甘肃省 、第十章排列、组合、二项式定理高考真题(学生用、单张双面)
- 格式:doc
- 大小:78.50 KB
- 文档页数:3
西北师大附中2014届高三(理)单元测试排列组合与二项式定理(时量:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,)32(443322104x a x a x a x a a x ++++=+则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( )A .1B .-1C .0D .22.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,其中甲、乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种3.五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的排法共有 ( ) A .12种 B .20种 C .24种 D .48种4.某团支部进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、副书记、组织委员。
规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职方案有 ( ) A .10 B .11 C .12 D .135.直线方程A x +B y =0,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为系数A 、B 的值,则方程表示不同直线的条数是 ( ) A .2 B .12C .22D .256.六个人排成一排,甲乙两人中间至少有一个人的排法种数有 ( ) A .480 B .720 C .240 D .3607.a ∈{1,2,3},b ∈{3,4,5,6,7,8},r ∈{1,2,3},则方程(x -a )2+(y -b )2=r2所表示的圆共有 ( ) A .12个 B .18个 C .36个 D .54个8.若(1-2x )5的展开式中第二项小于第一项,且不小于第三项,则x 的取值X 围是( )A .x >-110B .x ≥-14C .-14≤x ≤0D .-110≤x ≤0 9.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A .34种B .35种C .120种D .140种10.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种 11.设n xx )13(3+的展开式中的各项系数之和为P ,而它的二项式系数之和为S 。
2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。
排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
2024年普通高等学校招生考试新高考II 卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干 净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,满分40分.每小题给出的备选答案中,只有一个是符合题意的. 1. 已知1z i =−−,则z = ( C )A .0B .1CD .2解:因为1z i =−−,所以z =C .2.已知命题p :x R ∈∀,1x +>1;命题q :30,x x x =∃>, 则 ( B ) A .p 和q 都是真命题 B .p ﹁和q 都是真命题 C .p 和q ﹁都是真命题 D .p ﹁和q ﹁都是真命题.解:因为1x =−,1x +1<,所以p 为假,p ﹁真,又因为1x =时,3x x =,所以q 真,故选B . 3.已知向量,a b 满足: 1,22a a b =+=,且(2)b a b −⊥,则b = ( B )A .12B C D .1 解:因为22a b +=,所以22444a a b b +⋅+=,又因为1a =,所以2443a b b ⋅+=,又因为(2)b a b −⊥, 所以(2)0b a b −⋅=,所以220b a b −⋅=,所以263b =,所以22b =,故选B 4.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位: kg) 并部分 整理如下表所示.根据表中数据,下列结论正确的是 ( C ) A .100块稻田亩产量的中位数小于1050 kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200 kg 到300 kg 之间D .100块稻田亩产量的平均值介于900 kg 到1000 kg 之间解:根据频数表得亩产在[1050,1100)的频数为100612182410=30−++++(),所以列出频率表如下:所以中位数在分组[1050,1100)内,所以A 错;又因为亩产量低于1100kg 的稻田的频率为0.66,所以B 错;又极差最大为1200-900=300,最小为1150-950=200,故C 正确,亩产平均值为1(692512975181025301075241125101175)100⨯+⨯+⨯+⨯+⨯+⨯=1067,所以D 错,故选C . 5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点 M 的轨迹方程为 ( A )A .221(0)164x y y +=> B .221(0)168x y y +=> C .221(0)164y x y +=> D .221(0)168y x y +=> 解:设线段PP '的中点为(,)x y ,则(,2)x y 在曲线C 上,所以22416x y +=,所以221(0)164x y y +=>,选A 6.设函数2()(1)1f x a x =+−, ()cos 2g x x ax =+ (a 为常数),当(1,1)x ∈−时,曲线()y f x =和()y g x =恰有 一个交点,则a = ( D ) A .1− B .12C .1D .2解:因为当(1,1)x ∈−时,曲线()y f x =和()y g x =恰有一个交点,所以(1,1)x ∈−时,()()f x g x =有一解,即2(1)1cos 2a x x ax +−=+,所以21cos ax a x +−=,因为21cos y ax a y x =+−=与都是偶函数,当0x = 时,11a −=,所以2a =时恰有一个交点,故选D . 7.已知正三棱台ABC A B C '''−的体积为523,6,2AB A B ''==, 则AA '与平面ABC 所成角的正切值为( B ) A .12B .1C .2D .3解:因为26S 下22S 上,所以13V h =(,所以523=,所以h =,设上下底面正三角形的高分别为12,h h,则1223h =,2263h = 设AA '与平面ABC 所成角为θ,则21tan 12233h h h θ===−,故选B8.设函数()()ln()f x x a x b =++,若()0f x ≥, 则22a b +的最小值为 ( C ) A .18 B .14 C .12D .1 解:因为函数y x a =+与ln()y x b =+都是单调递增函数,且两个函数的零点分别为a −和1b −,又因为()0f x ≥,所以22a b +取最小值时,1x a b =−=−,即1b a =+,所以2221112()222a b a +=++≥,故选C .二、选择题:本题共3小题,每小题6分,满分18分.每小题给出的备选答案中,有多个选项是符合题意的.全部选对得6分,部分选对得3分,选错或不选得0分.9.对于函数()sin 2f x x =和()sin(2)4g x x π=−,下列正确的有 ( ,B C )A . ()f x 与g()x 有相同零点B . ()f x 与g()x 有相同最大值C . ()f x 与g()x 有相同的最小正周期D . ()f x 与g()x 的图像有相同对称轴 解:因为把函数()g x 的图象向左平移8π个单位就得到()f x 的图象,所以两个函数的零点不同,对称轴不同,故,A D 错,又因为多选,所以选,B C .10.抛物线C :24y x =的准线为l ,P 为C 上动点,过P 作A ⊙:22(4)1x y +−=的一条切线,Q 为切点.过P 作l 的垂线,垂足为B ,则 ( ABD )A .l 与A ⊙相切B .当P A B 、、三点共线时,PQ =C .当2PB =时,PA AB ⊥D .满足PA PB =的点A 有且仅有2个解:因为A ⊙的圆心为(0,4),半径1r =,又因为l 的方程为1x =−,所以l 与A ⊙相切,所以选项A 正确;设(,)P x y ,则当P A B 、、三点共线时时,4y =,所以4x =,所以4PA =,所以PQ ==, 所以选项B 正确;当2PB =时,PAB △是等边三角形,所以选项C 错;设(,)P x y ,则(1,)B y −, 因为PA PB =,所以222(4)(1)x y x +−=+,又因为24y x =,所以222(4)2y y −=+,所以216300y y −+=, 即方程有两个不同的实数解,所以选项D 正确,故选ABD .11.设函数32()231f x x ax =−+,则 ( AD ) A .当1a >时,()f x 有三个零点. B .当0a <时,0x =是()f x 的极大值点 C .存在,a b ,使得x b =为曲线()f x 的对称轴 D .存在a ,使得点(1,(1))f 为曲线()y f x =的对称中心解:因为2()666()f x x ax x x a '=−=−,因为1a >,所以()f x 在(,0)−∞和(,)a +∞上递增,在(0,)a 上递减,又因为(0)10f =>,(1)3(1)0f a =−<,所以()f x 有三个零点,所以选项A 正确;因为()6()f x x x a '=−,所以0a <时,()f x 在(,)a −∞和(0,)+∞上递增,在(,0)a 上递减,所以0x =是()f x 的极小值点,所以选项B 错;因为三次函数3y x =是奇函数,没有对称轴,所以平移与伸缩变换后仍没有对称轴,所以选项C 错; 因为是多选,所以正确选项为AD .另,三次函数的对称中心点为二阶导函数的零点,因为()126f x x a '=−,所以()1260f x x a '=−=时, 12x a =,所以112a =时,2a =,所以存在2a =,使得点(1,(1))f 为曲线()y f x =的对称中心. 三、填空题:本题共3小题,每小题5分,满分15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = . 解:因为347a a +=,2535a a +=,所以22525a a a ++=,又因为3427a a a a +=+,所以21a =−,又因为23423a d a a +=+,所以3d =,14a =−,所以1023a =,所以1095S =.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= .解:根据题意tan tan tan()1tan tan αβαβαβ++==−−,又因为α为第一象限角,β为第三象限角,所以22222n m n m πππαβπππ+++++<<,即αβ+第三或第四象限的角,由于tan()0αβ+=−,所以αβ+是第四象限的角,所以sin()αβ+=.14.在下图的44⨯方格表中有4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法;在符合上述要求的选法中,选中方格中的四个数之和的最大值是 .解:行列式法,第一步,先从第一行的4个数中任选一个,不同选法有14C 种,第二步,去掉第一步选的数所在的行和列,再从余下的三行三列数中第一行中任选一个数,不同选法有13C 种,第三步,把第二步中选取的数所在的行和列去掉,从余下的2行2列的第一行中任先一个数,不同选法有12C 种,第四步,去掉第三步选的数所在的行与列后余下一个数,不同选法有11C 种,所以共有1111432124C C C C =种选法.因为每列数的十位数都相同,所以把个位数都看成0,则任意的不同行与列的 四个数的和都为100,所以所有个位数所组成如下的图,不同行列的4个数之 和最大值为5+3+3+1=12,故选中方格中的四个数之和的最大值是112. (即4134231215433321112a a a a +++=+++=).四、解答题:本题共5小题,满分87分.解答应写出必要的文字说明、计算过程、证明过程. 15. (本题满分13分)记ABC △的内角A B C 、、的对边分别为a b c 、、,已知sin 2A A =. (1)求A ;(2)若2a =sin sin 2C c B =,求ABC △的周长.解:(1)因为sin 2A A =,所以1sin 12A A =,所以sin()13A π+=,所以32A ππ+=,所以30A =;(2)由(1)知30A =,因为2a =,所以4sin aA=,sin sin 2C c B =sin c C =,又因为sin sin sin c a bC A B==4sin b B ==,所以cos B =,所以45B =,105c =所以4sin b B ==,4sin1054sin(6045)6c ==+=+,所以2a b c ++= 16. (本题满分 15分)已知函数3()x f x e ax a =−−.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.解:(1)因为1a =,所以()1x f x e x =−−,所以()1x f x e '=−,所以(1)2f e =−,(1)1f e '=−, 所以2(1)(1)y e e x −+=−−,所以(1)1y e x =−−,即曲线()y f x =在点(1,(1))f 处的切线方程是(1)1y e x =−−;(2)因为3()x f x e ax a =−−,所以()x f x e a '=−是单调递增函数,又因为()f x 有极小值,所以 ()0f x '=有解,所以ln (0)x a a =>,所以()f x 的极小值为3(ln )ln f a a a a a =−−,所以3ln 0a a a a −−<,所以21ln 0a a −−<,令2()1ln g a a a =−−,则1()20g a a a'=−−<,所以 函数2()1ln g a a a =−−在(0,)+∞上单调递减,又因为(1)0g =,所以1a >,即a 的取值范围是(1,)+∞.17. (本题满分15分)如图,平面四边形ABCD 中, 8AB =,3CD =,53AD =,90ADC ∠=,30BAD ∠=,点E F 、满足25AE AD =,12AF AB =,将AEF △沿EF 对折至PEF △,使得43PC =.(1)证明: EF PD ⊥(2)求面PCD 与面PBF 所成的二面角的正弦值. 解:(1)因为1725EF AF AE AB AD =−=−,又因为 1212()2525EF AD AB AD AD AB AD AD AD ⋅=−⋅=⋅−⋅12853cos3053533030025=⨯⨯−⨯⨯=−=,所以EF AD ⊥,即,EF ED EF PE ⊥⊥, 所以EF PED ⊥平面,又因为PD PED ⊂平面,所以EF PD ⊥;(2)因为90ADC ∠=,所以CD AD ⊥,又由(1)知EF AD ⊥,所以CD EF ∥,又因为EF PED ⊥平面, 所以CD PED ⊥平面,所以CD PD ⊥,又因为43PC =,3CD =,所以39PD =,又因为23PE =, 33ED =,所以222PE DE PD +=,所以PE ED ⊥,所以PE BCDEF ⊥平面,如图,分别以,,EF ED EP 为,,x y z 轴的正方向建立空间直角坐标系,所以(0,0,23)P ,(3,33,0)C (0,33,0)D ,(2,0,0)F ,(4,23,0)B ,所以(0,33,23),(3,0,0)PD CD =−=−,(2,0,23)PF =−,(4,23,23)PB =−,设平面PCD 的法量为(,,)n x y z =,则3200y z x −=⎧⎨=⎩,令3z =,则2y =,0x =,所以(0,2,3)n =,同理求得平面PBF 的法向量为(3,1,1)m =−, 所以165cos ,65135m n <>==⨯,设面PCD 与面PBF 所成的二面角为θ,则865sin 65θ=.18. (本题满分17分)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中1次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率. (2)假设0p q <<.(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛? (ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛? 解:(1)记A ={甲参加第一阶段比赛至少投中一次},B ={乙参加第二阶段比赛至少投中一次}, C ={甲、乙所在队的比赛成绩不少于5分},则3398()1(1)10.6125P A p =−−=−=, 337()1(1)10.58P B q =−−=−=,所以987686()()()0.68612581000P C P A P B ==⨯==, 所以甲、乙所在队的比赛成绩不少于5分的概率是0.686;(2)(i )记D ={第二阶段比赛成绩为15分},E ={甲、乙所在队的比赛成绩为15分},当甲参加第一阶段比赛时,3()1(1)P A p =−−,3()P D q =,所以33()[1(1)]P E q p =−−甲,同理,当乙参加第一阶段比赛时,33()[1(1)]P E p q =−−乙,因为0p q <<,所以3333323323()()[1(1)][1(1)][33][33]P E P E p q q p p q q q q p p p −=−−−−−=−+−−+乙甲222222222222[33][33]3[]pq p p q p q qp q pq p q pq p p q q pq =−+−−+=−−+3[()()(]3()()0pq p q p q pq p q pq p q p q pq =−+−−=−+−<,所以()()P E P E 乙甲<,所以为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由甲参加第一阶段比赛;(ii )不妨设让甲参加第一阶段的的比赛,则甲进入第二阶段比赛的概率为31p −1-(),设乙进第二阶 段比赛时投中的次数为X ,得分为Y ,则5Y X =,因为(3,)X B q ~,所以()3(1)E X q q =−,()5()15(1)E Y E X q q ==−,所以甲、乙所在队的比赛成绩的数学期望为:3215(1)[1(1]15(1)(33)q q p pq q p p −−−=−−+),同理让乙参加第一阶段的的比赛时,甲、乙所在队的比赛成绩的数学期望为:3215(1)[1(1]15(1)(33)p p q pq q q q −−−=−−+),因为01p q <<<,所以22(33)(33)()(3)0p p q q p q p q −+−−+=−+−>,所以应该让甲参加第一阶段的比赛.19. (本题满分 17分)已知双曲线C :22()x y m m −=>0,点1(5,4)P 在C 上,k 为常数,01k <<,按照如下方式依次构造点n P (2,3,n =⋅⋅⋅);过点1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记nP 的坐标为(,)n n x y . (1) 若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列. (3)设n S 为12n n n P P P ++△的面积,证明:对于任意正整数n ,1n n S S +=.解:(1)因为点1(5,4)P 在C 上,所以25169m =−=,所以双曲线C :229x y −=,又因为过点1P ,斜率为k 的直线方程为4(5)y k x −=−,因为12k =,所以230x y −+=,解方程组229230x y x y ⎧−=⎨−+=⎩化简后得240y y −=,所以4y =或0y =,所以0y =时,3x =−,4y =时,5x =,又因为1Q 在左支上,所以1(3,0)Q −,所以1Q 关于y 轴的对称点为2(3,0)P ,所以223,0x y ==. (2)根据题意知1(,)n n n Q x y −−,所以11n n n ny yk x x −−−=+所以111111n n n nn n n nx x y y k k x x y y −−−−++−+=−+−+ 又因为11,,(2)n n n P P Q n −−≥都在曲线C 上,所以2222119n n n n x y x y −−−=−=,所以1111()()()()9n n n n n n n n x y x y x y x y −−−−−+=−+= 所以111199,n n n n n n n n x y x y x y x y −−−−+=+=−−,所以 111111111111()()9919()()91n n n n n n n n n n n n n n n n n n n n n n n nx y x y x y x y x y x y kx y x y k x y x y x y x y −−−−−−−−−−−−−−+−+−−−+===−−+−−−+−−所以数列{}n n x y −是公比为11kk+−的等比数列. (3)因为11112121221111()()()()221nn n n n n n n n n n n n n n x y S x y x x y y x x y y x y ++++++++++==−−−−−又因为112112(0,1)n n n n n n n n y y y y k x x x x ++++++−−==∈++,所以11212111212111()()()()()()()()22n n n n n n n n n n n n n n n n n S x x k x x x x k x x k x x x x x x x x ++++++++++++=−+−−+=−+−−+ 2221211211221211)2n n n n n n n n n n n n n n n n n k x x x x x x x x x x x x x x k x x x ++++++++++++=+−−−−++=−又由(2)知111111()()()11n n n n k k x y x y k k−−++−=−=−−,且2222119n n n n x y x y −−−=−= 所以1919()1n n n n n k x y x y k −−+==−+,两式相加得111129()()11n n n k k x k k−−−+=++−,所以 11111[9()()]211n n n k k x k k −−−+=++−,1111[9()()]211n n n k k x k k+−+=++−,112111[9()()]211n n n k k x k k +++−+=++− 所以2111122111111111[9()()][9()()][9()()]41111411n n n n n n n n n n k k k k k k S k x x x k k k k k k k−−++++−+−+−+=−=++−++−+−+− 221119()9()18411k k k k k+−=+−−+,所以n S 与无关,只有k 有关,说明n S 是与n 无关的定值, 所以对任意的正整数n ,1n n S S +=.。
专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年甘肃省高中数学人教A 版 必修二第十章 概率同步测试(14)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是( )A. B. C.D. 是对立事件都是不可能事件是互斥事件但不是对立事件不是互斥事件2.某小组有1名男生和2名女生,从中任选2名学生参加围棋比赛,事件“至少有1名男生”与事件“至少有1名女生”( )A. B. C. D. 3. 如图,某系统由A ,B ,C ,D 四个零件组成,若每个零件是否正常工作互不影响,且零件A ,B ,C ,D 正常工作的概率都为, 则该系统正常工作的概率为( )A. B. C. D.甲获胜的概率是 甲不输的概率是 乙输了的概率是 乙不输的概率是4. 甲、乙两人下棋,和棋的概率为 ,乙获胜的概率为 ,则下列说法正确的是( )A. B. C. D. 5. 设随机变量X 的概率分布列为,则a 的值为( )A. B. C. D.买1张一定不中奖买1000张一定中奖买2000张一定中奖买2000张不一定中奖6. 总数为10万张的彩票,中奖率是, 则下列说法中正确的是( )A. B. C. D. 7. 某产品需要通过两类质量检验才能出货.已知该产品第一类检验单独通过率为第二类检验单独通过率为 , 规定:第一类检验不通过则不能进入第二类检验,每类检验未通过可修复后再检验一次,修复后无需从头检验,通过率不变且每类检验最多两次,且各类检验间相互独立.若该产品能出货的概率为 . 则( )A. B. C. D.8. 如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.9. 小明需要从甲城市编号为1-14的14个工厂或乙城市编号为15-32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A ,“小明在乙城市且编号为3的倍数的工厂实习”为事件B ,则P(A+B)=( )A. B. C. D.7.6616.3217.288.6810.如图中,矩形长为6,宽为4,向矩形内随机掷300颗黄豆,数得落在椭圆内的黄豆数204,则一次实验数据为依据估计出椭圆的面积约为( )A. B. C. D. 0.350.300.60.7011. 某运动员每次投篮的命中率为60%,现采用随机模拟的方法估计该运动员3次投篮恰好命中2次的概率,先由计算器产生0到9之间取整数值的随机表,指定1,2,3,4表示命不中,5,6,7,8,9,0表示命中,再以每3个随机数为一组,代表3次投篮的结果,经随机模拟产生了如下10组随机数:907 966 191 925 271 932 812 458 569 683据此估计,该运动员3次投篮恰好命中2次的概率为( )A. B. C. D. 一个射手进行一次射击,命中环数大于8与命中环数小于6统计一个班的数学成绩,平均分不低于90分与平均分不高于90分12. 下列各组事件中,不是互斥事件的是( )A. B.播种100粒菜籽,发芽90粒与发芽80粒检验某种产品,合格率高于70%与合格率低于70%C. D. 13. 甲袋中有3个红球和2个白球,乙袋中有4个红球和1 个白球(除颜色外,球的大小、形状完全相同).先从甲袋中随机取出1球放入乙袋,再从乙袋中随机取出1球.分别以、表示由甲袋取出的球是红球和白球的事件,以表示由乙袋取出的球是红球的事件,则 , .14. 某箱内装有同一种型号产品m+n 个,其中有m 个正品,n 个次品.当随机取两个产品都是正品的概率为时,则m ,n 的最小值的和为15. 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为 .16. 某校高二(4)班有男生28人,女生21人,用分层抽样的方法从全班学生中抽取一个调查小组,调查该校学生对2013年1月1日起执行的新交规的知晓情况,已知某男生被抽中的概率为 ,则抽取的女生人数为 .17. 现有8名奥运会志愿者,其中志愿者通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1) 求被选中的概率;(2) 求 和 不全被选中的概率.18. 如图,点是周长为圆形导轨上的三个等分点,在点处放一颗珠子,规定:珠子只能沿导轨顺时针滚动.现投郑一枚质地均匀的股子,当掷出的点数是3的倍数时,珠子滚动, 当掷出的点数不是3的倍数时,珠子滚动, 反复操作.(1) 求珠子在点停留时恰好滚动一周的概率;(2) 求珠子第一次在点停留时恰好滚动两周的概率.19. 为抗击新冠肺炎,某单位组织中、老年员工分别进行疫苗注射,共分为三针接种,只有三针均接种且每针接种后经检测合格,才能说明疫苗接种成功(每针接种后是否合格相互之间没有影响).根据大数据比对,中年员工甲在每针接种合格的概率分别为;老年员工乙在每针接种合格的概率分别为.(1) 甲、乙两位员工中,谁接种成功的概率更大?(2) 若甲和乙均参加疫苗接种,求两人中至少有一人接种成功的概率.20. 为了纪念伟大的爱国主义诗人屈原,端午节包粽子已是我们的传统习俗.现有甲、乙两个箱子装有大小、外观均相同的粽子,已知甲箱中有5个蛋黄馅的粽子和3个红豆馅的粽子,乙箱中有4个蛋黄馅的粽子和3个红豆馅的粽子.(1) 若从甲箱中任取2个粽子,求这2个粽子都是红豆馅的概率;(2) 若先从甲箱中任取2个粽子放入乙箱中,然后再从乙箱中任取1个粽子,求取出的这个粽子是蛋黄馅的概率.21. 2018年2月22日,在韩国平昌冬奥会短道速滑男子米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过个直道与弯道的交接口 .已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为 .假定运动员只有在摔倒或到达终点时才停止滑行,现在用表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.(1) 求该运动员停止滑行时恰好已顺利通过个交接口的概率;(2) 求的分布列及数学期望 .答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)。
第十章排列、组合和二项式定理综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.满足Cx2-3x14=C2x-614的x的值是( )A.2和3 B.2,3和5C.3和5 D.只有3答案:C解析:由组合数性质,C m n=C n-m n,得x2-3x=2x-6或x2-3x+2x-6=14,解得x=-2或x=3或x=-4或x=5,又x2-3x≥0且2x-6≥0,∴x=3或5.故选C.2.(2009·广西一模)在(1-x)6展开式中,含x3项的系数是( )A.20 B.-20 C.-120 D.120答案:B解析:通项T r+1=C r6(-x)r=(-1)r C r6x r,所以x3项的系数是(-1)3C36=-20.3.(2009·湖南,5)某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( ) A.14 B.16 C.20 D.48答案:B解析:分两类:①含有甲有C12C24种,②不含有甲有C34种,共有C12C24+C34=16(种),选B.4.(2009·湖北,4)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( ) A.120种 B.96种C.60种 D.48种答案:C解析:按分步计数原理求解.先从5人中选出4人参加活动有C45种方法,要依次安排三天派出的人员,分别有C14,C23,C11种方法,所以共有C45×C14×C23=5×4×3=60种方法,故选C.5.(2009·四川,11)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A.60 B.48 C.42 D.36答案:B解析:依题意,先排3位女生,有A33种.再把男生甲插到3位女生中间有A12种.把相邻的两位女生捆绑,剩下一个男生插空,有C14种,所以不同排法种数为A33·A12·C14=48,故选B.6.(2009·陕西,9)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为( )A.432 B.288 C.216 D.108答案:C解析:第一步先从4个奇数中取2个再从3个偶数中取2个共C 24C 23=18种,第二步再把4个数排列,其中是奇数的共A 12A 33=12种,故所求奇数的个数共有18×12=216种.故选C.7.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为 ( )A .-4 B.52 C .4 D.72答案:C解析:∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为:4a -1=15,∴a =4.故选C.8.若(x +1x)n展开式的二项式系数之和为64,则展开式的常数项为 ( )A .10B .20C .30D .120 答案:B解析:∵C 0n +C 1n +…+C n n =2n=64,∴n =6.T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3,常数项:T 4=C 36=20,故选B. 9.(2009·江西,7)(1+ax +by )n展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为 ( )A .a =2,b =-1,n =5B .a =-2,b =-1,n =6C .a =-1,b =2,n =6D .a =1,b =2,n =5 答案:D解析:不含x 的项的系数的绝对值为(1+|b |)n =243=35,不含y 的项的系数的绝对值为(1+|a |)n =32=25,∴n =5,⎩⎪⎨⎪⎧1+|b |=3,1+|a |=2,故选D.10.(2010·重庆模拟)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A .8种B .12种C .16种D .20种 答案:B解析:联想一空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即C 16·C 12;也可从反面入手剔除8个角上3个相邻平面,即C 36-C 18=12种.11.(2009·西安地区八校联考)某班一天上午有4节课,每节都需要安排一名教师去上课,现从A 、B 、C 、D 、E 、F 6名教师中安排4人分别上一节课,第一节课只能从A 、B 两人中安排一人,第四节课只能从A 、C 两人中安排一人,则不同的安排方案共有 ( )A .24种B .36种C .48种D .72种 答案:B解析:若A 上第一节课,则第四节课只能由C 上,其余两节课由其他人上,有A 24种安排方法;若B 上第一节课,则第四节课有2种安排方法,其余两节课由其他人上,有2×A 24种安排方法.所以不同安排方法的种数为A 24+2×A 24=36.12.(2010·江苏丹阳模拟)若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为 ( )A .3B .6C .9D .12 答案:B解析:解法一:等式右边为二项式结构,因此将左边x 3转化为二项式形式: x 3=[(x -2)+2]3=C 03(x -2)3·20+C 13(x -2)2·21+C 23(x -2)1·22+C 33(x -2)0·23,∴a 2=C 13·21=6.解法二:显然a 3=1,等式右边x 2的系数为a 2+a 3·C 13(-2),而等式左边x 2的系数为0,∴a 2=6.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年甘肃省高中数学人教A 版 必修二第十章 概率同步测试(13)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)甲48枚,乙48枚甲64枚,乙32枚甲72枚,乙24枚甲80枚,乙16枚 1. 概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是A. B. C. D. 一颗是3点,一颗是1点两颗都是2点两颗都是4点一颗是3点,一颗是1点或两颗都是2点2. 掷两颗骰子,所得点数之和为 , 那么=4表示的随机试验结果是( )A. B. C. D. 互斥但不对立相互对立相互独立独立且互斥3. 将一枚质地均匀的骰子连续投掷两次,设“第一次出现奇数点”,“第二次出现偶数点”,则与( )A. B. C. D. 4. 某道路的A ,B ,C ,3处设有交通灯,这3盏灯在一分钟内开放绿灯的时间分别为25s ,35s ,45s ,某辆车在这条路上行驶时,3处都不停车的概率是( )A. B. C. D.5. 甲、乙两人独立解答一道趣味题,已知他们答对的概率分别为 , ,则恰有一人答对的概率为( )A. B. C. D.6. 某校对高三男生进行体能抽测,每人测试三个项日,1000米为必测项目,再从“引体向上,仰卧起坐,立定跳远”中随机抽取两项进行测试,则某班参加测试的5位男生测试项目恰好相同的概率为( )A. B. C. D.1个2个3个5个7. 设A 与B 是相互独立事件,下列命题中正确的有( )①A 与B 对立;②A 与独立;③A 与B 互斥;④与B 独立;⑤与对立;⑥P (A+B )=P (A )+P (B );⑦P (A•B )=P (A )•P (B )A. B. C. D. 互斥事件不相互独立事件对立事件相互独立事件8. 一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A. B. C. D. 0.090.200.250.459. 对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A. B. C. D. 10. 某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为 ),设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )A. B. C. D.11. 如图,已知电路中4个开关闭合的概率都是 ,且是相互独立的,则灯亮的概率为( )A. B. C. D.0.550.60.70.7512. 10支步枪中有6支已经校准过,4支未校准,一名射击运动员用校准过的枪射击时,中靶的概率为, 用未校准的枪射击时,中靶的概率为, 现从10支中任取一支射击,则中靶的概率为( )A. B. C. D. 阅卷人得分二、填空题(共4题,共20分)13. 甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是,则三人都成功破译的概率是;密码被两人成功破译的概率为.14. 思考辨析,判断正误连续抛掷2次硬币,该试验的样本空间Ω={正正,反反,正反}.15. 一电器商城出售的某种家电产品来自甲、乙、丙三家工厂,这三家工厂的产品比例为,且它们的产品合格率分别为96%,95%,98%,现从该商城的这种家电产品中随机抽取一件,则取到的产品是合格品的概率为 .16. 甲、乙两人各进行一次射击,假设两人击中目标的概率分别是0.6和0.7,且射击结果相互独立,则甲、乙至多一人击中目标的概率为.17. 盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1) 某人从这盒子中有放回地随机抽取2个球,求至少抽到个红球的概率;(2) 某人从这盒子中不放回地随机抽取个球,每抽到个红球得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列.18. 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(1) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行.求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率.(2) 若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.19. 某中学经市政府批准建分校,建分校工程分三期完成,确定由甲、乙两家建筑公司承建此工程.规定每期工程仅由两公司之一独立承建,必须在前一期工程完工后再开始后一期工程.已知甲公司获得第一期、第二期、第三期工程承包权的概率分别为,,.(Ⅰ)求甲公司至少获得一期工程的概率;(Ⅱ)求甲公司获得工程期数比乙公司获得工程期数多的概率.20. 某商场有甲、乙两种电子产品可供顾客选购.记事件A为“只买甲产品”,事件B为“至少买一种产品”,事件C为“至多买一种产品”,事件D为“不买甲产品”,事件E为“一种产品也不买”.判断下列事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1) A与C;(2) B与E;(3) B与D;(4) B与C;(5) C与E.21. 甲、乙两人进行投篮比赛,约定赛制如下:选定投篮位置,并在同一位置连续投篮三次,站在3分线外每次投中得3分,站在3分线内每次投中得2分,总得分高者胜出.假设乙同学在3分线内投篮,每次投中概率为0.7,在3分线外投篮,每次投中概率为0.4.用表示乙投中,表示乙未投中,假设每次能否投中是独立的.(1) 观察乙的投篮情况,根据树状图填写样本点,并写出样本空间;(2) 已知甲三次总得分为4分,若乙想赢得比赛,你建议他位置选在3分线内还是3分线外,为什么?答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.20.(1)(2)(3)(4)(5)21.(1)(2)。
第十章排列、组合、二项式定理一排列、组合【考点阐述】分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.【考试要求】(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义。
掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.【考题分类】(一)选择题(共13题)1.(北京卷理4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)8289A A(B)8289A C(C)8287A A(D)8287A C【答案】A.解析:基本的插空法解决的排列组合问题,将所有学生先排列,有88A种排法,然后将两位老师插入9个空中,共有29A种排法,因此一共有8289A A种排法。
2.(广东卷理8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同。
记这5个彩灯有序地各闪亮一次为一个闪烁。
在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5妙。
如果要实现所有不同的闪烁,那么需要的时间至少是A、 1205秒 B.1200秒 C.1195秒 D.1190秒【答案】C.【解析】每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)=595s.总共就有600+595=1195s.3.(湖北卷理8)现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.54【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318C A⨯=;若有1人从事司机工作,则方案有123343108C C A⨯⨯=种,所以共有18+108=126种,故B正确.4.(湖北卷文6)现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45 B. 56 C. 5654322⨯⨯⨯⨯⨯D.6543⨯⨯⨯⨯25.(湖南卷理7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.15【答案】B【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有24C6=(个)6.(全国Ⅰ卷理6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种【答案】A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有1234C C种不同的选法;(2)A类选修课选2门,B类选修课选1门,有2134C C种不同的选法.所以不同的选法共有1234C C+2134181230C C=+=种.7.(全国Ⅱ卷理6文9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.8.(山东卷理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种【解析】分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B 。
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编10:排列、组合及二项式定理一、选择题1 .(【解析】贵州省四校2013届高三上学期期末联考数学(理)试题)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为( ) A .24种 B .30种 C .36种 D .81种【答案】B 【解析】甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生则,从4人中先选2人一个班,然后在分班,有234336C A =种。
若甲乙两人分在一个班则有336A =种,所以甲、乙两名学生不能分到同一个班,则不同的分法的种数为36630-=种,选 B .2 .(云南省玉溪一中2013届高三第五次月考理科数学)从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A .24 B .18 C .12 D .6【答案】B 【解析】若选0,0只能放在十位上,此时从1,3,5中选2个奇数的排成三位奇数有236A =种。
若选2,从1,3,5中选1个奇数排在个位,然后从剩下俩个奇数选一个和2进行全排列放在十位和百位,共有2232=12A ⨯⨯种,所以共有18种排法,选B .3 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有( ) A .474种 B .77种 C .462种 D .79种【答案】A 【解析】首先求得不受限制时,从9节课中任意安排3节,有39504A =种排法,其中上午连排3节的有33318A =种,下午连排3节的有33212A =种,则这位教师一天的课表的所有排法有504-18-12=474种,故选A .4 .(甘肃省兰州一中2013届高三上学期12月月考数学(理)试题)51()(2)a x x x x +-展开式中各项系数的和为2,则该展开式中的常数项为( )A .40-B .20-C .20D .40【答案】D 【解析】令1x =,得12a +=,所以1a =,所以55111()(2)()(2)a x x x x x x x x +-=+-,51(2)x x -的展开通项为:()()5552551212rr rrr rr C x C x x ---⎛⎫-=- ⎪⎝⎭,由521,2,52-1,3,r r r r -==-==得由得所以51(2)x x -展开式中x 项的系数为80,51(2)x x -展开式中1x -项的系数为-40,所以511()(2)x x x x +-的展开式中常数项为80-40=40。
第十章排列、组合、二项式定理(甘肃省往年高考真题)
[考试要求]
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
(2)理解排列的意义。
掌握排列数计算公式,并能用它解决一些简单的应用问题.
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
一.选择题(共10题)
1.【2004年理9文9】从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位
班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )
A.210种B.420种C.630种D.840种
2.【2006年文12】5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( ) (A)150种(B)180种(C)200种(D)280种
3.【2007年理10】从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,
要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )
(A)40种(B) 60种(C) 100种(D) 120种
4.【2007年文10】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名
方法共有()
A.10种B.20种C.25种D.32种
5.【2009年理10】甲、乙两人从4门课程中各选修2门。
则甲、乙所选的课程中至少有1门不相同的选
法共有()
A. 6种
B. 12种
C. 30种
D. 36种
6.【2009年文10】甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有
(A)6种(B)12种(C)24种(D)30种
7.【2010年理6文9】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有
(A)12种(B) 18种(C) 36种(D) 54种
8.【2005年理3文3】在8)1
x的展开式中5x的系数是()
-x
1
)(
(+
A.-14 B.14 C.-28 D.28
9.【2008年理7】64
-+的展开式中x的系数是()
(1)(1)
x x
A.4-B.3-C.3 D.4
10.【2008年文9】4
4)
-的展开式中x的系数是()
x+
1(
1(x
)
A.4-B.3-C.3 D.4
二.填空题(共8题)
1.【2008年文14】从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答
2.【2004年理13文13】8)1
(x
x -展开式中5x 的系数为
3.【2006年理13文13】在
4101()x x +的展开式中常数项是_____。
(用数字作答)
4.【2007年理13】(1+2x 2
)(x -1x
)8的展开式中常数项为 。
(用数字作答) (1+2x 2)(x -1x )8的展开式中常数项为4338812(1)C C ⋅+⋅⋅-=-42。
5.【2007年文16】8
21(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答) 解.8
21(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为281257C +⋅=.
6.【2009年理13文14】4)(x y y x -的展开式中33y x 的系数为
7.【2010年理14】若9()a
x x -的展开式中3x 的系数是84-,则a = .
8.【2010年文14】 (x+
1x
)9的展开式中,x 3的系数是_________。