基于PLC的机械手控制系统及组态设计说明
- 格式:doc
- 大小:1.34 MB
- 文档页数:60
PLC课程设计报告题目:基于PLC的机械手控制系统及组态设计二级学院:电气与电子工程学院班级: 14电气实验班姓名:李浩文学号:组员:指导老师:成绩:日期: 2017年4月基于PLC的机械手控制系统及组态设计摘要随着21世纪的发展,技术科技的不断完善,人们对于机械手的控制系统运用越来越成熟,机械自动化逐步代替了人工操作,这意味着将解放人类劳动力,一些简单重复的动作将会有机器代替运作,并且在某些场所,例如高温高压,有毒气体以及威胁到人类生命安全的环境。
为了适应社会需求的变化,人类不断实践和探索,机械手应运而生,相应的各种难题迎刃而解。
本设计主要介绍了国内外机械手研究现状及可编程控制器S7-200 PLC的研究发展趋势,基于PLC编程可知,组态王可以实现与S7-200编程器相结合,组建简单的仿真界面,通过仿真软件可以清晰的了解到机械手的操作,包括上移、下移、左移、右移。
实验表明,由S7-200 PLC和Kingview6.55构成的控制系统人机界面简单、易于操作、经济实用、可靠性高、稳定性高。
关键词:S7-200 PLC;组态王Kingview6.55;机械手目录1绪论 (1)1.1研究该课题的重要性 (1)1.2国内外机械手研究现状 (1)1.3该课题研究的内容 (2)2组态王Kingview 6.55和可编程控制器的介绍 (3)2.1组态王Kingview 6.55的介绍 (3)2.1.1组态王的历史 (3)2.1.2组态王的结构 (3)2.1.3组态王的基本配置 (5)2.1.4组态王软件产生的背景 (8)2.1.5组态软件的发展方向 (8)2.2可编程控制器的介绍 (10)2.2.1可编程控制器的概述 (10)2.2.2可编程控制器的历史 (10)2.2.3 PLC的基本结构 (11)2.2.4 PLC的工作原理 (12)2.2.5 PLC的基本配置 (12)3机械手控制系统的设计 (15)3.1机械手控制方式的选择 (15)3.1.1机械手控制方式的分类 (15)3.1.2 PLC与IPC和DCS的比较 (15)3.2 PLC的控制电路程序设计 (16)3.2.1 PLC的I/O分配表 (16)3.2.2编程指令的选择 (17)3.2.4 机械手的动作实现过程 (19)3.2.5 PLC控制机械手的模拟工作图 (19)3.2.6 PLC梯形图设计 (21)3.3 PLC程序的调试 (30)3.3.1 PLC控制的安装与布线 (30)3.3.2机械手控制程序的调试 (31)4组态王Kingview 6.55在机械手控制系统中的应用 (32)4.1工程的建立与结构变量的定义 (32)4.1.1工程的建立 (32)4.1.2建立结构变量的步骤 (33)4.1.3设备与组态王的连接 (35)4.2动画的连接 (38)4.2.1指示灯的动画连接 (38)4.2.2机械手的动画连接 (39)4.3组态运行调试 (45)总结 (46)参考文献 (47)附录 PLC梯形图设计 (48)基于PLC的机械手控制系统及组态设计1绪论1.1研究该课题的重要性该课题主要是研究当代机械手的控制过程以及如何实现,随着科技的不断发展,机械手运用到各个领域和产业当中,而现在机械手面临的问题主要是位置的精准性,定位精准性的准确度决定了机械手在工业的运用场所,同时随着发展的需要,机械手上位机要准备的报出发生故障的所在位置,运行维护人员要第一时间赶往现场并排除故障原因。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)作为现代工业控制的核心设备,在工业机械手运动控制系统中扮演着越来越重要的角色。
本文旨在探讨基于PLC的工业机械手运动控制系统的设计,以实现高效、精确和可靠的机械手运动控制。
二、系统设计要求在系统设计过程中,需充分考虑以下几个方面:1. 高效性:系统应具备快速响应、高效率的特点,以满足工业生产的需求。
2. 精确性:机械手的运动轨迹和位置应精确控制,以确保产品加工的质量。
3. 可靠性:系统应具备较高的稳定性和可靠性,以降低故障率,提高生产效率。
4. 灵活性:系统应具备较好的可扩展性和可维护性,以适应不同生产需求。
三、硬件设计硬件设计是系统设计的基础,主要包括PLC控制器、传感器、执行器等部件的选型和配置。
1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的逻辑运算、数据处理和通信功能。
2. 传感器:根据机械手运动控制的需求,选用合适的传感器,如位置传感器、速度传感器等,以实现精确的位置和速度检测。
3. 执行器:包括电机、气缸等执行机构,根据机械手的运动需求进行选型和配置。
4. 其他部件:包括电源、保护装置、通信接口等,以确保系统的正常运行和通信。
四、软件设计软件设计是系统设计的核心,主要包括PLC程序的编写和调试。
1. 程序编写:根据机械手运动控制的要求,编写相应的PLC 程序,实现逻辑控制、数据处理和通信功能。
2. 程序调试:对编写的程序进行调试,确保程序的正确性和稳定性。
3. 人机界面:设计友好的人机界面,方便操作人员对机械手进行控制和监控。
五、控制系统设计控制系统是机械手运动控制系统的核心,主要包括PLC控制器的程序设计、传感器和执行器的接口设计等。
1. PLC程序设计:根据机械手的运动需求,编写相应的PLC 程序,实现机械手的精确控制和协调运动。
2. 传感器接口设计:设计合适的传感器接口电路,实现传感器与PLC控制器之间的数据传输和通信。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。
传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。
因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。
该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。
二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。
其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。
机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。
传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。
2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。
本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。
程序包括主程序和控制程序两部分。
主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。
3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。
同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。
三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。
首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。
同时,还需要对硬件设备进行调试和测试,确保其正常工作。
2. 程序设计程序设计是整个系统的核心部分。
根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。
毕业论文标题:基于PLC与组态技术机械手的控制系统学生:勇乐谭鑫系部:电子信息系专业:电气自动化技术班级:高电气1102班指导教师:罗麦丰老师汽车工程职业学院教务处制摘要 (1)引言 (2)一、机械手控制系统的工作要求 (4)二、下位机PLC控制系统设计 (6)2.1机械手控制PLC 输入输出端子分配 (6)2.2机械手控制PLC顺序功能图 (7)2.3机械手控制PLC外围接线图 (8)2.4机械手控制PLC梯形图 (8)三、系统上位机组态设计及功能实现 (9)3.1设备连接 (10)3.2通讯设备参数设置 (10)3.3构造数据库 (11)3.4监控界面的设计和动画连接 (12)3.5系统运行 (14)四、系统调试 (16)4.1使用设备 (16)4.2调试过程 (16)五、设计过程遇到的问题及解决方法 (18)总结 (20)参考文献 (21)致 (22)附录1 (23)附录2 (24)本设计主要介绍了基于组态王与PLC实现对机械手控制系统设计,开发PLC控制系统与上位机监控界面。
组态王通过设备驱动程序从现场硬件设备获取实时数据并处理,以动画的方式在上位机屏幕上显示,同时按照组态要求和操作人员的指令使机械手按照设定的轨迹运行,并且将现场动画在监控界面中显示出来。
该系统可以很好的实现机械手的自动控制和管理。
关键词:机械手;S7-200 PLC;组态王随着科学技术的迅速发展,我国正在进行由手工操作到机械控制的变革。
机械手的设计与控制对工业自动化的发展是不可缺少的,它的到来加速了企业变革,在工业自动化的生产中,无论是单机床还是组合机床、以及自动化生产流水线都要用机械手完成工件的取放甚至更复杂、更精密的零件加工。
机械手是在机械化、自动化生产过程中发展起来的一种新型装置。
在现代生产过程中,机械手被广泛的运用于自动生产线,他是一门迅速发展起来的新兴技术。
目前机械手虽然还不如人手那样灵活,但是他具有能不断重复工作和劳动,不知疲劳,不怕危险,因此,机械手越来越广泛地得到应用。
基于PLC的机械手控制设计一、绪论机械手是一种可以模仿人手操作的自动化机器。
它可以完成不同的工作任务,提高生产效率,减少劳动力成本。
在许多工业领域,机械手已经成为不可或缺的设备。
PLC(可编程逻辑控制器)是一种常用的自动化控制设备,它具有强大的逻辑计算和控制能力。
将机械手与PLC结合起来,可以实现对机械手的精确控制,提高其工作效率及安全性。
本文将讨论基于PLC的机械手控制设计,包括硬件设计、软件设计和控制实现。
二、硬件设计1. 机械手结构设计机械手的结构设计是机械手控制系统的基础。
一般来说,机械手的结构包括电机、传动装置、执行器、传感器等部件。
在进行硬件设计时,需要根据具体的工作任务和要求选择合适的机械手结构。
为了能够更好地与PLC进行配合,需要考虑机械手各部件的接口和通信方式。
2. PLC选择及接口设计PLC的选择直接影响到机械手控制系统的性能和稳定性。
在选择PLC时,需要考虑其输入/输出接口数量、通信接口标准、逻辑控制能力等方面的性能指标。
还需要根据机械手的具体结构和控制要求设计合适的PLC接口,以便实现PLC与机械手的连接和控制。
3. 传感器设计传感器在机械手控制系统中起着至关重要的作用。
传感器可以用来检测机械手的位置、姿态、力度等信息,并将这些信息传输给PLC,从而实现对机械手的实时监控和控制。
在硬件设计中,需要选择合适的传感器类型和布置位置,并设计相应的传感器接口电路,以确保传感器能够准确地获取所需的信息并与PLC进行通信。
三、软件设计1. PLC编程PLC的编程是机械手控制系统中的核心环节。
在进行PLC编程时,需要根据机械手的控制逻辑和工作流程,设计相应的控制程序。
控制程序包括逻辑控制部分、任务调度部分、通信控制部分等。
在设计控制程序时,需要考虑机械手的运动规划、安全控制、故障处理等方面的要求,以确保机械手能够安全、快速、准确地完成工作任务。
2. HMI设计HMI(人机界面)是机械手控制系统的另一个重要组成部分。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。
基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。
本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。
本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。
将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。
在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。
本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。
通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。
也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。
二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。
该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。
PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。
PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。
气动执行元件:包括气缸、气阀和气压调节器等。
气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。
《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化程度的不断提高,气动机械手在工业生产线上扮演着越来越重要的角色。
为了提高机械手的控制精度、稳定性和可靠性,基于PLC的气动机械手控制系统设计成为了一个重要的研究方向。
本文将介绍一种基于PLC的气动机械手控制系统设计,以提高机械手的控制性能和运行效率。
二、系统设计概述本系统采用PLC作为核心控制器,通过气动元件和传感器实现机械手的运动控制。
系统主要由PLC控制器、气动元件、传感器和人机界面等部分组成。
其中,PLC控制器负责接收传感器信号,根据预设的逻辑控制气动元件的运动,实现机械手的抓取、移动、定位等动作。
三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高速度、高精度、高可靠性等特点,能够满足机械手控制系统的要求。
2. 气动元件:包括气缸、电磁阀、气动过滤器、气压传感器等。
气缸和电磁阀是实现机械手运动的关键部件,气压传感器用于实时监测气动系统的压力变化。
3. 传感器:包括位置传感器、速度传感器等,用于实时监测机械手的运动状态,提供给PLC控制器进行控制决策。
4. 人机界面:采用触摸屏或工业计算机作为人机界面,方便操作人员进行参数设置和监控。
四、软件设计1. 控制程序设计:采用结构化编程方法,将控制程序分为多个模块,包括初始化模块、输入处理模块、输出控制模块等。
每个模块负责完成特定的功能,提高程序的可靠性和可维护性。
2. 控制算法设计:根据机械手的运动特性和控制要求,设计合适的控制算法,如PID控制算法、模糊控制算法等,以提高机械手的控制精度和稳定性。
3. 人机界面设计:设计友好的人机界面,方便操作人员进行参数设置和监控。
界面应具有直观性、易用性和安全性等特点。
五、系统实现1. 硬件连接:将PLC控制器、气动元件、传感器等硬件设备进行连接,确保信号传输的可靠性和稳定性。
2. 程序编写与调试:根据控制程序设计和控制算法设计,编写PLC控制程序并进行调试,确保程序能够正确控制机械手的运动。
PLC课程设计报告题目:基于PLC的机械手控制系统及组态设计二级学院:电气与电子工程学院班级: 14电气实验班姓名:浩文学号:组员:指导老师:成绩:日期: 2017年4月基于PLC的机械手控制系统及组态设计摘要随着21世纪的发展,技术科技的不断完善,人们对于机械手的控制系统运用越来越成熟,机械自动化逐步代替了人工操作,这意味着将解放人类劳动力,一些简单重复的动作将会有机器代替运作,并且在某些场所,例如高温高压,有毒气体以及威胁到人类生命安全的环境。
为了适应社会需求的变化,人类不断实践和探索,机械手应运而生,相应的各种难题迎刃而解。
本设计主要介绍了国外机械手研究现状及可编程控制器S7-200 PLC的研究发展趋势,基于PLC编程可知,组态王可以实现与S7-200编程器相结合,组建简单的仿真界面,通过仿真软件可以清晰的了解到机械手的操作,包括上移、下移、左移、右移。
实验表明,由S7-200 PLC和Kingview6.55构成的控制系统人机界面简单、易于操作、经济实用、可靠性高、稳定性高。
关键词:S7-200 PLC;组态王Kingview6.55;机械手目录1绪论 (1)1.1研究该课题的重要性 (1)1.2国外机械手研究现状 (1)1.3该课题研究的容 (2)2组态王Kingview 6.55和可编程控制器的介绍 (3)2.1组态王Kingview 6.55的介绍 (3)2.1.1组态王的历史 (3)2.1.2组态王的结构 (3)2.1.3组态王的基本配置 (5)2.1.4组态王软件产生的背景 (8)2.1.5组态软件的发展方向 (8)2.2可编程控制器的介绍 (10)2.2.1可编程控制器的概述 (10)2.2.2可编程控制器的历史 (10)2.2.3 PLC的基本结构 (11)2.2.4 PLC的工作原理 (12)2.2.5 PLC的基本配置 (12)3机械手控制系统的设计 (15)3.1机械手控制方式的选择 (15)3.1.1机械手控制方式的分类 (15)3.1.2 PLC与IPC和DCS的比较 (15)3.2 PLC的控制电路程序设计 (16)3.2.1 PLC的I/O分配表 (16)3.2.2编程指令的选择 (17)3.2.4 机械手的动作实现过程 (19)3.2.5 PLC控制机械手的模拟工作图 (19)3.2.6 PLC梯形图设计 (21)3.3 PLC程序的调试 (30)3.3.1 PLC控制的安装与布线 (30)3.3.2机械手控制程序的调试 (31)4组态王Kingview 6.55在机械手控制系统中的应用 (32)4.1工程的建立与结构变量的定义 (32)4.1.1工程的建立 (32)4.1.2建立结构变量的步骤 (33)4.1.3设备与组态王的连接 (35)4.2动画的连接 (38)4.2.1指示灯的动画连接 (38)4.2.2机械手的动画连接 (39)4.3组态运行调试 (45)总结 (46)参考文献 (47)附录 PLC梯形图设计 (48)1绪论1.1研究该课题的重要性该课题主要是研究当代机械手的控制过程以及如何实现,随着科技的不断发展,机械手运用到各个领域和产业当中,而现在机械手面临的问题主要是位置的精准性,定位精准性的准确度决定了机械手在工业的运用场所,同时随着发展的需要,机械手上位机要准备的报出发生故障的所在位置,运行维护人员要第一时间赶往现场并排除故障原因。
现代的机器手己经应用于众多领域:在汽车组装线上对车身进行焊接和喷漆;用于医疗领域的微型手术方面已有许多进展。
因而,机械手控制技术的发展具有极其重大的意义。
主要的部分是通过控制电动机来操控机械手的手臂,手指部分的旋转或者移动来完成对物件的抓取和传送。
随着工业的自动化需要,解放人类劳动力,科学技术发展逐步代替了以往以人工为劳动力的流水线工作,同时一些不适宜人类施工的成所,甚至会对人类造成伤害的场所等等,对于该课题机械手的控制系统研究是非常具有重要的实际意义。
1.2国外机械手研究现状目前在国的机械手主要是从事一些简单的操作工作,例如:简单的机床加工,锻造简单工程,一些热处理而已,要想实现更加自动化的操作,还需要投入大量的科学研究,对于我国来说,这是非常必要的一个研究,研究成熟之后将会对工业生产带来极大的便利,同时也意味着我国的技术更向前迈一步,这将会是革命性的变化。
而国外的机械手技术相对来说,比国的技术要更成熟一些,能够实现更多自动化的操作,机械化的水平更是逐步完善,可以完成人类基本上的动作,包括位置的准确性、控制的速度、动作的灵敏性,这些国外的技术都是值得我们去学习和借鉴,当然国外目前也是存在缺陷的,一些触觉、视觉性能的机械手还没有完全研究成熟,这也是意味着我们研究该课题的重要性,而机械手的设计还要涉及到每一个系统细小的基本单元。
随着学科的相互渗透和大规模还有超大规模的集成电路等电子技术的发展,机械领域己经拓宽了许多,使得机械系统由简单到复杂,功能越来越强,精度越来越高,体现了生产力发展的进步和趋势。
我国在这一领域的应用研究距离国际水平还存在着一定的差距,特别是中小型企业由于资金和技术上的因素导致一些技术性的研究还是停留在原地,要想得到快速的发展需要国家政策的相关支持,鼓励中小型的企业能向更加层次发展与创新,不仅带动企业的发展,更是降低对环境的污染,对国家经济的推动。
然而现在PLC的技术到了一个非常成熟的境界,不仅控制功能得到质一样的飞跃,功耗和体积日益减小,成本下降,可靠性增强,编程能力得到提高以及检测故障的能力也得到提升,PLC决定了工业生产的方向,成为了自动化控制的支柱。
这无疑是对机械手未来发展前景带来了希望,特别是一些中小型企业的发展,降低投资的资金获得等价先进的生产水平能力。
在20世纪中期,我国就开始对机械手的研究与发展。
在1972年我国生产了第一台机械手,随着技术的完善和成熟,国家研究的投入使各省份开始大量的研制发展。
为了实现机械手的全面推广,国家把研究机械手这领域列入到五年计划当中,并投入了大量的资金发展,也成功的制造了一系列的机器人控制。
1.3该课题研究的容随着科学技术的进步与成熟,当今社会的发展趋势下,社会主义市场经济控制的国民经济,传统的工业流水线、复杂有害的成所、不适应人类工作的环境等这一系列情况,运用而生的机械手将逐步代替人类工作,这是社会发展的必然趋势,同时也是人类智慧的体现。
而传统的工业也无法满足社会经济的发展需求,也逐渐淘汰了,未来的发展将是推动社会进步的重要体现,也是研究机械手实现自动化存在的意义。
通过PLC编程控制机械手可以实现更加精准性,位置的准确度,速度的快慢,包括一些大件货物的搬运以及打包等等,这些都是可以在PLC控制下实现,自动化的过程也会得到大大的简化,减去繁琐的工程。
然而PLC与组态王的结合,更是实现了实时监测机械手在工作当中的运作,监测运作过程中会出现的故障问题,这样大大的减少了人类的工作,提高了工作的效率,出现故障问题我们都能在第一时间发现,并做出准确的判断,实现这样的一体化的自动系统,需要我们在不断实践中摸索,在未来我国现代化发展过程中也会起到巨大的作用。
2组态王Kingview 6.55和可编程控制器的介绍2.1组态王Kingview 6.55的介绍2.1.1组态王的历史随着集散型控制系统(DCS)的出现被熟知,在PC技术向工业领域渗透中占据特殊而重要的地位。
(1)20世纪60年代:计算机较少地用于工业过程控制中。
(2)20世纪70年代:随着计算机控制技术的成熟逐渐在DCS中得到运用,但是软件方面的技术仍然存在不足和封闭专用,导致其成本非常昂贵。
(3)80年代中后期:基于PC计算机的监控系统开始进入市场,并发展壮大。
美国wonderware公司推出第一个商业化组态软件intouch。
(4)80年代末国外组态软件进入中国(开始不是很接纳)(5)90年代国开始研究并开发,各个国组态公司开始成立。
(6)90年代后期国组态产品开始成熟。
1、国外软件商提供的组态软件产品:(1)德国Seimens公司的WinCC(2)美国Wonderware公司的Intouch(3)美国Intellution公司的iFix/Fix(4)美国Rockwell公司的RSView(5)美国NI的Labview2、国自行开发的产品的组态软件产品:(1)亚控的组态王、三维力控科技的力控、(2)昆仑通态的MCGS、易控、世纪星、紫金桥等2.1.2组态王的结构1、使用软件的工作阶段划分根据组态系统环境划分,组态软件Kingview6.55主要是两大部分组成的:(1)组态系统的开发环境:根据组态王的软件设计,自动化工程师为了能设计一个可靠的控制方案,同时能够在组态王软件支持下进行应用程序系统生成的一个工作环境。
建立用户所需要的数据库文件,生成图形目标应用系统,这些开发环境下的系统能够在组态运行环境中运行使用。
(2)组态系统的运行环境:该运行环境可以实现投入实时运行,简单的来说就是可以支持在线组态的设计技术,将目标应用程序可以在计算机存中实时运行,简化繁琐的流程,操作易于方便,且灵活性高等特点。
同时组态运行环境在不退出的状态下,可以进入组态系统环境直接修改有问题的部分,而且修改的这部分在该组态运行环境下会直接生效运行,大大的提高了工作的效率也降低了成本价值。
2、按照成员构成划分组态王Kingview6.55仿真软件中,每一个功能都具有其一定的独立性,而每个功能相对能实现较大的应用,每个独立的功能形式能组成一个集成软件平台,同时由若干个程序构件组成,其中必备的典型组件包括:(1)工程管理器工程管理器是给设计的工程师提供了一个方便的操作界面,包括程序的搜索、新建、删除、属性、备份、恢复、开发和运行等一系列功能管理工具。
但是在设计的过程当中往往会遇到很多问题,例如:组态数据需要经常备份、组态仿真界面需要借鉴别人成功的例、同时还需要经常了解保存的工程项目。
这些繁琐的步骤也给设计工程师带来了额外的许多负担,而且效率低下又容易出错。
工程管理器的简单操作界面,使上述繁琐的事情得到简单化。
(2)图形界面开发程序为了能使设计的方案得到合理的实施,设计工程师需要在一个开发环境中生成相关的图形系统,然后通过建立数据库文件的信息,生成最终需要的目标应用程序,同时供运行环境运行时使用。
(3)图形界面运行程序组态系统软件运行的环境中,计算机存设计的图形目标系统及其图形设计的运行程序,这些都能在计算机中实行实时运行状态。
(4)实时数据库系统组态程序目前比较成熟的组态软件已经具备了独立的实时数据库系统件,这成熟的条件解决了很多问题,不仅提高了系统的实时性还增强了系统的处理能力,改变以往组态程序中只能简单的数据管理功能,给设计工程师带来了更有价值的创造,因为实时数据库系统组态程序能定义数据库的结构、连接、来源、类型等等。