1的面积为S,则S=______.19.正面标有数字-1,-2,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把(a,b)所有结果表示出来;(2)求出点(a,b)在函数y=-x+2图象上的概率.20.如图,点D、E分别在△ABC的边AB、AC上,若∠A=40°,∠B=65°,∠AED=75°.(1)求证:△ADE∽△ABC;(2)已知,AD:BD=2:3,AE=3,求AC的长.21.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知关于x的一元二次方程x2+(m+1)x+14m2-2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18-14m2,求m的值.24.如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:______.当CP=4时,并求CE•EQ 的值.答案和解析1.【答案】B【解析】解:=,A不是最简二次根式;B,是最简二次根式;=3,C不是最简二次根式;=a,D不是最简二次根式;故选:B.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.【答案】D【解析】解:A、+无法计算,故此选项错误;B、2+无法计算,故此选项错误;C、2-,无法计算,故此选项错误;D、-=,正确.故选:D.直接利用二次根式的加减运算法则计算得出答案.此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故此选项错误;B、某种彩票的中奖率是,说明每买100张彩票,不一定有1张中奖,故此选项错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次,错误.故选:C.直接利用概率的意义以及三角形内角和定理分别分析得出答案.此题主要考查了概率的意义,正确掌握概率的意义是解题关键.4.【答案】D【解析】解:∵x2+2x-3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.【答案】B【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.根据题意和题目中的数据,利用勾股定理可以求得BC的长,然后根据等积法可以求得CD的长,从而可以求得cos∠BCD的值.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数解答.6.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM=2DM,∴AD=CB=3DM,∴===,∵△CDN的面积等于3,∴△NMD的面积为1,△BNC的面积为9,∴△BCD的面积为12,∴△ABD的面积为12,∴四边形ABNM的面积为12-1=11,故选:C.由AD∥BC,可得===,求出△ABD,△MND的面积即可解决问题;本题考查平行四边形的性质,等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【答案】B【解析】解:设这两年的年净利润平均增长率为x,根据题意得:400(1+x)2=640.故选:B.设这两年的年净利润平均增长率为x,根据该集团2018年及2020年的净利润,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】A【解析】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵点B(10,6),∴OA=10,OC=6,∴OA1=10,A1M=6,∴OM=8,∴设NO=3x,NC1=4x,则OC1=5x∵OC1=6,则5x=6,x=则NO=3x=,NC1=4x=,故点C的对应点C1的坐标为:(-,).故选:A.直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.此题主要考查了矩形的性质、旋转的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.9.【答案】x≤3【解析】解:∵二次根式有意义,∴3-x≥0,解得:x≤3.故答案为:x≤3.直接利用二次根式的性质得出3-x的取值范围,进而求出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.【答案】92【解析】解:设=k,则a=2k,b=5k,∴===.故答案为:.根据题意,设a=2k,b=5k.再代入,计算即可求解.本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.11.【答案】0,2.5【解析】解:∵2x2-5x=0,∴x(2x-5)=0,∴x=0或2x-5=0,解得:x1=0,x2=2.5.故答案为:0或2.5.用因式分解法求出原方程的解即可.本题考查了因式分解法求一元二次方程的解的运用,一元二次方程的解法的运用.12.【答案】23【解析】解:∵在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,∴从盒子中任意取出1个球,取出红球的概率是:.故答案为:.用红色小球的个数除以球的总个数即可得出答案.本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.13.【答案】x=1【解析】解:将x=-3代入方程得9a+6+3=0,解得a=-1,则方程为-x2-2x+3=0,设方程的另一个根为x2,则-3+x2=-2,解得x2=1,故答案为:x=1.将x=-3代入方程求得a=-1,据此可得方程,再根据两根之和求解可得.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-,x1x2=.14.【答案】9【解析】解:∵∠B=90°,AB=12,BC=5,∴AC==13,∵D,E分别是AB,AC的中点,∴DE=BC=,EC=AC=,DE∥BC,∴∠F=∠FCB,∵CF是∠ACB的平分线,∴∠FCB=∠FCE,∴∠F=∠FCE,∴EF=EC=,∴DF=DE+EF=9,故答案是:9.根据勾股定理求出AC,根据三角形中位线定理求出DE、EC,根据等腰三角形的性质求出EF,计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】38【解析】解:∵∠ACB=∠DEB=90°,∴DE∥AC,∴∠A=∠EDB,∴cosA=cos∠EDB=,∴,∴DB=10,∴由勾股定理可知:EB=6,∵AB=AD+DB=15,∴cosA==,∴AC=12,∴由勾股定理可知:CB=9,∴CE=3,∵∠ACD=∠CDE,∴tan∠ACD=tan∠CDE==,故答案为:.易证DE∥AC,所以cosA=cos∠EDB=,从而可知DB=10,再由由勾股定理可知:EB=6,由于cosA==,所以AC=12,由勾股定理可知:CB=9,从而可求出CE=3,易证∠ACD=∠CDE,所以tan∠ACD=tan∠CDE==.本题考查相似三角形,涉及勾股定理,锐角三角函数的定义,平行线的判定与性质等知识,需要学生灵活运用所学知识.16.【答案】②③④【解析】解:∵CA=CB,∠ACB=90°,CE∴⊥AB,∴∠ACE=∠BCE=45°,CE=AE=EB,∵△BCD是等边三角形,∴CD=CB,∠BCD=∠CBD=60°,∴CA=CD,∠ACD=90°+60°=150°,∴∠CAD=∠CDA=15°,∴∠CFG=∠CAF+∠ACF=60°,∠CGF=∠CDG+∠GCD=75°,∴∠CFG≠∠CGF,∴CF≠CG,故①错误,∵∠CGF=∠DGB,∠CFG=∠DBG=60°,∴△CFG∽△DBG,故②正确,∵∠CAE=45°,∠CAF=15°,∴∠EAF=30°,设EF=m,则AE=EC=m,∴CF=m-m,∴==-1,∴CF=(-1)EF,故③正确,如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.∵MC=MD,∴∠MCD=∠MDC=15°,∴∠CMN=15°+15°=30°,∴CM=MD=2a,MN=a,∴tan∠CDA===2-,故④正确,故答案为②③④.①错误.通过计算证明∠CFG≠∠CGF即可;②正确.只要证明∠CFG=∠CBD=60°,∠CGF=∠DGB即可解决问题;、③正确.设EF=m,则AE=EC=m,通过计算证明即可;④正确.如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.通过计算证明即可;本题考查相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:(1)原式=2×32+1-23=3+1-23=1-3;(2)x2+4x-12=0,(x-2)(x+6)=0,x-2=0,x+6=0,所以x1=2,x2=-6.【解析】(1)利用特殊角的三角函数值和零指数幂的意义计算;(2)先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.18.【答案】14【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)设△A1B1C1的面积为S,则S=36-×2×6-×4×6-×2×4=14.故答案为:14.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积,减去周围三角形面积进而得出答案.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.(2)∵点(-1,3),(-2,4),(3,-1),(4,-2)在函数y=-x+2的图象上,∴P(点(a,b)在函数y=-x+2的图象上)=416=14.【解析】(1)首先根据题意画树状图,然后由树状图即可求得所有等可能的结果;(2)根据树状图求得点(a,b)在函数y=-x+2图象上的情况,然后利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】解:(1)∵∠A=40°,∠B=65°∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A∴△ADE∽△ABC;(2)由△ADE∽△ABC得:ADAB=AEAC∴25=3AC,∴AC=152.【解析】(1)根据三角形内角和定理以及相似三角形的判定定理即可求出答案.(2)根据相似三角形的性质即可求出答案.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.21.【答案】解:过点C作CF⊥AB于点F,如右图所示,由题知:四边形CDBF为矩形,BD=12米,∴CF=DB=12米,∵在Rt△ACF中,∠ACF=45°,∴tan∠ACF=AFCF=1,∴AF=12米,∵在Rt△CEF中,∠ECF=30°,∴tan∠ECF=EFCF,∴EF12=33,∴EF=43米,∴AE=AF+EF=(12+43)米,即条幅AE的长度为(12+43)米.【解析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可求得AE的长度,本题得以解决.本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.22.【答案】解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据题意得:a+b=183(a+4)+4(b+2)=82,解得:a=10b=8.答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x)(100-10x)+(2+x)(140-10x)=960,整理得:x2-9x+14=0,解得:x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.【解析】(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据“1千克甲种苹果和1千克乙种苹果的进价之和为18元/千克,购买3千克甲种苹果和4千克乙种苹果共用82元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.23.【答案】(1)解:△=(m+1)2−4×1×(14m2−2)=m2+2m+1-m2+8=2m+9.∵方程有两个实数根,∴△≥0,即2m+9≥0,∴m≥−92.∴m的最小整数值为-4;(2)由根与系数的关系得:x1+x2=-(m+1),x1x2=14m2−2.由x12+x22+x1x2=18−14m2得:[−(m+1)]2−(14m2−2)=18−14m2.∴m1=3,m2=-5.∵m≥−92,∴m=3.【解析】(1)利用判别式的意义得到△=(m+1)2-4(-2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=-(m+1),,再利用x12+x22+x1x2=18-得到,接着解关于m的方程确定m的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1•x2=.也考查了根的判别式.24.【答案】菱形【解析】证明:(1)∵CE⊥BE,∴∠BEC=90°,∴∠AEB+∠CED=90°,又∵∠ECD+∠CED=90°,∴∠AEB=∠ECD,又∵∠A=∠D=90°,∴△ABE∽△DEC(2)设AE=x,则DE=13-x,由(1)知:△ABE∽△DEC,∴,即:∴x2-13x+36=0,∴x1=4,x2=9,又∵AE<DE∴AE=4,DE=9,在Rt△CDE中,由勾股定理得:(3)∵折叠,∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,∵CE⊥BC',∠BC'P=90°,∴CE∥C'P,∴∠C'PQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP,∴CQ=CP=C'Q=C'P,∴四边形C'QCP是菱形,故答案为:菱形∵四边形C'QCP是菱形,∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD又∵∠C'EQ=∠D=90°∴△C'EQ∽△EDC∴即:CE•EQ=DC•C'Q=6×4=24(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,则可证△ABE∽△DEC;(2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;(3)由折叠的性质可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP是菱形,通过证△C'EQ∽△EDC,可得,即可求CE•EQ的值.本题是相似形综合题,考查了矩形的性质,菱形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.。
九年级上册宜宾数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .3 2.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1) 3.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠0 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 5.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .96.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .28.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大9.sin60°的值是( )A.B.C.D.10.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.10011.如图,△AOB为等腰三角形,顶点A的坐标(2,5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(203,103)B.(163,453)C.(203,453)D.(163,43)12.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm二、填空题13.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.14.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=45,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;15.若关于x的一元二次方程12x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.16.一元二次方程x2﹣4=0的解是._________17.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.18.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.19.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.20.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)21.如图,圆形纸片⊙O半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则 4 个小正方形的面积和为_______.22.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.23.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列二次根式中,是最简二次根式的为()A. B . C . D .试题2:已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣3试题3:已知,则的值为()A. B. C. D.试题4:“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件试题5:在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值为()A. B. C. D.试题6:.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.试题7:已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣9试题8:如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④试题9:二次根式有意义,则x的取值范围是.试题10:计算的结果为.试题11:将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为.试题12:如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为.试题13:为进一步发展基础教育,自2014年以来,某区加大了教育经费的投入,2014年该区投入教育经费7000万元,2016年投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为.试题14:如图,菱形ABCD中,点M,N在AC上,ME⊥AD于点E,NF⊥AB于点F.若ME=3,NM=NF=2,则AN 的长为.试题15:如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.试题16:如图,在矩形ABCD中,E是BC边的中点,DE⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;②=2;③sin∠CAD=;④AB=BF.其中正确的结论有(写出所有正确结论的序号).试题17:计算:﹣2sin60°+(1﹣)0﹣|﹣|.试题18:解方程:x2+6x﹣1=0.试题19:若x=﹣,y=+,求x2y+xy2的值.试题20:我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.试题21:如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?试题22:如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.试题23:关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.试题24:如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)试题25:已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.试题1答案:A【考点】最简二次根式.【分析】根据各个选项中的式子,进行化简,则不能化简的选项中式子即为所求.【解答】解:是最简二次根式,故选项A正确,,故选项B错误,,故选项C错误,,故选项D错误,故选A.【点评】本题考查最简二次根式,解题的关键是明确二次根式化简的方法.试题2答案:B【考点】一元二次方程的解.【分析】根据一元二次方程的解把x=1代入一元二次方程得到还有m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.试题3答案:D【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:,则==,故选:D.【点评】本题考查了比例的性质,利用分比性质是解题关键.试题4答案:D【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事试题5答案:A【考点】锐角三角函数的定义.【分析】根据余弦函数的定义即可求解.【解答】解:cosB==.故选A.【点评】本题考查了余弦的定义,在直角三角形中,余弦为邻边比斜边.试题6答案:B【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.试题7答案:C【考点】根与系数的关系.【分析】根据根与系数的关系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m2+3m=2,将其代入m2+4m+n+2mn中即可求出结论.【解答】解:∵m、n是方程x2+3x﹣2=0的两个实数根,∴m+n=﹣3,mn=﹣2,m2+3m=2,∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.故选C.【点评】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握x1+x2=﹣、x1x2=是解题的关键.试题8答案:B【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;C、两三角形的对应边不成比例,故两三角形不相似;D、两三角形对应边成比例且夹角相等,故两三角形相似.故选B.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.试题9答案:x≥5 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.试题10答案:2.【考点】二次根式的乘除法.【分析】直接利用二次根式的乘法运算法则求出答案.【解答】解:原式===2.故答案为:2.【点评】此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.试题11答案:(x﹣2)2=7 .【考点】解一元二次方程-配方法.【分析】移项后两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,故答案为:(x﹣2)2=7.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.试题12答案:3 .【考点】三角形的重心.【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=3.故答案为:3.【点评】此题考查三角形重心问题,掌握三角形的重心的性质:三角形的重心到顶点的距离是其道对边中点的距离的2倍.运用三角形的中位线定理即可证明此结论.试题13答案:7000(1+x)2=8470 .【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2014年投入7000万元,预计2016年投入8470万元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则2015的教育经费为:7000×(1+x)2016的教育经费为:7000×(1+x)2.那么可得方程:7000(1+x)2=8470.故答案为:7000(1+x)2=8470.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.试题14答案:4 .【考点】菱形的性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故答案为:4.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.试题15答案:(﹣1,).【考点】坐标与图形变化-旋转.【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE 中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).【点评】本题主要考查在旋转的情况下点的坐标变化,熟知旋转过程中图形全等即对应边相等、对应角相等、旋转角都相等的应用是解题的切入点也是关键.试题16答案:①②④【考点】相似三角形的判定与性质;矩形的性质;解直角三角形.【分析】①正确.四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB.②正确由AE=AD=BC,又AD∥BC,所以==.③错误.设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a,可得sinCAD===.④正确.连接AE,由∠ABE+∠AFE=90°,推出A、B、E、F四点共圆,推出∠AFB=∠AEB,由△ABE≌△CDE,推出∠AEB=∠CED,由∠BAF+∠BEF=180°,∠BEF+∠CED=180°,推出∠BAF=∠CED,推出∠BAF=∠BFA,即可证明.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ADC=90°,AD=BC,BE⊥AC于点F,∴∠DAC=∠ECF,∠ADC=∠CFE=90°,∴△CEF∽△ADC,故①正确;∵AD∥BC,∴△CEF∽△ADF,∴=,∵CE=BC=AD,∴==2,∴AF=2CE,故②正确,设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD== a ∴sinCAD===,故③错误.连接AE,∵∠ABE+∠AFE=90°,∴A、B、E、F四点共圆,∴∠AFB=∠AEB,∵AB=CD,BE=EC,∠CDE,∴△ABE≌△CDE,∴∠AEB=∠CED,∵∠BAF+∠BEF=180°,∠BEF+∠CED=180°,∴∠BAF=∠CED,∴∠BAF=∠BFA,∴BA=BF,故④正确.故答案为①②④.【点评】本题考查了相似三角形的判定和性质,矩形的性质,全等三角形的判定和性质、四点共圆等知识,正确的作出辅助线是解题的关键,学会利用此时解决问题,属于中考常考题型.试题17答案:原式=2﹣2×+1﹣=2﹣+1﹣=1;试题18答案:△=62﹣4×1×(﹣1)=40,x==﹣3±,所以x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了实数的运算.试题19答案:【考点】二次根式的化简求值.【分析】利用二次根式的混合运算法则求出x+y、xy,利用提公因式法把原式变形,代入计算即可.【解答】解:∵x=﹣,y=+,∴x+y=(﹣)+(+)=2,xy=(﹣)(+)=1,∴x2y+xy2=xy(x+y)=2.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、提公因式法的应用是解题的关键.试题20答案:【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【解答】解:(1)小华诵读《弟子规》的概率=;故答案为.(2)列表得:A B C小华小敏A (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,所以P(小华和小敏诵读两个不同材料)=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.试题21答案:【考点】一元二次方程的应用.【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,故人行通道的宽度为2米.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.试题22答案:【考点】相似三角形的判定与性质.【分析】(1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.【解答】(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.【点评】本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.试题23答案:【考点】根与系数的关系;根的判别式.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)利用根与系数的关系可以得到x1+x2=2m﹣1,x1•x2=m2+1,再把x12+x22=x1x2+10利用完全平方公式变形为(x1+x2)2﹣3x1•x2=10,然后代入计算即可求解.【解答】解:(1)由题意有△=(2m﹣1)2﹣4(m2+1)≥0,解得m≤﹣,所以实数m的取值范围是m≤﹣;(2)由根与系数的关系得:x1+x2=2m﹣1,x1•x2=m2+1,∵x12+x22=x1x2+10,∴(x1+x2)2﹣2x1•x2=x1x2+10,∴(2m﹣1)2﹣3(m2+1)=10,∴2m2+9m﹣5=0,解得m1=6,m2=﹣2,∵m≤﹣,∴m=6舍去,∴m=﹣2.【点评】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.试题24答案:【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)根据题意得出∠BEF=45°,解直角△BDF,求出BF,DF,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角为45°,∴∠BEF=45°,∵∠DAC=∠BDF=30°,AD=BD=40,∴BF=EF=BD=20,DF=,∴DE=DF﹣EF=20﹣20,∴平台DE的长为(20﹣20)米;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×40=20,PA=AD•cos30°=20,在矩形DPGM中,MG=DP=20,DM=PG=PA+AG=20+36.在Rt△DMH中,HM=DM•tan30°=(20+36)×=20+12,则GH=HM+MG=20+12+20=40+12.答:建筑物GH高为(40+12)米.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角问题以及仰角俯角问题,根据图形构建直角三角形,进而利用锐角三角函数得出是解题关键.试题25答案:【考点】四边形综合题;一元二次方程的解;三角形的面积;相似三角形的判定与性质.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P作PD⊥BC于D,根据△CPD∽△CBA,列出关于t的比例式,表示出PD的长,再根据S△QMC=QC•PD,进行计算即可;(3)过点M作ME⊥BC的延长线于点E,根据△CPD∽△CBA,得出,,再根据△PDQ∽△QEM,得到,即PD•EM=QE•DQ,进而得到方程=,求得或t=0(舍去),即可得出当时,PQ⊥MQ.【解答】解:(1)如图所示,AB=3cm,BC=5cm,AC⊥AB,∴Rt△ABC中,AC=4,若PQ∥AB,则有,∵CQ=PA=t,CP=4﹣t,QB=5﹣t,∴,即20﹣9t+t2=t2,解得,当时,PQ∥AB;(2)如图所示,过点P作PD⊥BC于点D,∴∠PDC=∠A=90°,∵∠PCD=∠BCA∴△CPD∽△CBA,∴,当t=3时,CP=4﹣3=1,∵BA=3,BC=5,∴,∴,又∵CQ=3,PM∥BC,∴;(3)存在时刻,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴,∵BA=3,CP=4﹣t,BC=5,CA=4,∴,∴,.∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴,即PD•EM=QE•DQ.∵,,,∴=,即2t2﹣3t=0,∴或t=0(舍去),∴当时,PQ⊥MQ.【点评】此题属于四边形综合题,主要考查了相似三角形的判定与性质、勾股定理、平行线的性质、三角形的面积计算的综合应用,解决问题的关键是根据题意画出图形,作出辅助线,构造相似三角形.。
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .8833π-B .16833π- C .16433π- D .8433π-2.下列方程是一元二次方程的是( )A .2x 2-5x+3B .2x 2-y+1=0C .x 2=0D .21x + x=23.如图,ABC 中,90C ∠=︒,13AB =,12AC =,则sin A =( )A .1213 B .513 C .512 D .1354.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,反比例函数1y x =的大致图象为( )A .B .C .D .6.如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°7.如图,正方形ABCD 中,6AB =,E 为AB 的中点,将ADE ∆沿DE 翻折得到FDE ∆,延长EF 交BC 于G ,FH BC ⊥,垂足为H ,连接BF 、DG .结论:①BF DE ;②DFG ∆≌DCG ∆;③FHB ∆∽EAD ∆;④43GEB ∠=;⑤ 2.6BFG S ∆=.其中的正确的个数是( )A .2B .3C .4D .5 8.一个长方形的面积为248x xy -,且一边长为2x ,则另一边的长为( )A .24x y -B .24x xy -C .224x xy -D .224x y -9.如果2a b +=,那么代数式2b a a a a b ⎛⎫-⋅ ⎪-⎝⎭的值是( ). A .2 B .2- C .12 D .12- 10.如图,AB 是⊙O 的直径,AC ,BC 分别与⊙O 交于点D ,E ,则下列说法一定正确的是( )A .连接BD ,可知BD 是△ABC 的中线B .连接AE ,可知AE 是△ABC 的高线C .连接DE ,可知DE CE AB BC =D .连接DE ,可知S △CDE :S △ABC =DE :AB11.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是( )A .转化B .整体思想C .降次D .消元12.如图,在四边形ABCD 中,AD BC ∕∕,点,E F 分别是边,AD BC 上的点,AF 与BE 交于点O ,2,1AE BF ==,则AOE ∆与BOF ∆的面积之比为( )A .12B .14C .2D .4二、填空题(每题4分,共24分) 13.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D ,求AD 的长14.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .15.在一个不透明的袋子中放有a 个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a 的值约为_____.16.如图,在Rt ABC ∆中,90C ∠=,棱长为1的立方体的表面展开图有两条边分别在AC ,BC 上,有两个顶点在斜边AB 上,则ABC ∆的面积为__________.17.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm ,则它们之间的实际距离约为_____千米.18.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x 元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.①当x =5时,顾客一次购买礼品甲和礼品丁各1套,需要支付_________元;②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x 的最大值为________.三、解答题(共78分)19.(8分)如图,在ABC 中,AB AC =,点E 在边BC 上移动(点E 不与点B 、C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.20.(8分)在正方形ABCD 中,点E 是BC 边上一点,连接AE .图1 图2(1)如图1,点F 为AE 的中点,连接CF .已知4tan 3FBE ∠=,5BF =,求CF 的长; (2)如图2,过点E 作AE 的垂线交CD 于点G ,交AB 的延长线于点H ,点O 为对角线AC 的中点,连接GO 并延长交AB 于点M ,求证: AM BH BE +=.21.(8分)如图,已知直线y =kx +6与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.22.(10分)如图,抛物线22y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求点A ,点B 和点C 的坐标;(2)在抛物线的对称轴上有一动点P ,求PB PC +的值最小时的点P 的坐标;(3)若点M 是直线AC 下方抛物线上一动点,M 运动到何处时四边形ABCM 面积最大,最大值面积是多少?23.(10分)(1)解方程:2320x x -+=.(2)已知:关于x 的方程220x kx +-=①求证:方程有两个不相等的实数根;②若方程的一个根是1-,求另一个根及k 值.24.(10分)如图,A ,B ,C 是⊙O 上的点,4sin 5A =,半径为5,求BC 的长.25.(12分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?26.如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.参考答案一、选择题(每题4分,共48分)1、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO 及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,∴OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt △COD 中利用勾股定理可知:2AC CD ===∵sin ∠COD=CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =11422OB AC ⨯=⨯⨯=∴S 扇形=21204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =163π-故选B.【点睛】 考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a 、b 是两条对角线的长度);扇形的面积=2360n r π. 2、C 【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、不是方程,故本选项错误;B 、方程含有两个未知数,故本选项错误;C 、符合一元二次方程的定义,故本选项正确;D 、不是整式方程,故本选项错误.故选:C .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.3、B【分析】由题意根据勾股定理求出BC ,进而利用三角函数进行分析即可求值.【详解】解:∵ABC 中,90C ∠=︒,13AB =,12AC =,∴5BC ===, ∴5sin 13BC A AB ==.故选:B.【点睛】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4、A【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故答案为A.【点睛】本题考查了中心对称图形和轴对称图形的概念,理解这两个概念是解答本题的关键.5、B【分析】比例系数k=1>0,根据反比例函数图像的特点可判断出函数图像.【详解】∵比例系数k=1>0∴反比例函数经过一、三象限故选:B.【点睛】本题考查反比例函数图像的分布,当k>0时,函数位于一、三象限.当k<0时,函数位于二、四象限.6、B【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【详解】连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=12(180°﹣∠AOB)=55°.故选B.【点睛】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.7、C【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可.【详解】解:∵正方形ABCD中,AB=6,E为AB的中点∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°∵△ADE沿DE翻折得到△FDE∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°∴BE=EF=3,∠DFG=∠C=90°∴∠EBF=∠EFB∵∠AED+∠FED=∠EBF+∠EFB∴∠DEF=∠EFB∴BF∥ED故结论①正确;∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG∴Rt△DFG≌Rt△DCG∴结论②正确;∵FH⊥BC,∠ABC=90°∴AB∥FH,∠FHB=∠A=90°∵∠EBF=∠BFH=∠AED∴△FHB∽△EAD∴结论③正确;∵Rt△DFG≌Rt△DCG∴FG=CG设FG=CG=x,则BG=6-x,EG=3+x在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2解得:x=2∴BG=4∴tan ∠GEB=4=3BG BE , 故结论④正确; ∵△FHB ∽△EAD ,且1=2AE AD , ∴BH=2FH设FH=a ,则HG=4-2a在Rt △FHG 中,由勾股定理得:a 2+(4-2a )2=22解得:a=2(舍去)或a=65, ∴S △BFG =16425⨯⨯=2.4 故结论⑤错误;故选:C .【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.8、A【分析】根据长方形的面积公式结合多项式除以多项式运算法则解题即可. 【详解】长方形的面积为248x xy -,且一边长为2x , ∴另一边的长为2(48)224x xy x x y -÷=-故选:A .【点睛】本题考查多项式除以单项式、长方形的面积等知识,是常见考点,难度较易,掌握相关知识是解题关键. 9、A【解析】(a -2b a)·a a b - =22a b a -·a a b- =a b a b a +-()()·a a b- =a +b =2.故选A.10、B【分析】根据圆周角定理,相似三角形的判定和性质一一判断即可.【详解】解:A 、连接BD .∵AB 是直径,∴∠ADB =90°,∴BD 是△ABC 的高,故本选项不符合题意.B 、连接AE .∵AB 是直径,∴∠AEB =90°,∴BE 是△ABC 的高,故本选项符合题意.C 、连接DE .可证△CDE ∽△CBA ,可得DE EC AB AC=,故本选项不符合题意. D 、∵△CDE ∽△CBA ,可得S △CDE :S △ABC =DE 2:AB 2,故本选项不符合题意,故选:B .【点睛】本题考查了圆周角定理、相似三角形的判定以及性质,辅助线的作图是解本题的关键11、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.12、D【分析】由AD ∥BC ,可得出△AOE ∽△FOB ,再利用相似三角形的性质即可得出△AOE 与△BOF 的面积之比.【详解】:∵AD ∥BC ,∴∠OAE=∠OFB ,∠OEA=∠OBF ,∴~AOE FOB ∆∆,∴所以相似比为2AE BF=, ∴224BOFAOE S S ∆∆==. 故选:D .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(每题4分,共24分)13、AD=1【分析】通过证明△ADE∽△ACB,可得AD AEAC AB=,即可求解.【详解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴AD AE AC AB=∴5 810 AD=,∴AD=1.【点睛】本题考查了相似三角形的判定与性质定理,熟练掌握定理是解题的关键.14、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.15、1.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【详解】解:根据题意得:60.25 a=,解得:a=1,经检验:a=1是分式方程的解,故答案为:1.【点睛】本题考查的知识点是事件的概率问题,弄清题意,根据概率公式列方程求解比较简单. 16、16【解析】根据题意、结合图形,根据相似三角形的判定和性质分别计算出CB、AC即可.【详解】解:由题意得:DE∥MF,所以△BDE∽△BMF,所以BD DEBM MF=,即214BDBD=+,解得BD=1,同理解得:AN=6;又因为四边形DENC是矩形,所以DE=CN=2,DC=EN=3,所以BC=BD+DC=4,AC=CN+AN=8,ABC∆的面积=BC×AC÷2=4×8÷2=16.故答案为:16.【点睛】本题考查正方形的性质和相似三角形的判定和性质,解题的关键是需要对正方形的性质、相似三角形的判定和性质熟练地掌握.17、1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离. 要注意统一单位.【详解】解:设它们之间的实际距离为xcm,1∶100000=1∶x,解得x=100000.100000cm=1千米.所以它们之间的实际距离为1千米.故答案为1.【点睛】本题考查了比例线段. 熟练运用比例尺进行计算,注意单位的转换.18、1 25【分析】①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付45+80-5=1元.②设顾客每笔订单的总价为M元,当0<M<100时,张军每笔订单得到的金额不低于促销前总价的六折,当M≥100时,0.8(M-x)≥0.6M,对M≥100恒成立,由此能求出x的最大值.【详解】解:(1)当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付:45+80-5=1元.故答案为:1.(2)设顾客一次购买干果的总价为M 元,当0<M <100时,张军每笔订单得到的金额不低于促销前总价的六折,当M ≥100时,0.8(M-x )≥0.6M ,解得,0.8x ≤0.2M.∵M ≥100恒成立,∴0.8x ≤200解得:x ≤25.故答案为25.【点睛】本题考查代数值的求法,考查函数性质在生产、生活中的实际应用等基础知识,考查运算求解能力和应用意识,是中档题.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析【分析】(1)根据等腰三角形的性质可得∠B=∠C ,再由∠DEF+∠CEF=∠B+∠BDE ,DEF B ∠=∠,即可判定CEF BDE ∠=∠,根据相似三角形的判定方法即可得△BDE ∽△CEF ;(2)由相似三角形的性质可得BE DE CF EF=,再由点E 是BC 的中点,可得BE=CE ,即可得CE DE CF EF=,又因C DEF ∠=∠,即可判定△CEF ∽△EDF ,根据相似三角形的性质可得CFE EFD ∠=∠,即可证得即FE 平分∠DFC .【详解】解:(1)因为AB=AC,所以∠B=∠C ,因为∠DEF+∠CEF=∠B+∠BDE ,DEF B ∠=∠所以CEF BDE ∠=∠,所以△BDE ∽△CEF ;(2)因为△BDE ∽△CEF ,所以BE DE CF EF=, 因为点E 是BC 的中点,所以BE=CE,即CE DE CF EF =, 所以CE CF DE EF=,又C DEF ∠=∠,故△CEF ∽△EDF, 所以CFE EFD ∠=∠,即FE 平分∠DFC .20、(1)CF =(2)证明见解析. 【分析】(1)作FP BC ⊥于点P ,由直角三角形斜边上的中线等于斜边的一半可推出10AE =,5FE =,在Rt BFP ∆中,利用三角函数求出BP ,FP ,在等腰三角形BFE ∆中,求出BE ,再由勾股定理求出AB ,进而得到BC 和CP ,再次利用勾股定理即可求出CF 的长度.(2)过G 作GP 垂直AB 于点P ,得矩形BCGP ,首先证明AMO CGO ∆∆≌,得AM GC =,再证明ABE GPH ∆∆≌,可推出得=+BE AM BH .【详解】解:(1)Rt ABE ∆中,BF 为中线,5BF =,10AE =∴,5FE =.作FP BC ⊥于点P ,如图,Rt BFP ∆中,45,tan 3BF FBE =∠=3,4BP FP ∴==在等腰三角形BFE ∆中, 26BE BP ==,由勾股定理求得221068AB BC =-==,835CP ∴=-=224541CF ∴=+=(2)过G 作GP 垂直AB 于点P ,得矩形BCGP ,∵AB ∥CD∴∠MAO=∠GCO在△AMO 和△CGO 中,∵∠MAO=∠GCO ,AO=CO ,∠AOM=∠COG∴△AMO ≌△CGO (ASA )∴AM=GC∵四边形BCGP 为矩形,∴GC=PB ,PG=BC=AB∵AE ⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE 和△GPH 中,∵∠AEB=∠H ,∠ABE=∠GPH=90°,AB=PG∴△ABE ≌△GPH (AAS )∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【点睛】本题考查了正方形和矩形的性质,三角函数,勾股定理,以及全等三角形的判定和性质,正确作出辅助线,利用全等三角形对应边相等将线段进行转化是解题的关键.21、(1)y =﹣x 2+2x +3;(2)存在,P ⎝⎭;(3)①170,2Q ⎛⎫ ⎪⎝⎭;②Q 点坐标为(0,72)或(0, 32-)或(0,1)或(0,3).【分析】(1)用待定系数法求解析式;(2)作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,当∠POB =∠POC 时,△POB ≌△POC ,设P (m ,m ),则m =﹣m 2+2m +3,可求m;(3)分类讨论:①如图,当∠Q 1AB =90°时,作AE ⊥y 轴于E ,证△DAQ 1∽△DOB ,得1DQ AD OD DB ==②当∠Q 2BA =90°时,∠DBO +∠OBQ 2=∠OBQ 2+∠O Q 2B =90°,证△BOQ 2∽△DOB ,得2OQ OB OD OB =,20363Q =;③当∠AQ 3B =90°时,∠AEQ 3=∠BOQ 3=90°,证△BOQ 3∽△Q 3EA ,33OQ OB Q E AE =,即3303401Q Q =-; 【详解】解:(1)把A (1,4)代入y =kx +6,∴k =﹣2,∴y =﹣2x +6,由y =﹣2x +6=0,得x =3∴B (3,0).∵A 为顶点∴设抛物线的解析为y =a (x ﹣1)2+4,∴a =﹣1,∴y =﹣(x ﹣1)2+4=﹣x 2+2x +3(2)存在.当x =0时y =﹣x 2+2x +3=3,∴C (0,3)∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,∴∠POM =∠PON =45°.∴PM =PN∴设P (m ,m ),则m =﹣m 2+2m +3,∴m =12, ∵点P 在第三象限,∴P . (3)①如图,当∠Q 1AB =90°时,作AE ⊥y 轴于E ,∴E (0,4)∵∠DA Q 1=∠DOB =90°,∠AD Q 1=∠BDO∴△DAQ 1∽△DOB ,∴1DQ ADOD DB == ∴DQ 1=52, ∴OQ 1=72,∴Q 1(0,72); ②如图, 当∠Q 2BA =90°时,∠DBO +∠OBQ 2=∠OBQ 2+∠O Q 2B =90°∴∠DBO =∠O Q 2B∵∠DOB =∠B O Q 2=90°∴△BOQ 2∽△DOB ,∴2OQ OB OD OB=, ∴20363Q =, ∴OQ 2=32, ∴Q 2(0,32-); ③如图,当∠AQ 3B =90°时,∠AEQ 3=∠BOQ 3=90°,∴∠AQ 3E +∠E AQ 3=∠AQ 3E +∠B Q 3O =90°∴∠E AQ 3=∠B Q 3O∴△BOQ 3∽△Q 3EA ,∴33OQ OB Q E AE =,即3303401Q Q =-, ∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,∴Q 3(0,1)或(0,3).综上,Q 点坐标为(0,72)或(0,32-)或(0,1)或(0,3).【点睛】考核知识点:二次函数,相似三角形.构造相似三角形,数形结合分类讨论是关键.22、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(1-2,32-);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S 四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0 解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC 为y=kx+b,则202k bb+=⎧⎨=⎩﹣﹣,得k=﹣l,∴y=﹣x﹣1.对称轴为x=1-2,当x=1-2时,y=-(1-2)﹣1=32-,∴P(1-2,32-).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=12×1×(﹣x1﹣x+1)+12×1(﹣x)+12×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.23、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,1k=-【分析】(1)把方程x1﹣3x+1=0进行因式分解,变为(x﹣1)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有两个不相等的实数根;②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【详解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①证明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)1﹣k﹣1=0,解得:k=﹣1,则原方程为:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一个根为1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a,b,c 是常数且a≠0) 的根的判别式及根与系数的关系;根判别式△=b1−4ac :(1)当△>0 时,一元二次方程有两个不相等的实数根;(1)当△=0 时,一元二次方程有两个相等的实数根;(3)当 △<0 时,一元二次方程没有实数根;若 x1 ,x1 为一元二次方程的两根时, x 1+x 1=b a , x 1∙x 1=c a. 24、BC =8 【分析】连接OB ,OC ,过点O 作OD ⊥BC ,利用圆心角与圆周角关系进一步得出∠BOD =∠A ,即sin A =sin BOD∠=45,然后通过解直角三角形得出BD ,从而进一步即可得出答案. 【详解】连接OB ,OC ,过点O 作OD ⊥BC ,如图∵OB =OC ,且OD ⊥BC ,∴∠BOD =∠COD =12∠BOC , ∵∠A =12∠BOC , ∴∠BOD =∠A ,sin A =sin BOD ∠=45, ∵在Rt △BOD 中,∴sin BOD ∠=BD OB =45, ∵OB =5,∴5BD =45,BD =4, ∵OD ⊥BC ,∴BD =CD ,∴BC =8.【点睛】本题主要考查了解直角三角形与圆的性质的综合运用,熟练掌握相关概念是解题关键.25、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a ,(1﹣a )2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a ,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.26、(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223,则P坐标为23⎛⎫- ⎪⎝⎭,或223⎛⎫-⎪⎝⎭,.。
2022-2023四川省宜宾市九年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列二次根式中,是最简二次根式的为()A. B.C.D.2.已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣33.已知,则的值为()A.B.C.D.4.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值为()A.B.C.D.6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则的值为()A.B.C.D.7.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣98.如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③B.①②④C.①③④D.②③④二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注意:在试题卷上作答无效)9.二次根式有意义,则x的取值范围是.10.计算的结果为.11.将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为.12.如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为.13.为进一步发展基础教育,自以来,某区加大了教育经费的投入,该区投入教育经费7000万元,投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为.14.如图,菱形ABCD中,点M,N在AC上,ME⊥AD于点E,NF⊥AB于点F.若ME=3,NM=NF=2,则AN 的长为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在矩形ABCD中,E是BC边的中点,DE⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;② =2;③sin∠CAD=;④AB=BF.其中正确的结论有(写出所有正确结论的序号).三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:﹣2sin60°+(1﹣)0﹣|﹣|.(2)解方程:x2+6x﹣1=0.18.(8分)若x=﹣,y=+,求x2y+xy2的值.19.(8分)我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.20.(8分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?21.(8分)如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.22.(8分)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.23.(10分)如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)24.(12分)已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC ⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.2022-2023四川省宜宾市九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列二次根式中,是最简二次根式的为()A. B.C.D.【考点】最简二次根式.【分析】根据各个选项中的式子,进行化简,则不能化简的选项中式子即为所求.【解答】解:是最简二次根式,故选项A正确,,故选项B错误,,故选项C错误,,故选项D错误,故选A.【点评】本题考查最简二次根式,解题的关键是明确二次根式化简的方法.2.已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣3【考点】一元二次方程的解.【分析】根据一元二次方程的解把x=1代入一元二次方程得到还有m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.已知,则的值为()A.B.C.D.【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:,则==,故选:D.【点评】本题考查了比例的性质,利用分比性质是解题关键.4.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据余弦函数的定义即可求解.【解答】解:cosB==.故选A.【点评】本题考查了余弦的定义,在直角三角形中,余弦为邻边比斜边.6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE :S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣9【考点】根与系数的关系.【分析】根据根与系数的关系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m2+3m=2,将其代入m2+4m+n+2mn中即可求出结论.【解答】解:∵m、n是方程x2+3x﹣2=0的两个实数根,∴m+n=﹣3,mn=﹣2,m2+3m=2,∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.故选C.【点评】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握x1+x2=﹣、x1x2=是解题的关键.8.如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③B.①②④C.①③④D.②③④【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;C、两三角形的对应边不成比例,故两三角形不相似;D、两三角形对应边成比例且夹角相等,故两三角形相似.故选B.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注意:在试题卷上作答无效)9.二次根式有意义,则x的取值范围是x≥5.【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.计算的结果为2.【考点】二次根式的乘除法.【分析】直接利用二次根式的乘法运算法则求出答案.【解答】解:原式===2.故答案为:2.【点评】此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.11.将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为(x﹣2)2=7.【考点】解一元二次方程-配方法.【分析】移项后两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,故答案为:(x﹣2)2=7.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.12.如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为3.【考点】三角形的重心.【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=3.故答案为:3.【点评】此题考查三角形重心问题,掌握三角形的重心的性质:三角形的重心到顶点的距离是其道对边中点的距离的2倍.运用三角形的中位线定理即可证明此结论.13.为进一步发展基础教育,自以来,某区加大了教育经费的投入,该区投入教育经费7000万元,投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为7000(1+x)2=8470.【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据投入7000万元,预计投入8470万元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则的教育经费为:7000×(1+x)的教育经费为:7000×(1+x)2.那么可得方程:7000(1+x)2=8470.故答案为:7000(1+x)2=8470.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.14.如图,菱形ABCD中,点M,N在AC上,ME⊥AD于点E,NF⊥AB于点F.若ME=3,NM=NF=2,则AN 的长为4.【考点】菱形的性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故答案为:4.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为(﹣1,).【考点】坐标与图形变化-旋转.【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).【点评】本题主要考查在旋转的情况下点的坐标变化,熟知旋转过程中图形全等即对应边相等、对应角相等、旋转角都相等的应用是解题的切入点也是关键.16.如图,在矩形ABCD中,E是BC边的中点,DE⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;② =2;③sin∠CAD=;④AB=BF.其中正确的结论有①②④(写出所有正确结论的序号).【考点】相似三角形的判定与性质;矩形的性质;解直角三角形.【分析】①正确.四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB.②正确由AE=AD=BC,又AD∥BC,所以==.③错误.设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a,可得sinCAD===.④正确.连接AE,由∠ABE+∠AFE=90°,推出A、B、E、F四点共圆,推出∠AFB=∠AEB,由△ABE≌△CDE,推出∠AEB=∠CED,由∠BAF+∠BEF=180°,∠BEF+∠CED=180°,推出∠BAF=∠CED,推出∠BAF=∠BFA,即可证明.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ADC=90°,AD=BC,BE⊥AC于点F,∴∠DAC=∠ECF,∠ADC=∠CFE=90°,∴△CEF∽△ADC,故①正确;∵AD∥BC,∴△CEF∽△ADF,∴=,∵CE=BC=AD,∴==2,∴AF=2CE,故②正确,设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a∴sinCAD===,故③错误.连接AE,∵∠ABE+∠AFE=90°,∴A、B、E、F四点共圆,∴∠AFB=∠AEB,∵AB=CD,BE=EC,∠CDE,∴△ABE≌△CDE,∴∠AEB=∠CED,∵∠BAF+∠BEF=180°,∠BEF+∠CED=180°,∴∠BAF=∠CED,∴∠BAF=∠BFA,∴BA=BF,故④正确.故答案为①②④.【点评】本题考查了相似三角形的判定和性质,矩形的性质,全等三角形的判定和性质、四点共圆等知识,正确的作出辅助线是解题的关键,学会利用此时解决问题,属于中考常考题型.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(•宜宾期末)(1)计算:﹣2sin60°+(1﹣)0﹣|﹣|.(2)解方程:x2+6x﹣1=0.【考点】解一元二次方程-公式法;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算;(2)利用公式法解方程.【解答】解:(1)原式=2﹣2×+1﹣=2﹣+1﹣=1;(2)△=62﹣4×1×(﹣1)=40,x==﹣3±,所以x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了实数的运算.18.若x=﹣,y=+,求x2y+xy2的值.【考点】二次根式的化简求值.【分析】利用二次根式的混合运算法则求出x+y、xy,利用提公因式法把原式变形,代入计算即可.【解答】解:∵x=﹣,y=+,∴x+y=(﹣)+(+)=2,xy=(﹣)(+)=1,∴x2y+xy2=xy(x+y)=2.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、提公因式法的应用是解题的关键.19.我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【解答】解:(1)小华诵读《弟子规》的概率=;故答案为.(2)列表得:A B C小华小敏A(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,所以P(小华和小敏诵读两个不同材料)=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?【考点】一元二次方程的应用.【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,故人行通道的宽度为2米.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.21.如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.【考点】相似三角形的判定与性质.【分析】(1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.【解答】(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.【点评】本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.22.关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.【考点】根与系数的关系;根的判别式.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)利用根与系数的关系可以得到x1+x2=2m﹣1,x1•x2=m2+1,再把x12+x22=x1x2+10利用完全平方公式变形为(x1+x2)2﹣3x1•x2=10,然后代入计算即可求解.【解答】解:(1)由题意有△=(2m﹣1)2﹣4(m2+1)≥0,解得m≤﹣,所以实数m的取值范围是m≤﹣;(2)由根与系数的关系得:x1+x2=2m﹣1,x1•x2=m2+1,∵x12+x22=x1x2+10,∴(x1+x2)2﹣2x1•x2=x1x2+10,∴(2m﹣1)2﹣3(m2+1)=10,∴2m2+9m﹣5=0,解得m1=6,m2=﹣2,∵m≤﹣,∴m=6舍去,∴m=﹣2.【点评】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.23.(10分)(•宜宾期末)如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)根据题意得出∠BEF=45°,解直角△BDF,求出BF,DF,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角为45°,∴∠BEF=45°,∵∠DAC=∠BDF=30°,AD=BD=40,∴BF=EF=BD=20,DF=,∴DE=DF﹣EF=20﹣20,∴平台DE的长为(20﹣20)米;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×40=20,PA=AD•cos30°=20,在矩形DPGM中,MG=DP=20,DM=PG=PA+AG=20+36.在Rt△DMH中,HM=DM•tan30°=(20+36)×=20+12,则GH=HM+MG=20+12+20=40+12.答:建筑物GH高为(40+12)米.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角问题以及仰角俯角问题,根据图形构建直角三角形,进而利用锐角三角函数得出是解题关键.24.(12分)(•宜宾期末)已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题;一元二次方程的解;三角形的面积;相似三角形的判定与性质.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P作PD⊥BC于D,根据△CPD∽△CBA,列出关于t的比例式,表示=QC•PD,进行计算即可;出PD的长,再根据S△QMC(3)过点M作ME⊥BC的延长线于点E,根据△CPD∽△CBA,得出,,再根据△PDQ∽△QEM,得到,即PD•EM=QE•DQ,进而得到方程=,求得或t=0(舍去),即可得出当时,PQ⊥MQ.【解答】解:(1)如图所示,AB=3cm,BC=5cm,AC⊥AB,∴Rt△ABC中,AC=4,若PQ∥AB,则有,∵CQ=PA=t,CP=4﹣t,QB=5﹣t,∴,即20﹣9t+t2=t2,解得,当时,PQ∥AB;(2)如图所示,过点P作PD⊥BC于点D,∴∠PDC=∠A=90°,∵∠PCD=∠BCA∴△CPD∽△CBA,∴,当t=3时,CP=4﹣3=1,∵BA=3,BC=5,∴,∴,又∵CQ=3,PM∥BC,∴;(3)存在时刻,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴,∵BA=3,CP=4﹣t,BC=5,CA=4,∴,∴,.∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴,即PD•EM=QE•DQ.∵,,,∴=,即2t2﹣3t=0,∴或t=0(舍去),∴当时,PQ⊥MQ.【点评】此题属于四边形综合题,主要考查了相似三角形的判定与性质、勾股定理、平行线的性质、三角形的面积计算的综合应用,解决问题的关键是根据题意画出图形,作出辅助线,构造相似三角形.。