上海六年级第二学期数学知识点1
- 格式:docx
- 大小:74.83 KB
- 文档页数:3
数学六年级下册第一单元知识点总结《数学六年级下册第一单元知识点总结》在六年级下册的数学第一单元里呀,那可都是关于负数的一些事儿。
负数这个概念可有意思啦。
就像我们平常数数,都是1、2、3这样的正数,可生活里呢,有好多情况光用正数表示不了。
比如说温度,零上的温度我们用正数表示,那零下的温度呢,就得用负数啦。
像 - 5℃,这就是零下5摄氏度,是不是很神奇呀。
再说说海拔高度。
海平面的高度我们规定为0米,那比海平面高的地方呢,就是正数,像珠穆朗玛峰的高度,是正数表示的海拔高度。
而那些比海平面低的地方,像吐鲁番盆地,它的海拔高度就是负数。
这就像我们把世界的高度和低度用正数和负数区分开啦。
在数轴上,负数也有它自己的位置哦。
0在中间,正数在0的右边,负数在0的左边。
越往左的负数越小,越往右的正数越大。
比如说 - 3就比 - 1小,1就比 - 2大。
这就像在一条有方向的线上给数字们排座位一样。
还有在计算的时候,正数和负数相加、相减也有规则呢。
正数加负数的时候,就相当于正数减去这个负数的绝对值。
比如3+(-2),就等于3 - 2 = 1。
而正数减负数呢,就相当于正数加上这个负数的绝对值,像3 - (-2),就等于3+2 = 5。
这就像是数字们在玩一种特殊的加减法游戏。
生活里负数的应用也不少呢。
比如说账目上的收支,赚钱是正数,亏钱就是负数。
如果这个月赚了1000元,就记为+1000元,要是亏了500元,那就记为 - 500元。
这样可以很清楚地看到经济状况是好是坏。
我觉得这一单元的负数知识特别有趣,它让我们对数字的理解更全面了。
它就像是打开了一扇新的数学大门,让我们看到了数字除了表示数量多少之外,还能表示相反的意义。
数学不再只是那些简单的算术,而是能和我们的生活紧密联系起来的东西。
这一单元的知识很实用,也很能开拓我们的思维,让我们知道世界上很多东西都是相对的,就像正数和负数一样,互相依存又互相区别。
第02讲 有理数加减法(核心考点讲与练)一、有理数的加法1.有理数加法法则:(1)同号两数相加,取原来的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号. (3)一个数同零相加,仍得这个数. 2.运算律:有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言a+b =b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言 (a+b)+c =a+(b+c)要点:交换加数的位置时,不要忘记符号. 二、有理数的减法 有理数减法法则:减去一个数,等于加上这个数的相反数.即()a b a b -=+-. 三、有理数加减混合运算 将加减法统一成加法运算,适当应用加法运算律简化计算.考点一:有理数的加法运算【例题1】计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(1)(+20)+(+12)=+(20+12)=+32=32; (2)(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.【变式训练1】计算: 【答案】【变式训练2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)考点二:有理数的减法运算【例题2】 计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算. 【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.【变式训练1】若( )﹣(﹣2)=3,则括号内的数是( ) A . ﹣1 B . 1 C .5 D .﹣5【答案】B .12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭111113333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.考点三:有理数的加减混合运算【例题3】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) (4) (5) (6) 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)→同分母的数先加 (4)→统一成加法→整数、小数、分数分别加(5) →统一同一形式(小数或分数),把可凑整的放一起⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭132.25321.87584+-+1355354624618-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++-= ⎪⎝⎭132.25321.87584+-+(2.25 2.75)(3.125 1.875)=-++(6)→整数,分数分别加【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 【变式训练1】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2 (2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4考点四:有理数的加减混合运算在实际中的应用【例题4】邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置; (2)C 村离A 村有多远? (3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm 表示1km ,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和. 【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.0.55 4.5=-+=1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936=【变式训练1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:第1组第2组第3组第4组第5组100 150 350 -400 -100(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式训练2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.考点五:数学思想在本章中的应用【例题5】(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.【答案与解析】解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.所以正确选项为:D.(2)因为| x|=5,所以x为-5或5因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2 当x=5,y=-3时,x-y=5-(-3)=8当x=-5,y=3时,x-y=-5-3=-8当x=-5,y=-3时,x-y=-5-(-3)=-2故(x-y )的值为±2或±8【变式训练1】若a 是有理数,|a|-a 能不能是负数?为什么? 【答案】解:当a >0时,|a|-a =a-a =0; 当a =0时,|a|-a =0-0=0; 当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.考点六:规律探索【例题6】将1,12-,13,14-,15,16-,…,按一定规律排列如下: 请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律. 【答案】1200-【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1200-. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.【例1】计算:()()()246898100-++-+++-+.【难度】★★★ 【答案】50.【解析】()()()246898100-++-+++-+()()()=24689810025-++-+++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦(共对)=222+++=225⨯ =50.【总结】考察有理数的加法.注意简便运算.【例2】 某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6- 元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【难度】★★★【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元. 【解析】共收入为:()524.5++()490+()+29.7=1044.2+元, 共支出为:()274.3+-()100-()+123.6-()+232.1730-=-元 收支相抵为:()2.3147302.1044=-+元. 【总结】考察有理数的加法的实际应用.已知143a =-,566b =-,122c =-,求下列各式的值.(1)a b c --; (2)()b a c --; (3)a b c --; (4)a c b --.【难度】★★★【答案】(1)5;(2)5-;(3)5-;(4)328.【解析】(1)1511511146246222536236222a b c ⎛⎫⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()5115115564264261563263266b a c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=-----=---+=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦;(3)1511514624625362362a b c --=-----=--=-; (4)115115552426426168326326663a cb ⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减法运算和运算律的综合应用. 【例3】 已知143a =-,566b =-,122c =-,求下列各式的值.(1)a b c --; (2)()b a c --; (3)a b c --; (4)a c b --.【难度】★★★【答案】(1)5;(2)5-;(3)5-;(4)328.【解析】(1)1511511146246222536236222a b c ⎛⎫⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)()5115115564264261563263266b a c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=-----=---+=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦;(6)1511514624625362362a b c --=-----=--=-; (7)115115552426426168326326663a cb ⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减法运算和运算律的综合应用.【例4】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______.【难度】★★★【答案】322=x 或223x =-.【解析】因为2113x ⎛⎫+-= ⎪⎝⎭,所以2211233x ⎛⎫=--= ⎪⎝⎭,所以322=x 或223x =-.【总结】考察有理数的加减法和绝对值运算. 【例5】 计算:135********-+-+-++-.【难度】★★★【答案】50-. 【解析】原式()()()()1357911979925=-+-+-++-(共对)()()()222=-+-++-()=252⨯- 50=-.【总结】考察有理数的加减法运算,注意找出规律进行简便运算.【例6】 计算:1234997998999999999999999999-+--+---+-. 【难度】★★★【答案】999499.【解析】原式1234997998999999999999999999=-+-+--+1234997998(499999999999999999999⎛⎫⎛⎫⎛⎫=-++-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭共对)111=+499999999999++(共个)499=999.【总结】考察有理数的加减法运算及与绝对值的综合计算,注意要简便运算.【例7】 如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值.【难度】★★★【答案】1253-.【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 【总结】本题主要考察新运算与有理数的加减法的综合运用.题组A 基础过关练一、单选题1.(2020·上海市静安区实验中学课时练习)下列运算中正确的是( )分层提分A .3.58( 1.58) 3.58( 1.58)2--=+-=B .( 2.6)(4) 2.64 6.6---=+=C .2727270()()()1555555-+-=+-=+-=-D .3439571()858540-=+-=-【答案】D【分析】根据有理数的加减法法则进行分析解答即可.【详解】A 选项中,因为3.58-(-1.58)=3.58+1.58=5.16,所以A 中计算错误; B 选项中,因为(-2.6)-(-4)=-2.6+4=1.4,所以B 中计算错误;C 选项中,因为27279055555⎛⎫-+-=--=- ⎪⎝⎭,所以C 中计算错误;D 选项中,因为3439571858540⎛⎫-=+-=- ⎪⎝⎭,所以D 中计算正确. 故选D.【点睛】熟知“有理数的减法法则:减去一个数等于加上这个数的相反数”是解答本题的关键.2.(2021·上海·九年级专题练习)若数轴上表示-1和-3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .-4 B .-2 C .2 D .4【答案】C【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解. 【详解】解:AB=|-1-(-3)|=2. 故选:C .【点睛】本题考查了数轴上两点间的距离及有理数的减法运算,正确表示数轴上两点间距离并准确计算是解题关键.二、填空题3.冬季某日,上海最低气温是3℃,北京最低气温是-5℃,这一天上海的最低气温比北京的最低气温高___________℃. 【答案】8【分析】求上海的最低气温比北京的最低气温高多少,即用上海的最低气温减去北京的最低气温.【详解】解:3-(-5)=8℃.∴这一天上海的最低气温比北京的最低气温高8℃. 故答案为:84.(2018·上海市娄山中学七年级单元测试)有理数____加上3-54所得的和是6.【答案】1134【分析】设有理数为a 则列式a+(3-54)=6,运用有理数的加减法计算求解即可. 【详解】设有理数为a 则a+(3-54)=6 ∴a=6+354=1134【点睛】此题考查了有理数加减法,熟练掌握运算法则是解题的关键.5.计算:|23-|+13=______. 【答案】1试题分析:解:原式=+=1,解本题时,要去掉绝对值符号后再进行运算.考点:绝对值的定义及分数运算.点评:熟知绝对值的定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值还是零.本题属于基础题.难度及小,易得.6.用字母a 、b 、c 表示有理数加法的交换律是________________,结合律是____________________.【难度】★【答案】交换律:a b b a +=+;结合律:()()a b c a b c ++=++.【解析】考察有理数运算律的理解.7.计算:()31 1.24⎛⎫-++= ⎪⎝⎭_____,()31 1.24⎛⎫--+= ⎪⎝⎭_____,()31 1.24⎛⎫-+-= ⎪⎝⎭_____.【难度】★【答案】0.55-; 2.95-; 2.95-.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和 为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.8.计算:21131333⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭______,()()137 5.42⎛⎫-+++= ⎪⎝⎭______.【难度】★ 【答案】31;9.9.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.三、判断9.判断下列算式是否正确:(1)()()220-+-=;( ) (2)()()6410-++=-;( )(3)()033+-=+;( ) (4)512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;( ) (5)337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭.( )【难度】★ 【答案】(1)×;(2)×;(3)×;(4)√;(5)√.【解析】(1)错误,正确答案为()()224-+-=-;(2)错误,正确答案为()()642-++=-;(3)错误,正确答案为()033+-=-.【总结】考察有理数的运算,注意法则的准确运用.四、解答题10.(2018·上海市娄山中学单元测试)3512+1-8-6.75412 【答案】1712-【分析】原式利用有理数加减混合运算计算即可求出值.【详解】原式=710127412+--412 =101727412-+(-)124 =10112512--=101712-=1712-【点睛】本题考查了有理数的加减混合运算,熟练掌握运算法则是正确解此题的关键.11.(2020·上海市静安区实验中学课时练习)计算:(1)(2)(9)--- (2)011- (3)5.6( 4.8)-- (4)13(4)524-- 【答案】(1)7;(2)-11;(3)10.4;(4)1104-. 【分析】根据有理数的减法法则和加法法则进行分析解答即可.【详解】(1)()()29297---=-+= ;(2)()01101111-=+-=- ;(3)5.6-(-4.8)=5.6+4.8=10.4;(4)13231(4)5(45)1024444--=-+=-.【点睛】熟记“有理数的减法法则和加法法则”是解答本题的关键.12.(2020·上海市静安区实验中学课时练习)计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)【答案】(1)-10(2)-3【分析】根据有理数的加法法则(1)、(2)进行计算【详解】(1)23+(-17)+6+(-22)=29+(-39)=-(39-29)=-10(2)(-2)+3+1+(-3)+2+(-4)=(-9)+6=-(9-6)=-3【点睛】本题考查的是有理数的加法,关键是要掌握加法法则.13.(2020·上海市静安区实验中学课时练习).10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?【答案】超重1.8千克,总重量是501.8(千克)【详解】本题考查了有理数的运算在实际中的应用,“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;求10袋大米的总重量,可以用10×50加上正负数的和即可.(+0.5)+(+0.3)+0+(-0.2)+(-0.3)+(+1.1)+(-0.7)+(-0.2)+(+0.6)+(+0.7)=1.8(千克),50×10+1.8=501.8(千克). 题组B 能力提升练一、单选题1.(2020·上海市静安区实验中学课时练习)下列各式可以写成a b c -+的是( )A .()()a b c -+-+B .()()a b c -+--C .()()a b c +-+-D .()()a b c +--+【答案】B【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【详解】根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a-b-c,B的结果为a-b+c,C的结果为a-b-c,D的结果为a-b-c,故选:B.【点睛】此题考查有理数的加减混合运算,解题关键在于掌握去括号法则:+(+)=+,+(-)=-,-(+)=-,-(-)=+.2.(2019·上海·七年级课时练习)有理数a、b在数轴上的位置如图所示,则a b+的值()A.大于0B.小于0C.小于a D.大于b 【答案】A【分析】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【点睛】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.二、填空题3.(2021·上海·九年级专题练习)如图,把一个面积为1的正方形等分成两个面积为12的矩形,接着把其中一个面积为12的矩形等分成两个面积为14的矩形,再把其中一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形所揭示的规律计算:111111111=248163264128256++++++++__________.【答案】511 256【分析】根据题意及图形可得12=1-12,12+14=1-14,12+14+18=1-18,….依此规律可进行求解.【详解】解:由图及题意可得:12=1-12,12+14=1-14,12+14+18=1-18,…; 依此规律可得:111111111=248163264128256++++++++511256; 故答案为:511256. 【点睛】本题主要考查有理数的加减,关键是根据题意及图形得到规律,然后进行求解即可.三、 解答题4.(2020·上海市静安区实验中学课时练习)计算:(1)()()()7935------;(2) 4.2 5.78.410-+-+;(3)15214632-++-. 【答案】(1)-8;(2)3.1;(3)34. 【分析】根据有理数的加、减混合运算的相关法则进行计算即可.【详解】(1)()()()()()()793579351688⎡⎤------=-+-++=-+=-⎣⎦ ;(2)()()4.2 5.78.410 4.28.4 5.71012.615.7 3.1-+-+=--++=-+=;(3)15214632-++-=11523334263424⎛⎫⎛⎫--++=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】熟悉“有理数加减混合运算的相关运算法则,能灵活的使用运算律把符号相同的数结合到一起先相加”是解答本题的关键.5.(2018·上海普陀·期中)510.474( 1.53)166----【答案】-4.【分析】先把减法运算转化为加法运算,再利用加分的交换结合律计算即可.【详解】解:原式=510.474+1.53166--=510.47 1.534166+--=2-6=-4. 【点睛】本题考查有理数的加减混合运算.6.(2020·上海市静安区实验中学课时练习)计算:(1)44413()()()13171317-+-++- (2)2111(4)(3)6(2)3324-+-++- 【答案】(1)-1;(2)334- 【分析】(1)利用有理数加法法则及加法运算律进行计算即可;(2)利用有理数加法法则及加法运算律进行计算即可.【详解】解:(1)原式44413=+13131717⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()=0+1-=1-;(2)原式211143623324⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1844=-+343=-. 【点睛】本题考查了有理数的加法,熟练掌握加法法则及加法运算律是解题的关键.7.(2020·上海市静安区实验中学课时练习)计算:1216.22[(3)]10.733-+-+--- 【答案】11.5【分析】根据有理数的加减混合运算法则,先计算出绝对值和相反数,再按照加法的交换律和结合律,将同类型数结合一起进行简便运算,得到结果.【详解】原式=1216.2+2310.733+- =()1216.210.7+2333⎛⎫-+ ⎪⎝⎭ =5.5+6=11.5.【点睛】考查有理数的加减混合运算法则,学生要熟练掌握求一个数的绝对值和相反数的方法,并结合运算律进行简便运算解出此题.8.计算:(1)515 6.54 3.4618--; (2)3492318.725.254⎛⎫--- ⎪⎝⎭; (3)225103 1.2850.72376----. 【难度】★★【答案】(1)1855;(2)18.7;(3)4219-. 【解析】(1)()555515 6.54 3.4615 6.54 3.461510518181818--=-+=-=; (2)()33492318.725.254918.7+2325.25=4918.7+4918.744⎛⎫=-+-=+--+-= ⎪⎝⎭原式; (3)()()2252252319103 1.2850.72=1035 1.280.72123763764242------+--=+-=-. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.9.计算:(1)111113131354543--+-; (2)135154723464--++.【难度】★★【答案】(1)313-;(2)0. 【解析】(1)11111111111131313331130033545435544333⎛⎫⎛⎫--+-=-+-+-=+-=- ⎪ ⎪⎝⎭⎝⎭; (2)1351153111547257422203464364422⎛⎫⎛⎫--++=-++-+=-= ⎪ ⎪⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.10.计算:(1)5353432 3.151********⎛⎫⎛⎫⎛⎫+-+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】(1)15.3-;(2)436-. 【解析】(1)原式()55334231 3.1522 3.15 3.1512122222⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-=+--=- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;(2)原式7111111134354854246882424244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+--+-=-++-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.11.计算:()9585 5.3753117817⎡⎤⎡⎤⎛⎫⎛⎫-----+ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦. 【难度】★★【答案】16. 【解析】原式9589855 5.3753151 5.375379161781717178⎛⎫⎛⎫=+++=+++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.12.(2019·上海黄浦·八年级课时练习)某红绿灯路口,以每天通过100辆小汽车为标准,超过的小汽车数记为正.测得某周通过该红绿灯路口的小汽车数量与标准量相比的情况如下表:最多,有多少辆?(2)这一周平均每天有多少辆小汽车通过这个红绿灯路口?【答案】(1)星期四经过该红绿灯路口的小汽车最少,为93辆;星期日经过该红绿灯路口的小汽车最多,为113辆;(2)故平均每天有103辆小汽车通过这个红绿灯路口.【分析】(1)分析统计表可得结论;(2)由(8+5-2-7-6+10+13)÷7+100可得结论..【详解】(1)从统计表格中得出星期四经过该红绿灯路口的小汽车最少,为93辆;星期日经过该红绿灯路口的小汽车最多,为113辆.(2)(8+5-2-7-6+10+13)÷7+100=103(辆),故平均每天有103辆小汽车通过这个红绿灯路口.【点睛】考核知识点:平均数.理解定义和题意是关键.13.(2019·上海·七年级课时练习)阅读下面的文字,并回答问题:1的相反数是﹣1,则1+(﹣1)=0;0的相反数是0,则0+0=0;2的相反数是﹣2,则2+(﹣2)=0,故a,b 互为相反数,则a+b=0;若a+b=0,则a,b 互为相反数。
《负数》六年级下册数学第一单元知识点整理《负数》六年级下册数学第一单元知识点整理在平平淡淡的学习中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
相信很多人都在为知识点发愁,以下是店铺为大家收集的《负数》六年级下册数学第一单元知识点整理,仅供参考,希望能够帮助到大家。
一、负数的定义1、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!2、负数的定义:在正数前面加上“-”就是负数。
3、负数前面必定有“-”如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。
4、0既不属于正数,也不属于负数,它是正数和负数的分界。
二、负数的作用1、负数是在人为规定正方向的前提下出现的。
2、负数常用来表示和正数意义相反的量。
3、在选择用正数还是负数表示时,首先看是否规定了正方向。
4、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。
例:零上5°用+5℃表示;零下5°用-5℃表示。
收入2000元用+2000元表示;支出500元用-500元表示。
三、常见负数的意义(1)地图上的负数:中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,你能说说8848米,-155米各表示什么吗?这两个高低是以谁为标准的?(2)收入与支出收入:2600元,()教育支出:300元()娱乐支出:500元()。
(3)电梯间的'负数-3层是什么意思?是以谁为标准的?以学校为起点,往东走为正,往西走位负,小明从学校走了+50,又走了-100,这时小明离学校的距离是()。
食品包装上常注明:“净重500±5g,”表示食品的标准质量是(),实际没袋最多不多于(),最少不少于()。
四、负数的读法和写法1、读法:在所读数的前面加上“负”2、写法:在所写数的前面加上“-”五、认识数轴1、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
5.3绝对值 姓名1、在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;2、正数的绝对值是它 ;负数的绝对值是 ;0的绝对值是3、绝对值是它本身的数是 ;绝对值最小数是 。
4、正数和零的绝对值是 ,负数和零的绝对值是 。
5、绝对值相等的两数之间的关系为 。
6、 的绝对值是 ; 的绝对值是32。
7、=-5 ;=-213;=-9.7 。
8、数轴上,到原点距离为4个单位长度的点所表示的有理数是______________;9、若一个数的绝对值是5,这个数是 。
10、若 3=x ,则x = ;11、若6-=-a ,则a = 。
12、绝对值小于3的整数是 。
13、绝对值大于2.5小于5.2的整数是 。
14、比较大小:213- 533- ;-4.3 314- ;435--_____)75.3(-- 15、从小到大排列:31-;-2.5 ;0 ;411- 。
★16、化简:=-3π ;=+π3 ;=-π3 。
★17、如果3>a ,则=-a 3 ,=-3a 。
18、如图填空: (1)a = ,b = ;(2)a b -= ; (3)a b += 。
19、 ==-x x 则01 ; ==+x x 则02 。
20、★ 若(________)(______)031===-++y x y x 则★21、已知22(3)0x y -++=,则x= ;y= 。
744-abb c a 10★★22、若x <0,y >0,且x >y ,则,,,x y y x -的大小关系为 。
二、选择题23、在有理数中,绝对值等于本身的数是………………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数24、a a =-,则a 一定是………………………………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数25、在数轴上,到原点的距离小于6.6个单位长度的整数点有……………………( )(A )11个 (B )12个 (C )13个 (D )14个26、有下列语句:① 0既不是正数,也不是负数; ② 绝对值等于它本身的数一定是0;③ 如果一个数的绝对值是本身,那么它一定是正数;④ 数轴上离原点越远的点所表示的数越大.其中叙述正确的语句有 …………………………………………………………………( ).(A )1个 (B )2个 (C )3个 (D )4个三、简答题★★27、有理数a,b,c 在数轴上的位置如图所示:试化简: |b-a |+|a+c |+|c-b |★★28、有理数a,b,c 在数轴上的位置如图所示: 求cc b b a a ++的值★29、若|a|=2,|b|=5,求a+b 的值。
人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
上海六年级第二学期数学知识点1。
相反意义的量收入与支出;增加与减少; 上升与下降;零上与零下;高于海平面与低于海平面;前进与后退; 盈利与亏损; ……任意规定一方为正,则另一方为负. 2.正数与负数比0大的数叫做正数;正整数正数正分数在正数前面加上“一”号的数(小于零的数)叫做负数;负整数负数负分数零既不是正数,也不是负数。
3。
有理数的概念正整数整数零负整数有理数正分数分数负分数正整数正有理数正分数有理数零负整数负有理数负分数正数非负数零 4。
数轴的概念与画法数轴是规定了原点、正方向和单位长度的直线;数轴画法:一直线 + 三要素 5.数轴的性质数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数. 6.相反数只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。
7。
相反数的几何意义数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。
8。
绝对值的定义(几何意义)在数轴上把表示数a的点与原点的距离叫做数a的绝对值,即||a。
||a是一个非负数,即:||0a。
9。
绝对值的代数意义(即:求一个数的绝对值的法则)一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0。
(0)||0(0)(0)aaaaaa一对互为相反数的两数的绝对值相等,而绝对值相等的两个数可能相等也可能互为相反数;求一个数的绝对值,应先判断这个数是正数、负数还是零,再根据绝对值的代数意义确定. 10。
有理数的大小比较两个负数,绝对值大的反而小;对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数. 比较两个数的大小,还可以用“作差法”,即: 若a—b>0,则a〉b;若a-b=0,则a=b;若a-b〈0,则a〈b。
11。
有理数加法及加法法则把两个有理数合成一个有理数的运算,叫做有理数的加法。
六年级第一学期第一章:数与整除【知识点梳理】(1)整数:“零”既不是正整数,也不是负整数(2)整除:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
易错点:a 能被b 整除(a 被除数,b 除数)a 能整除b (a 除数,b 被除数)(3)因数和倍数:归纳:一个数的因数是有限的。
一个数的倍数的个数是无限的。
一个数的因数通常是成对出现的。
最小的因数是1,最大的因数是它本身。
最小的倍数是它本身,没有最大的倍数。
易错点:1、谁是谁的因数倍数概念错误;2、因数和倍数是相互依存的;3、最大因数和最小倍数。
整数 正整数 零 负整数 自然数条件: 除数、被除数都是整数 被除数除以除数,商是整数而且余数为零一个数的倍数是无限的,最小的倍数是它本身定义:整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 因数(也称为约数)一个整数的因数的个数是有限的,最小的因数是1,最大的因数是它本身 因数倍数(4)区别除尽和整除:除尽:对于被除数和除数无限制,只要没有余数就好整除:被除数、除数和商都是整数且没有余数(5)偶数与奇数如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。
奇、偶数经过运算后的变化情况(6)能被2、3、5整除的数的特征:能被“2”整除的数的特征:个位数字是偶数,即各位数字是0、2、4、6、8的整数能被“5”整除的数的特征:个位数字是“5”或“0”能被“2、5”整除的数的特征:个位数字是“0”能被“3”整除的数的特征:各位数字之和能被“3”整除.(7)素数、合数:我们把只含有1如果除了1在解决素数和合数的问题时我们必须注意以下几点:1、1既不是素数也不是合数;这样,正整数又可以分为1、素数、合数三类。
2、关于素数:(1)素数有无限多个;(2)最小的素数是2;(3)在素数中只有2是偶数,其余的素数全是奇数;(4)每一素数只有两个约数:1和它本身。
新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。
负数用负号“-”标记;如-2;-5.33;-45;-0.6等。
2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有(无数个);其中有(正整数;正分数和正小数)。
3. (0)既不是正数;也不是负数;它是正、负数的界限。
所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。
第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。
h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。
)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。
上海六年级第二学期数学知识点
1.相反意义的量
收入与支出; 增加与减少; 上升与下降; 零上与零下; 高于海平面与低于海平面;前进与后退; 盈利与亏损; ……任意规定一方为正,则另一方为负.
2.正数与负数
比0大的数叫做正数;⎧⎨⎩
正整数正数正分数 在正数前面加上“一”号的数(小于零的数)叫做负数;⎧⎨
⎩负整数负数负分数
零既不是正数,也不是负数。
3.有理数的概念 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 ⎫⎬⎭
正数非负数零 4.数轴的概念与画法
数轴是规定了原点、正方向和单位长度的直线;
数轴画法:一直线 + 三要素
5.数轴的性质
数轴上表示的两个数,右边的数总比左边的数大;
正数都大于零,负数都小于零,正数大于一切负数。
6.相反数
只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。
7.相反数的几何意义
数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。
8.绝对值的定义(几何意义)
在数轴上把表示数a 的点与原点的距离叫做数a 的绝对值,即||a 。
||a 是一个非负数,即: ||0a ≥。
9.绝对值的代数意义(即:求一个数的绝对值的法则)
一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0。
(0)||0(0)
(0)a a a a a a >⎧⎪==⎨⎪-<⎩
一对互为相反数的两数的绝对值相等,而绝对值相等的两个数可能相等也可能互为相反数; 求一个数的绝对值,应先判断这个数是正数、负数还是零,再根据绝对值的代数意义确定。
10.有理数的大小比较
两个负数,绝对值大的反而小;
对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。
比较两个数的大小,还可以用“作差法”,即:
若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
11.有理数加法及加法法则
把两个有理数合成一个有理数的运算,叫做有理数的加法。
分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加。
有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。
注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。
12.有理数加法运算律
加法交换律:a b b a +=+; 加法结合律:()()a b c a b c ++=++
运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。
13.有理数的减法法则及运算
法则:减去一个数,等于加上这个数的相反数。
注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数), 牢记一个“不变”,被减数与减数的位置不变,即没有交换律。
14.有理数乘法的意义
乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。
如: n 个a 相加等于n a ⨯
15.有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
注意:①运算步骤:符号→绝对值相乘;②带分数要化成假分数
16.有理数乘法法则的推广
几个不为0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,若其中有一个0,则积为零
17.有理数的乘法运算律
①乘法交换律:ab ba =;
②乘法结合律:()()ab c a bc =;
③乘法对加法的分配律:().a b c ab ac +=+
18.倒数及求法
乘积是1的两个数叫做互为倒数。
零无倒数,对于任意数(0)a a ≠,它的倒数为1a
;
非零整数a 的倒数为
1a ;分数b a 的倒数是a b
;带分数化为假分数后再求倒数; 19.有理数除法的意义 已知两个因数的积c 与其中一个因数a ,求另一个因数b 的运算。
即:c b a =
20.有理数的除法法则
除以一个数等于乘这个数的倒数,1(0)a b a b b
÷=⨯≠; 两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零。
21.有理数的乘方
求相同因数的积的运算叫做乘方。
乘方的结果叫幂。
n n a a a a a a ⋅⋅⋅
⋅=个,a 叫底数,n 叫做指数,n a 叫做幂。
有理数幂的符号法则:正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数;0的任何非零次幂都是0.
22.有理数的混合运算
一个算式里含有加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数混合运算。
23.有理数的混合运算顺序
先乘方,再乘除,最后加减; 同级运算,从左到右依次进行; 如有括号先括号(小中大) 第一级运算:加和减;第二级运算:乘和除;第三级运算:乘方和开方
24.科学记数法
一个数写成10n a ⨯的形式,其中1|a|<10,n ≤是正整数,这种记数方法叫做科学记数法. n 的值 = 原数的整数位数 - 1。