高中数学基础练习:解三角形
- 格式:doc
- 大小:778.50 KB
- 文档页数:9
高中数学 三角函数——解直角三角形一、单选题1.在 ΔABC 中, ∠A =60∘,AB =2 且 ΔABC 的面积为 √32,则 AC 的长为( )A .√32B .1C .√3D .22.已知灯塔A 在海洋观察站C 的北偏东50°的方向上,灯塔B 在海洋观察站C 的南偏东70°的方向上,A ,C 两点间的距离为5海里,A ,B 两点间的距离为7海里,则B ,C 两点间的距离为( )海里. A .3B .4C .6D .83.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2−b 2=√3bc ,sinC =2√3sinB ,则A=( ). A .30∘B .60∘C .120∘D .150∘4.在 △ABC 中, a =3 , b =2 , A =60° ,那么 sinB 的值为( )A .√33B .−√23C .√23D .−√335.已知两灯塔A 和B 与海洋观测站C 的距离都等于2km ,灯塔A 在观测站C 的北偏东25°,灯塔B在观测站C 的南偏东35°,则灯塔A 与之间B 的距离为( ) A .2kmB .2√2kmC .2√3kmD .4km6.在直四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是边长为1的正方形, AA 1=2 , M 、 N分别是 A 1B 1 、 A 1D 1 中点,则 BM 与 AN 所成的角的余弦值为( ) A .1517B .1617C .513D .12137.在△ABC 中,若∠A =600,∠B =450,BC =3√2, , 则AC= ( )A .4√3B .2√3C .√3D .√328.在△ABC 中,△A=120°,AB →•AC →=﹣2,则|BC →|的最小值是 ( )A .2B .4C .2√3D .129.△ ABC 中,“△ ABC 是钝角三角形”是“ |AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |<|BC ⃗⃗⃗⃗⃗ | ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.如图, E 、 F 分别是三棱锥 P −ABC 的棱 AP 、 BC 的中点, PC =10 , AB =6 ,EF =7 ,则异面直线 AB 与 PC 所成的角为( )A .30°B .60°C .0°D .120°11.在 △ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若 (a 2−b 2+c 2)tanB =√3a ,则角 B 的值为( )A .π6B .π3C .π6 或 5π6D .π3 或 2π312.在 ΔABC 中, a,b,c 分别为角 A,B,C 的对边,若 A =2π3,a =2√10 ,且 ΔABC 的面积 S =a 2+b 2−c 212,则 c = ( ) A .2√3 B .4√3C .2√33D .4√3313.ΔABC 中, ∠ABC =60∘ , AB =4 ,若满足条件的 ΔABC 有两个,则边 AC 的取值范围为( ) A .[2√3,4)B .[2,4)C .(2√3,4)D .(2,4)14.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最大面的面积为( )A .2√2B .4√2C .4D .2√515.已知 F 1,F 2 是椭圆 C 1 和双曲线 C 2 的公共焦点,P 是它们的一个公共交点,且 ∠F 1PF 2=2π3,若椭圆 C 1 离心率记为 e 1 ,双曲线 C 2 离心率记为 e 2 ,则 27e 12+e 22的最小值为( ) A .25B .100C .9D .3616.若 O 是 △ABC 垂心, ∠A =π6且 sinBcosCAB ⃗⃗⃗⃗⃗ +sinCcosBAC ⃗⃗⃗⃗⃗ =2msinBsinCAO ⃗⃗⃗⃗⃗ ,则 m = ( )A .12B .√32C .√33D .√3617.在 △ABC 中,D 为三角形所在平面内一点,且 AD →=13AB →+12AC → ,则 S△BCD S △ACD = ( )A .16B .12C .13D .23二、填空题18.在四边形 ABCD 中, AB =1 , BC =√2 , ∠ABC =3π4, ∠ADC =π4 , AB ⊥AD , CB ⊥CD ,则对角线 BD 的长为 .19.已知 ΔABC 中, a , b , c 分别为角 A , B , C 的对边且 a =2 , b =2√3 , A =30ο ,则 B = .20.在 △ABC 中,若 C =60° , AC =√6 , AB =3 ,则角 A = .21.在 △ABC 中,三个内角 A 、 B 、 C 的对边分别是 a 、 b 、 c ,若 a =2 , b =3 ,c =4 ,则 cosA = .22.在△ABC 中,已知AC =2,BC =3,B = π6,那么sinA = .23.一艘海轮从A 地出发,沿固定航道匀速行驶,先沿北偏东75°方向航行√6小时后到达海岛B ,然后从海岛B 出发沿北偏东15°方向航行一段时间到达海岛C ,之后从海岛C 出发沿南偏西60°方向航行回到A 地,则从海岛C 回到A 地所需时间是 小时.24.在 △ABC 中, sinA:sinB:sinC =2:5:6 ,则 cosC 的值为 .25.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sinC =2sinA ,b 2﹣a 2=12ac ,则sinB 等于 .26.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,A=75°,B=45°,c=3 √2 ,则b= .27.在△ABC 中,已知a=3,b=4,sinB= 23 ,则sinA= .28.四边形 ABCD 中, ∠A =5π6 , ∠B =∠C =5π12, ∠D =π3 , BC =2 ,则 AC 的最小值是 .29.在 ΔABC 中,角 A , B , C 所对的边分别为 a , b , c , ΔABC 的面积为 S ,若bcosA +acosB =2√3b ,且 a 2sinA =b 2sinA +2√3S ,则 A = .30.在 △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足 a 2−(b −c)2=S ,b +c =2,则S 的最大值是31.在 ΔABC 中, A =3π4,AB =6,AC =3√2 ,点 D 在 BC 边上, AD =BD ,则 AD = .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =π6,a=2,△O 为△ABC 的外接圆,OP⃗⃗⃗⃗⃗⃗ =mOB ⃗⃗⃗⃗⃗⃗ +nOC ⃗⃗⃗⃗⃗ . (1)若m=n=1,则|OP⃗⃗⃗⃗⃗ |= . (2)若m ,n ∈[0,1],则点P 的轨迹所对应图形的面积为 .33.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,6cosB =b(1−3cosA),则△ABC 的面积的最大值为 .34.平面向量a ⃗ ,b ⃗ ,c ⃗ 满足|a |=|a −b ⃗ |=|c |=1,b 2⃗⃗⃗⃗ +a ⃗ ⋅c ⃗ +√22|b ⃗ −c ⃗ |=b ⃗ ⋅(a ⃗ +c ⃗ ),a ⃗⃗ ⋅b ⃗⃗+|b ⃗⃗|b ⃗⃗ ⋅c⃗ =|a⃗ +1|b ⃗⃗ |b ⃗ |,则(b ⃗ −c ⃗ )2= . 三、解答题35.平面直角坐标系 xOy 中,曲线 C 的参数方程为 {x =√3+2cosαy =1+2sinα ( α 为参数),在以坐标原点 O 为极点, x 轴非负半轴为极轴的极坐标系中,点 P 在射线 l :θ=π3 上,且点 P 到极点 O的距离为 4 .(1)求曲线 C 的普通方程与点 P 的直角坐标; (2)求 △OCP 的面积.36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知c =2b ,a =3,D 是边BC 上一点.(1)求bcosC +2bcosB 的值;(2)若AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ . ①求证:AD 平分∠BAC ;②求△ABC 面积的最大值及此时AD 的长.37.如图,在 △ABC 中, ∠ABC =π2 , ∠ACB =π3, BC =2 ,P 是 △ABC 内一点,且∠BPC=π2.(1)若∠ABP=π6,求线段AP的长度;(2)若∠APB=2π3,设∠PBA=α,求sinα.38.如图,某游乐园的平面图呈圆心角为120°的扇形AOB,其两个出入口设置在点B及点C处,且园内有一条平行于AO的小路CD.已知某人从C沿CD走到D用了8分钟,从D沿DB走到B用了6分钟.若此人步行的速度为每分钟50米.(1)求△CDB的面积;(2)求该扇形的半径OA的长.39.在△ABC中,AC>AB,cosA=3132,AB=8.(1)若S△ABC=15√74,求BC;(2)若 cos(B −C)=18 ,求 S ΔABC .40.在四边形 ABCD 中, ∠BAD =2π3,∠BCD =π3,cosD =−17,AD =DC =2 .(1)求 cos∠DAC 及 AC 的长; (2)求 BC 的长.41.已知 △ABC 三边 a , b , c , c 2+b 2−a 2=√3bc , acosB =bsinA .证明:三角形的三个角满足, A 3+B 3+C 3≥11π336.42.如图,银川市拟在长为 8km 的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数 y =Asinωx(A >0,ω>0)x ∈[0,4] 的图象,且图象的最高点为S(3,2√3) ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 ∠MNP =120° .(1)求 A 、ω 的值和 M 、P 两点间的距离; (2)应如何设计,才能使折线段赛道最长?43.已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且a△b△c =7△5△3.(1)求cos A 的值;(2)若△ABC 的面积为45 √3 ,求△ABC 外接圆半径R 的大小.44.如图,直三棱柱 ABC −A 1B 1C 1 中, CC 1=4 , AB =2 , AC =2√2 , ∠BAC =450 ,点M 是棱 AA 1 上不同于 A,A 1 的动点.(1)证明:BC⊥B1M;(2)若M是AA1的中点,求四面体MB1BC的体积.45.在锐角ΔABC中,角A,B,C所对的边分别为a,b,c,已知a=√7,b=3,√7sinB+ sinA=2√3.(1)求角A的大小;(2)求ΔABC的面积.46.在ΔABC中,角A,B,C对应的边分别是a,b,c,已知cosA+2a=2cosB−cosCc.(△)求角A的大小;(△)若AD,AE分别为BC边上的高和中线,a=4√3,b+c=2√14,求|AD⇀||AE⇀|的值.47.△ABC的内角A,B,C所对的边分别为a,b,c.向量π⃗=(a,√3b)与n⃗=(cosA,sinB)平行.(△)求A;(△)若a= √7,b=2,求△ABC的面积.48.在①a=5,②cosC=17这两个条件中任选一个,补充到下面的横线中,并求解.在△ABC中,角A,B,C所对的边分别是a,b,c,且√3acosB=bsinA,b=7,若____.(注:只需选一个作答,如果选择两个条件分别解答,按第一个解答给分)求:(1)c的值;(2)△ABC的面积.49.如图,直三棱柱的底面是等腰直角三角形,AB=AC=1,∠BAC=π2,高等于3,点M1,M2,N1,N2为所在线段的三等分点.(1)求此三棱柱的体积和三棱锥A1−AM1N2的体积;(2)求异面直线A1N2,AM1所成的角的大小.50.在△ABC中,角A,B,C的对应边分别为a,b,c,已知bcosC+ccosB=1.(1)求a的值;(2)若1≤c≤b≤√3,求A的最小值.答案解析部分1.【答案】B【知识点】三角形中的几何计算【解析】【解答】∵∠A=60∘,AB=2且ΔABC的面积为√32. ∴SΔABC=12AB·AC·sin∠A=12×2×AC×sin60∘=√32AC=√32.∴AC=1故答案为:B【分析】由三角形面积公式S=12bcsinA求解即可.2.【答案】D【知识点】余弦定理的应用【解析】【解答】由题意得∠ACB=180°−50°−70°=60°,AC=5,AB=7,由余弦定理得cos∠ACB=AC 2+BC2−AB2 2AC⋅BC,所以12=25+BC2−4910BC,解得BC=8或BC=−3(舍去)。
高中数学解三角形一.选择题(共8小题) 1.在A B C ∆中,已知2A C=,4B C=,1c o s 4C=,则A B C ∆的面积为()A .4B .1CD .2.A B C ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若22212a b c++=,23Aπ=,则A B C∆面积的最大值为( )A 5B 5C 5D 3.已知a ,b ,c 分别为A B C ∆三个内角A ,B ,C 的对边,且c o s c o s a C b A b+=,则A B C∆是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形4.在A B C ∆中,已知60B=︒,A C=,1A B=,则(B C=)A .1B C .2D .45.在A B C ∆中,2sin sin sin A B C=,若3Aπ∠=,则B ∠的大小是( )A .6πB .4πC .3πD .23π6.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若2c o s 2o sa Cbc A+=,c=,则(A∠= )A .6πB .4πC .3πD .23π7.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3sin c a C=,4Bπ=,A B C∆外接圆的半径为6,则(c=)A .6+B .6+C .8+D .8+8.在A B C ∆中,2a=,3b=,c o s 4B=(A∠= )A .6πB .3πC .56πD .6π或56π二.解答题(共10小题)9.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2222s in s in s in b c aB Ab cC+--=.(1)求角C 的值; (2)若边2c =,求A B C ∆面积的最大值.10.已知A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且s in ()33c A π=+.(Ⅰ)求角B 的大小; (Ⅱ)若4a c +=,求A B C ∆周长的取值范围.11.在锐角A B C∆中,角A,B,C的对边分别为a,b,c且222c o s c o s sin sin C A A B B-=-.(1)求C 的大小; (2)若1c =,求22ba-的取值范围.12.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2c o s 2a C b c=-.(1)求角A 的大小;(2)若A B C ∆45a=,求A B C ∆的周长.13.在A B C∆中,a,b,c分别为内角A,B,C的对边,若222s i ns i n(s i n s i ns i n)2A B C A BC =+-. (1)求C ;(2)若c =,求A B C ∆周长的取值范围.14.已知A B C ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A B C ∆4(1)求C ∠; (2)若2Aπ∠=,C ∠的角平分线C E 与边A B 相交于点E ,延长C E 至点D ,使得C ED E=,求c o s A D B ∠.15.已知A B C ∆的内角A ,B ,C 的对边分别a ,b ,c ,且s in s in2B C a C +=.(1)求角A 的大小; (2)若点D 在边B C 上,且33C D B D ==,6B A Dπ∠=,求A B C ∆的面积.16.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c s in c o s A a B a=+.(1)求角B 的值;(2)若8c =,A B C ∆的面积为2,求B C 边上中线A D 的长.17.在锐角A B C ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且c o s ()32a cb C π+-=.(1)求角B 的大小;(2)若b =A B C ∆的周长的取值范围.18.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且222s in 2abcAb c+-=.(1)求C ;(2)若sinA B=,2c=,求A B C ∆的面积.参考答案与试题解析一.选择题(共8小题) 1.在A B C ∆中,已知2A C=,4B C=,1c o s 4C=,则A B C ∆的面积为()A 4B .1CD .【分析】先由同角三角函数的关系式求得s in C 的值,再利用1s in 2S A C B C C=⋅,得解.【解答】解:因为1c o s 4C =,(0,)Cπ∈,所以s in 4C==,所以A B C ∆的面积11s in 24224S A C B C C =⋅=⨯⨯⨯=故选:C .【点评】本题考查解三角形,熟练掌握正弦面积公式是解题的关键,考查运算求解能力,属于基础题.2.A B C ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若22212a b c++=,23Aπ=,则A B C∆面积的最大值为( )A 5B 5C 5D 【分析】由已知利用余弦定理,基本不等式可求b c 的最大值,进而根据三角形的面积公式即可求解. 【解答】解:因为22212a b c++=,23Aπ=,所以由余弦定理可得222222co s a b c b c A b c b c=+-=++,所以222212b cb c b c --=++, 整理可得221222b cb cb c-+=…,可得125b c …,当且仅当bc=时等号成立,则A B C ∆面积1112s in 22525A B C S b c A ∆=⨯⨯=…当且仅当b c=时等号成立,即A B C ∆面5.故选:B .【点评】本题主要考查了余弦定理,基本不等式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.3.已知a ,b ,c 分别为A B C ∆三个内角A ,B ,C 的对边,且c o s c o s a Cb A b+=,则A B C∆是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【分析】由已知结合正弦定理及和差角,诱导公式进行化简即可求解. 【解答】解:由c o s c o s a C b A b+=及正弦定理得,sin co s sin co s sin sin ()sin co s sin co s A C B A B A C A C C A+==+=+,所以s in c o s s in c o s B A C A =, 所以s in s in B C=或c o sA =,所以BC=或90A=︒,故A B C ∆是等腰三角形或直角三角形. 故选:D .【点评】本题主要考查了正弦定理,和差角公式及诱导公式在三角形判断中的应用,属于基础题.4.在A B C ∆中,已知60B=︒,A C=,1A B=,则(B C=)A .1B C .2D .4【分析】根据余弦定理和题设中的条件即可求解B C 的值.【解答】解:因为60B =︒,A C=,1A B=,所以由余弦定理2222co s A C A B B CA B B C B=+-⋅⋅,可得:22121c o s 60B CB C =+-⨯⨯⨯︒,整理可得220B C B C --=,解得2B C =或1-(舍去).故选:C .【点评】本题主要考查了余弦定理在解三角形中的应用.属基础题. 5.在A B C ∆中,2sin sin sin A B C=,若3Aπ∠=,则B ∠的大小是( )A .6πB .4πC .3πD .23π【分析】利用三角形的内角和定理及诱导公式得到co s co s()A B C =-+,再利用两角和与差的余弦函数公式化简,把A的度数代入已知等式求出s in s in B C的值,代入计算求出c o s c o s B C的值,再利用两角和与差的余弦函数公式求出co s()B C -的值,进而得到B C∠=∠,即可求出B ∠的度数.【解答】解:在A B C ∆中,2s in s in s in 3A B C A π=∠=,231c o s c o s ()c o s c o s s in s in c o s c o s s in c o s c o s 42A B C B C B C B C A B C ∴=-+=-+=-+=-+=,1c o s c o s 4B C ∴=, 3s in s in 4B C =,co s()co s co s sin sin 1B C B C B C ∴-=+=,即0B C ∠-∠=,3B C π∴∠=∠=,故选:C .【点评】此题考查了正弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.6.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若2c o s 2o sa Cbc A+=,c=,则(A∠= )A .6πB .4πC .3πD .23π【分析】利用正弦定理边化角,结合和差公式与同角三角函数的基本关系式化简计算题中的等式,得到1s in 2A =±,由此能求出结果.【解答】解:3c a =,∴由正弦定理得sin CA=,22sin 3sinC A∴=,222co s 1sin 13sin CC A∴=-=-,由2c o s 2c o s a Cb c A+=,得2s inc o s s in 2s in c o s A C B C A+=,2s in A co s sin ()2sin co s C A C C A++=,3s in c o s s in c o s A C C A=,22229sin(13sin)3sin (1sin)A A A A -=-,由s inA ≠,得1s in 2A =±,0A π<<,6A π∴=.故选:A .【点评】本题考查角的求法,考查正弦定理、三角函数性质等基础知识,考查运算求解能力,是中档题.7.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3sin c a C=,4Bπ=,A B C∆外接圆的半径为6,则(c=)A.6+B.6+C.8+D.8+【分析】直接利用正弦定理和三角函数的关系式的变换求出结果. 【解答】解:由于3s in ca C=,利用正弦定理:s in 3s in s in C A C=,故1s in3A =,由于,A B C ∆外接圆的半径为6, 所以2s in 4aR A ==,2sin b R B ==由于ba>,A 为锐角,所以c o s 3A =,144s in s in ()32326CA B +=+=⨯+=;故42s in 1286cR C +==⨯=+故选:D .【点评】本题考查的知识要点:正弦定理和三角函数的关系式的变换,主要考查学生的运算能力和数学思维能力,属于基础题. 8.在A B C ∆中,2a=,3b=,c o s 4B=,则(A∠= )A .6πB .3πC .56πD .6π或56π【分析】由已知利用同角三角函数基本关系式可求s in B的值,利用正弦定理可求s in A的值,结合大边对大角可求A 为锐角,进而可求A 的值. 【解答】解:因为2a =,3b=,c o s 4B=所以3s in4B ==,因为由正弦定理可得s in s in a b AB=,所以32s in 14s in 32a BA b⨯⋅===,又ba>,可得A 为锐角,所以6Aπ=.故选:A .【点评】本题主要考查了同角三角函数基本关系式,正弦定理,大边对大角在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题. 二.解答题(共10小题)9.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2222s in s in s in bcaB Ab cC+--=.(1)求角C 的值; (2)若边2c=,求A B C ∆面积的最大值.【分析】(1)由已知结合余弦定理可求c o s C ,进而可求C ;(2)由余弦定理及基本不等式可求a b 的范围,然后结合三角形面积公式可求. 【解答】解:(1)由条件和正弦定理可得2222bcab ab +-=-,整理得222b aca b+-=从而由余弦定理得1c o s 2C =.又C 是三角形的内角,∴3C π=.(2)由余弦定理得222222co s c ab a b C ab a b=+-=+-,2c =,2242aba b a b a b a b∴=+--=…,当且仅当2ab ==时取等号,4a b ∴…,故1s in 24A B CS a b C b ∆==…【点评】本题主要考查了余弦定理,三角形面积公式及基本不等式在求解三角形中的应用,属于中档题.10.已知A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且s in ()33c A π=+.(Ⅰ)求角B 的大小; (Ⅱ)若4ac +=,求A B C ∆周长的取值范围.【分析】(Ⅰ)直接利用正弦定理,结合三角函数恒等变换即可求解结论, (Ⅱ)结合余弦定理求得b 的范围,进而求解结论.【解答】解:(Ⅰ)A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,s in ()33c A π=+,由正弦定理可得:s in in s in ()33CB A π=+,1s in ()in (s in o s )322A B B A A ∴+=⨯+,可得:s in c o s c o s s in in s in s in c o s 3A B A B A B B A+=+,故有:s in c o s in s in 3A B A B=,有s in 0A >可得:ta nB =,故3Bπ=,(Ⅱ)2222222()2c o s ()3()3()424a c a c baca c B a c a c a c ++=+-=+-+-⨯==…,当且仅当2a c ==时等号成立, 可得2b …,A B C∴∆周长的取值范围是:(4,6].【点评】本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用以及正弦函数的性质在解三角形中的综合应用,考查了转化思想和函数思想,属于中档题. 11.在锐角A B C∆中,角A,B,C的对边分别为a,b,c且222c o s c o s sin sin C A A B B-=-.(1)求C 的大小; (2)若1c=,求22ba-的取值范围.【分析】(1)由已知结合同角平方关系及正弦定理进行化简,然后结合余弦定理可求c o s C ,进而可求C ;(2)由正弦定理表示a ,b ,代入到所求式子后,结合和差角公式,二倍角公式及辅助角公式进行化简,再由正弦函数性质可求.【解答】解:(1)因为222c o s c o s sin sinC A A B B-=-,所以2221sin 1sinsin sinCA AB B--+=-,由正弦定理得,222a bcb+-=,故222c o s 22abcCa b+-==,由C 为三角形内角得6C π=;(2)由正弦定理得22s in cRC==,因为025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以32A ππ<<,所以572666A πππ<+<,所以11s in (2)262A π-<+<, 所以2s in a A=,2s in bB=,所以1c4(22BAba B A A B A A A A A ππ---=-=-=-=--=+=+∈-,1).【点评】本题主要考查了正弦定理,余弦定理,和差角公式,二倍角公式,辅助角公式在求解三角形中的应用,属于中档题.12.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2c o s 2a C b c=-.(1)求角A 的大小; (2)若A B C ∆45a=,求A B C ∆的周长.【分析】(1)由正弦定理,两角和的正弦公式化简已知等式可得c o sA的值,结合范围0A π<<,可求A 的值.(2)由已知利用三角形的面积公式可求25b c=,根据余弦定理可求bc+的值,即可得解A B C∆的周长.【解答】解:(1)因为2c o s 2a C b c=-,则由正弦定理得2sin co s 2sin ()sin A C A C C=+-,即2s in c o s s in 0CA C -=,因为s in 0C ≠, 所以1c o s 2A =, 因为0A π<<,则3Aπ=.(2)因为1s in 24A B C S b c A ∆==,所以25b c=,因为22222251c o s 22252bc a bcA b c+-+-===⨯,所以2250b c +=,所以222()2100bc b c b c +=++=,即10b c +=.所以A B C ∆的周长为15ab c ++=.【点评】本题主要考查了正弦定理,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题. 13.在A B C∆中,a,b,c分别为内角A,B,C的对边,若222s i ns i n(s i n s i ns i n)2A B C A BC =+-. (1)求C ;(2)若c=,求A B C ∆周长的取值范围.【分析】(1)由已知及正弦定理角化边,再利用余弦定求出ta n C ,结合已知条件求出角C 的范围,进而求出C ; (2)由c,C的值,利用余弦定理可,得2222232c o s ()3()3()2a baba b C a b a b a b +=+-=+-+-⨯…,ab +…,再结合三角形三边关系可求得三角形周长的取值范围.【解答】解:由222s i n s i n(s i n s i n s i n )2A B C A BC =+-及正弦定理,得222s in ()2a b C abc =+-,又2222c o s a b ca b C+-=,sin c o s a b C b C∴=,ta n C ∴=0C π<<,3C π∴=;(2)由余弦定理,可得22232c o s ()3ab a b C a b a b=+-=+-22()3()2a b a b ++-⨯…,当且仅当ab=时取等号,a b ∴+…ab c +>=a b c ∴++…A B C∴∆周长的取值范围(.【点评】本题考查正余弦定理,以及基本不等式的应用,考查了方程思想和转化思想,属中档题.14.已知A B C ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A B C ∆4(1)求C ∠; (2)若2Aπ∠=,C ∠的角平分线C E 与边A B 相交于点E ,延长C E 至点D ,使得C ED E=,求c o s A D B ∠.【分析】(1)由已知结合余弦定理及三角形面积公式进行化简可求ta n C ,进而可求C ; (2)由已知结合直角三角形勾股定理及角平分线性质可表示三角形各边,然后结合余弦定理即可求解.【解答】解:(1)因为A B C ∆的面积为222)4ab c +-,所以1s in 2c o s 24a b C a b C=,故sin o s CC=,即ta n C=,由C 为三角形内角得,60C =︒;(2)设A Ca=,则2B Ca=,A B =,因为C E 为C ∠的角平分线, 由角平分线性质得,12A E A C E BB C==,所以3A E=,3B E=,3C E =,因为60A E C ∠=︒,A E D ∆中,120A E D∠=︒,3A E =,3D E =, 由余弦定理得,22222214172c o s 1202333323A DA ED EA E D E aaa=+-⋅︒=++⨯⋅⨯=,故3A Da=,B D E∆中,3E DB E ==,60B E D∠=︒,所以3B D =,又A B=,在A B D ∆中,由余弦定理可得,222222743c o s 21433aa a A DD BA BA D BA D D B+-+-∠===⋅.【点评】本题主要考查了余弦定理,三角形面积公式,角平分线性质,余弦定理在求解三角形中的应用,属于中档题.15.已知A B C ∆的内角A ,B ,C 的对边分别a ,b ,c,且s in s in2B C a C +=.(1)求角A 的大小; (2)若点D 在边B C 上,且33C DB D ==,6B A Dπ∠=,求A B C ∆的面积.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等方式可得s in22A =,结合2A 的范围可求2A 的值,进而可求得A 的值;(2)由题意可求2C AD π∠=,在A C D ∆中,可得3s in A DC=,在A B D ∆中,由正弦定理可得32bc=,进而在A B C ∆中,由余弦定理即可解得b ,c 的值,从而根据三角形的面积公式即可求解.【解答】解:(1)因为s in s in2B C a C +=, 所以由正弦定理可得sin in 3si n s i2B CA C C +=,即sin insi n s i n 3sinc o s22AAA C C C π-==,因为s in 0C ≠,所以s ino s2A A =,可得2s inc o so s222A A A =,因为(0,)A π∈,(0,)22A π∈,所以2s in 2A =s in22A =所以23A π=,可得23Aπ=;(2)因为点D在边B C上,且33C D B D ==,6B A D π∠=,可得2C AD π∠=,4B C B D C D =+=,所以在A C D ∆中,s in A D CC D=,可得3s in A DC=,在A B D ∆中,由正弦定理s in s in A D B DBB A D=∠,可得3s in 121s in 2C B==,由正弦定理可得32bc=,在A B C ∆中,由余弦定理2222co s a b c b c A=+-,可得2223314()2()222c cc c =+-⨯⨯⨯-,整理可得19c=,19b=,所以A B C ∆的面积11s in 221919219Sb c A ==⨯=.【点评】本题主要考查了正弦定理,三角函数恒等变换,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 16.在A B C ∆中,角A ,B ,C 所对的边分别为a ,b ,cs in c o s A a B a=+.(1)求角B 的值; (2)若8c=,A B C ∆的面积为2,求B C 边上中线A D 的长.【分析】(1)由已知结合正弦定理及辅助角同时即可求解B ; (2)由三角形面积公式先求出a ,然后结合余弦定理可求. 【解答】解(1sin sin c o s sin B A A B A=+,(0,)A π∈,∴c o s 1B B =+,则1s in ()62B π-=,(0,)B π∈,∴3B π=,(2)1s in 22S a c B ==8c=,10a ∴=,由余弦定理2221()22a A D ca c=+-得249A D =,7A D ∴=.【点评】本题主要考查了正弦定理,余弦定理,辅助角公式及三角形面积公式在求解三角形中的应用,属于基础题.17.在锐角A B C ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且c o s ()32a cb C π+-=.(1)求角B 的大小;(2)若b=A B C ∆的周长的取值范围.【分析】(1)由已知结合正弦定理及和差角公式,辅助角公式进行化简,可求;(2)由正弦定理先表示各边,然后结合和差角及辅助角公式进行化简,再由正弦函数的性质可求. 【解答】解:(1)c o s ()32a cb C π+-=,∴由正弦定理得:2s inc o s ()s in s in 3B C A Cπ-=+,又(0,)2Cπ∈,s in 0C ∴≠,∴12s in (c o s in )s in ()s in 22B C C B C C+=++,c o s 1B B -=,∴1s in ()62B π-=.A B C∆为锐角三角形,∴(,)663B πππ-∈-,∴66B ππ-=即3Bπ=.(2)3b B π==,由正弦定理有:4s in s in s in ac b ACB===,∴4sin ,4sin ,4sin 4sin a A c C a b c A C ==++=++.3B π=,∴23C Aπ=-,∴214s in 4s in ()4s in 4o s s in )6s in o s in ()3226a b c A A A A A A A A ππ++=+-++++++++A B C∆为锐角三角形,∴2(0,),(0,)232A C A πππ∈=-∈,∴(,)62A ππ∈,∴2(,),s in ()63362A A ππππ+∈+∈,∴in ()(66A π+++,即A B C ∆的周长的取值范围是(6+.【点评】本题主要考查了正弦定理,和差角公式,辅助角公式及正弦函数的性质在求解三角形中的应用,属于中档题.18.在A B C ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且222s in 2abcAb c+-=.(1)求C ;(2)若sinA B=,2c=,求A B C ∆的面积.【分析】(1)由三角形的余弦定理和正弦定理,结合同角的商数关系,可得所求值;(2)由三角形的正弦定理和余弦定理,推得2b c a==,可得A B C ∆为直角三角形,可得所求面积.【解答】解:(1)因为222s in 2abcAb c+-=,所以2c o s 2s in a b Cb c A=,所以c o s s in a Cc A=,由正弦定理得s in c o s s in s in A C C A=.因为0A π<<,所以s inA ≠,所以s in ta n 1c o s C CC==.因为0C π<<,所以4Cπ=.(2)因为sinA B=,所以由正弦定理得a=.由余弦定理知2222222c o s )2c o s4c aba b C bb bπ=+-=+-⨯⨯=,所以2bc ==,222b c a+=,所以A B C ∆为直角三角形,所以12222A B CS ∆=⨯⨯=.【点评】本题考查三角形的正弦定理、余弦定理和面积公式的运用,考查方程思想和运算能力,属于中档题.。
高中数学解三角形必刷60题1. 在ABC ∆中,45,75,AB A C ===则BC =( )A.3- BC .2 D.3 2. ABC ∆的内角,,A B C 的对边分别为,,.a b c已知60,3,C b c ===则A = .3. 设ABC ∆的内角,,A B C 的对边分别为,,.a b c 且35cos ,cos ,3,513A C b ===则c = .4. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,,A B 是锐角,且sin 510A B == (1) 求A B +的值; (2)若1a b -=,求,,a b c 的值.5. 在ABC ∆中,2cos ,4,3,3C AC BC ===则cos B =( ) A .19B .13C .12D .236. 在ABC ∆中,2cos ,4,3,3C AC BC ===则tan B =( ) AB. C. D.7. 在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .且60,3.A c b ==则ac= .8. 已知的内角的对边分别为,且76,2,cos .9a cb B +===则a = .c = .ABC ∆,,A B C ,,a b c9. 在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若222()tan a c b B +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π10. 在ABC ∆中,120,7,5,B AC AB ===则ABC ∆的面积为_____.11. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π12. ABC ∆的内角,,A B C 的对边分别为,,a b c60B =,223a c ac +=,则b =_____.13. 在ABC ∆中,内角,,A B C 所对的边分别为,,.a b c 且,,a b c 成等差数列,30B =,ABC ∆的面积为3,2则b =( )A.12+ B.1C.22+D.214. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知2,,,64b B C ππ===则ABC∆的面积为( ) A.2B1C.2D115. 在ABC ∆中,角A ,B ,C 的对边分别为,,.若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .B .C .2A B =D .2B A =a b c 2a b =2b a =16. ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B = .17. 设ABC ∆的内角的对边分别为,若cos cos sin A B Cabc+=,22265b c a bc +-=,则tan B =______.18. ABC ∆中,角A ,B ,C 的对边分别为,,.已知sin sin 4sin ,a A b B c C -=1cos 4A =-,则bc=( )A .6B .5C .4D .319. 在ABC ∆中,角A ,B ,C 的对边分别为,,.已知222,a c b -=且sin 4cos sin ,B A C =则b = .20. 中,角所对应的边分别为,已知sin cos 0b A a B +=,则B = .21. 在中,角所对应的边分别为,若sin cos ,c C c A =-则A ∠= .22. 设ABC ∆的内角的对边分别为,且sinsin 2B Cb a B +=,sin 3sin C B =.(1) 求A ; (2) 计算sin sin sin AB C的值.23. 在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .设,,a b c 满足条件222b c bc a+-=和12c b =+求A 和tan B 的值.,,A B C ,,a b c a b c a b c ABC ∆C B A ,,c b a ,,ABC ∆C B A ,,c b a ,,,,A B C ,,a b c24. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且8.a b c ++=(1)若52,,2a b ==求cos C 的值; (2)若22sin cos sin cos 2sin .22B A A B C +=且ABC ∆的面积9sin ,2S C =求a 和b的值.25. 设ABC ∆的内角的对边分别为,2C B =,则cb的范围是______.26. 在ABC ∆中,内角,,A B C 所对的边分别为,,.a b c 已知85,2,b c C B ==则cos C =A .725B .725-C .725±D .±242527. 在ABC ∆中,内角,,A B C 所对的边分别为,,.a b c满足cos3.2A AB AC =⋅=则ABC ∆的面积为________28. 设ABC ∆的内角的对边分别为,已知22,sin sin sin a b c A B C =+=,试判断ABC ∆的形状( )A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形29. 设ABC ∆的内角的对边分别为,若2cos22B a cc+=,则ABC ∆的形状 A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形30. 设ABC ∆的内角的对边为,2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形31. 如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于,,A B C ,,a b c ,,A B C ,,a b c ,,A B C ,,a b c ,,A B C ,,a b cA.1)m B.1)m C.1)m D.1)m32. 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .33. 某兴趣小组测量电视塔AE 的高度H (单位:m ),如示意图,垂直放置的标杆BC 的高度h =4m ,仰角∠ABE =α,∠ADE =β.(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。
距离和高度问题A 级 基础巩固一、选择题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是(D )A .103海里B .106海里C .52海里D .56海里[解析]如图,由正弦定理得 BCsin60°=10sin45°,∴BC =5 6.2.学校体育馆的人字形屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( D )A .12 mB .8 mC .3 3 mD .4 3 m[解析] 在△ABC 中,已知可得BC =AC =4,∠C =180°-30°×2=120°,所以由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=42+42-2×4×4×⎝ ⎛⎭⎪⎫-12=48,∴AB =43(m).3.如图所示,为测一树的高度,在地面上选取A ,B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点之间的距离为60 m ,则树的高度为( A )A .(30+303)mB .(30+153)mC .(15+303)mD .(15+153)m[解析] 由正弦定理可得60sin45°-30°=PBsin30°,PB =60×12sin15°=30sin15°.h =PB ·sin45°=30sin15°·sin45°=(30+303)(m).4.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13km.5.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a (km),灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( B )A .a (km)B .3a (km)C .2a (km)D .2a (km)[解析]在△ABC 中,∠ACB =180°-(20°+40°)=120°. ∵AB 2=AC 2+BC 2-2AC ·BC cos120°=a 2+a 2-2a 2×(-12)=3a 2,∴AB =3a (km).6.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A )A .4003米B .40033米C .20033米D .2003米[解析] 解法一:如图,设AB 为山高,CD 为塔高,则AB =200,∠ADM =30°,∠ACB =60°,∴BC =200tan30°=20033,AM =DM tan30°=BC tan30°=2003.∴CD =AB -AM =4003.解法二:如图AB 为山高,CD 为塔高. 在△ABC 中,AC =ABsin60°=40033, 在△ACD 中,∠CAD =30°,∠ADC =120°. 由正弦定理CD sin ∠CAD =ACsin ∠ADC .∴CD =40033×1232=4003(米).二、填空题7.一只蜘蛛沿正北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =1063cm.[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°,由正弦定理,得x sin ∠ACB =10sin B,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.8.如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为50 2 m.[解析] 因为∠ACB =45°,∠CAB =105°, 所以∠ABC =30°, 根据正弦定理可知:AC sin ∠ABC =ABsin ∠ACB,即50sin30°=ABsin45°,解得AB =50 2 m.三、解答题9.海面上相距10海里的A 、B 两船,B 船在A 船的北偏东45°方向上,两船同时接到指令同时驶向C 岛,C 岛在B 船的南偏东75°方向上,行驶了80分钟后两船同时到达C 岛,经测算,A 船行驶了107海里,求B 船的速度.[解析] 如图所示,在△ABC 中,AB =10,AC =107,∠ABC =120°由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos120°即700=100+BC 2+10BC ,∴BC =20,设B 船速度为v ,则有v =2043=15(海里/小时).即B 船的速度为15海里/小时.10.在某某世博会期间,小明在中国馆门口A 处看到正前方上空一红灯笼,测得此时的仰角为45°,前进200米到达B 处,测得此时的仰角为60°,小明身高1.8米,试计算红灯笼的高度(精确到1 m).[解析] 由题意画出示意图(AA ′表示小明的身高).∵AB =200,∠CA ′B ′=45°,∠CB ′D ′=60°, ∴在△A ′B ′C 中,A ′B ′sin ∠A ′CB ′=B ′Csin45°,∴B ′C =A ′B ′sin45°sin15°=200×226-24=200(3+1).在Rt △CD ′B ′中,CD ′=B ′C ·sin60°=100(3+3),∴CD =1.8+100(3+3)≈475(米). 答:红灯笼高约475米.B 级 素养提升一、选择题1.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为( B )A .20(2+6)海里/时B .20(6-2)海里/时C .20(6+3)海里/时D .20(6-3)海里/时[解析] 设货轮航行30分钟后到达N 处,由题意可知∠NMS =45°,∠MNS =105°, 则∠MSN =180°-105°-45°=30°.而MS =20, 在△MNS 中,由正弦定理得MN sin30°=MSsin105°,∴MN =20sin30°sin105°=10sin 60°+45°=10sin60°cos45°+cos45°sin45°=106+24=10(6-2).∴货轮的速度为10(6-2)÷12=20(6-2)(海里/时).2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000米到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( D )A .500 2 mB .200 mC .1 000 2 mD .1 000 m[解析] ∵∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 在△ABS 中,AB =AS ·sin135°sin30°=1 000×2212=1 0002,∴BC =AB ·sin45°=1 0002×22=1 000(m). 3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5,∴这艘船的速度是50.5=10(n mlie/h).4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦某某岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是( D )A .1002米B .400米C .2003米D .500米[解析] 由题意画出示意图,设高AB =h , 在Rt △ABC 中,由已知BC =h ,在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos∠BCD 得3h 2=h 2+5002+h ·500,解之得h =500(米).二、填空题5.某地电信局信号转播塔建在一山坡上,如图所示,施工人员欲在山坡上A 、B 两点处测量与地面垂直的塔CD 的高,由A 、B 两地测得塔顶C 的仰角分别为60°和45°,又知AB 的长为40米,斜坡与水平面成30°角,则该转播塔的高度是4033米.[解析] 如图所示,由题意,得∠ABC =45°-30°=15°,∠DAC =60°-30°=30°. ∴∠BAC =150°,∠ACB =15°,∴AC =AB =40米,∠ADC =120°,∠ACD =30°, 在△ACD 中,由正弦定理,得CD =sin ∠CAD sin ∠ADC ·AC =sin30°sin120°·40=4033.6.如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时,测量公路南侧远处一山顶D 在东偏南15°的方向上,行驶5 km 后到达B 处,测得此山顶在东偏南30°的方向上,仰角为15°,则此山的高度CD 等于5(2-3)km.[解析] 在△ABC 中,∠A =15°,∠ACB =30°-15°=15°, 所以BC =AB =5.又CD =BC ·tan∠DBC =5×tan15°=5×tan(45°-30°)=5(2-3).三、解答题7.(2018·全国卷Ⅰ理,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB ,即5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°, 所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·cos∠BDC =25+8-2×5×22×25=25, 所以BC =5.8.某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?[解析] 由题画出示意图如图所示,设汽车前进20千米后到达B 处,在△ABC 中,AC =31,BC =20,AB =21.由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =2331,则sin C =12331,所以sin ∠MAC =sin(120°-C )=sin120°cos C -cos120°sin C =35362.在△MAC 中,由正弦定理得MC =AC ·sin∠MAC sin ∠AMC =3132×35362=35,从而MB =MC -BC =15.即汽车还需行驶15千米才能到达M汽车站.。
高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。
2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。
c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。
例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。
例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦ B .133,244⎛⎫⎪⎝⎭ C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭6.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .211.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 中,2,2BC AB AC ==,则ABC 面积的最大值为_____ 18.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在①()cos cos 3cos 0C A A B +-=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中. 问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin 2a R A === , 解得R =2.本题选择C 选项. 2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D【分析】根据角A的平分线交BC于E,满足0AE BC⋅=,得到ABC是等腰三角形,再由2221sin24+-==ABCa b cS ab C,结合余弦定理求解.【详解】因为0AE BC⋅=,所以AE BC⊥,又因为AE是角A的平分线,所以ABC是等腰三角形,又2221sin24+-==ABCa b cS ab C,所以2221sin cos22a b cab C Cab+-==,因为()0,Cπ∈,所以4Cπ,所以ABC是等腰直角三角形,故选:D【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.D解析:D【分析】根据cos cosa Ab B=,利用正弦定理将边转化为角得到sin cos sin cosA AB B=,然后再利用二倍角的正弦公式化简求解.【详解】因为cos cosa Ab B=,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =, 2a ∴=,24c a ==,因此,ABC 的周长是623a b c ++=+.故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =,在ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =,ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.11.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 1222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围.【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】设则根据面积公式得由余弦定理求得代入化简由三角形三边关系求得由二次函数的性质求得取得最大值【详解】解:设则根据面积公式得由余弦定理可得可得:由三角形三边关系有:且解得:故当时取得最大值故答案解析:43【分析】设AC x =,则2AB x =,根据面积公式得ABC S ∆=,由余弦定理求得cos C 代入化简ABC S ∆=223x <<,由二次函数的性质求得ABC S ∆取得最大值. 【详解】解:设AC x =,则2AB x =,根据面积公式得 1sin sin 12ABC S AC BC C x C x ∆=== 由余弦定理可得2224443cos 44x x x C x x+--==,可得:ABCS ∆==由三角形三边关系有:22x x +>,且22x x +>,解得:223x <<,故当x =时,ABC S ∆取得最大值43, 故答案为:43. 【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.19.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--, CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =, 由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【详解】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++-=⎡⎤⎣⎦, ()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈.由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+, ()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min 14b =,即b 的最小值为12; 若选择②:在ABC 中,有A B C π++=, 则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=, 解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,代入上式得sin sin cos 3C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①) 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。
解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
〔1〕三边之间的关系:a 2+b 2=c 2。
〔勾股定理〕 〔2〕锐角之间的关系:A +B =90°; 〔3〕边角之间的关系:〔锐角三角函数定义〕 sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
〔1〕三角形内角和:A +B +C =π。
〔2〕正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===〔R 为外接圆半径〕 〔3〕余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:〔1〕∆S =21ah a =21bh b =21ch c 〔h a 、h b 、h c 分别表示a 、b 、c 上的高〕; 〔2〕∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素〔即三条边和三个内角〕中的三个元素〔其中至少有一个是边〕求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: 〔1〕两类正弦定理解三角形的问题:第1、两角和任意一边,求其他的两边及一角. 第2、两角和其中一边的对角,求其他边角. 〔2〕两类余弦定理解三角形的问题:第1、三边求三角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时〔1〕应注意两边和其中一边的对角解三角形时,可能有两解的情形;〔2〕对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .72B .473C .3D .232.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3533.在△ABC 中,若2223a c b ab -+=,则C =( ). A .45°B .30°C .60°D .120°4.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B =,且2b ac =,则a cb+ 的值为( ) A .22B 2C .2D .45.设a ,b ,c 分别为ABC 内角A ,B ,C 的对边.已知4cos 5C =,sin 5sin b C c A =,则ca=( ) A .5B 17C .32D 346.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形7.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .128.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,22sin 3BAC ∠=,32AB =,3BD =, 则cos C ( ) A .63B .3 C .23D .139.已知ABC ∆中,2a =,3b =,60B =,那么角A 等于( )A .135B .45C .135或45D .9010.在ABC 中,2C A π-=,1sin 3B =,3AC =,则ABC 的面积为( ) A .32B .32C .22D .3311.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m12.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m二、填空题13.在ABC 中,2a =,3b =,1cos 3C =,则ABC 的外接圆半径为___________. 14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .16.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =,则2a c +的最大值为______.18.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.19.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.20.一渔船在A 处望见正北方向有一灯塔B ,在北偏东45方向的C 处有一小岛,渔船向正东方向行驶2海里后到达D 处,这时灯塔B 和小岛C 分别在北偏西30和北偏东15的方向,则灯塔B 和小岛C 之间的距离为___________海里.三、解答题21.在①()22sin sin sin sin sin A B C B C --=,②sin sin 2B Cb a B +=,③2sin sin 3a B b A π⎛⎫=-⎪⎝⎭这三个条件中任选一个,补充在下面问题中并作答. ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若22a b c +=,______求A 和C .22.如图,AB 是底部不可到达的一座建筑物,A 为建筑物的最高点,经过测量得到在点D 处的仰角为45︒,C 处的仰角为75︒,且CD =20,测角仪的高为1.2,求出建筑物的高度.23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积.24.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若2b cos B =a cos C +c cos A(1)求角B 的大小;(2)若线段BC 上存在一点D ,使得AD =2,且AC 6=,CD 3=-1,求S △ABC .25.在ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,221sin cos 22A B C +-=. (1)求角C ; (2)若2c =,4A π=,求ABC 的面积.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+.故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值.【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则sin 22cos CD θθθ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴2cos θθ=,解得cos 2θ=,6πθ=,∴32CD ==,ACD △中,由角平分线定理得AC AE CD DE ==,得236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴2222a b c cosC ab +-==又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb +∴====.故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.5.C解析:C 【分析】先根据正弦定理对sin 5sin b C c A =边角互化得5b a =,再结合余弦定理整理得ca=. 【详解】解:因为sin 5sin b C c A =,所以5bc ac =,即5b a =. 所以由余弦定理得:222242525185c a a a a a =+-⋅⋅=,整理化简得:ca= 故选:C. 【点睛】本题考查边角互化,余弦定理解散三角形,考查运算能力,是基础题.6.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.7.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒3cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin a b A B =⇒=sin A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.10.A解析:A 【分析】先利用已知条件得到22B A π=-,再利用诱导公式和二倍角公式得到21sin 3A =,又0A π<<,可得sin 3A =;已知AC =BC 的长度,再根据三角形的面积公式in 12s S ab C =,即可得出结果. 【详解】由题意得:A B C π++=,()B A C π∴=-+,又22C A C A ππ-=⇒=+,()2222B A C A A ππππ⎛⎫∴=-+=-+=- ⎪⎝⎭,21sin sin 2cos 212sin 23B A A A π⎛⎫∴=-==-= ⎪⎝⎭,21sin 3A ∴=,0A π<<,sin 3A ∴=, 由正弦定理得,sin sin BC ACA B=, 即3BC =,2C A π=+,A ∴为锐角,cos A ==,sin sin cos 23C A A π⎛⎫∴=+==⎪⎝⎭,11sin 3222ABCSBC AC C ∴=⋅=⨯=. 故选:A. 【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.11.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案.【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 6002BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.12.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知,3OA h OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos150h h =+-⨯⨯⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.二、填空题13.【分析】利用余弦定理求出并求出再利用正弦定理可求得的外接圆半径【详解】由余弦定理可得则为锐角所以因此的外接圆半径为故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用 解析:928【分析】利用余弦定理求出c ,并求出sin C ,再利用正弦定理可求得ABC 的外接圆半径. 【详解】 由余弦定理可得222212cos 2322333c a b ab C =+-=+-⨯⨯⨯=, 1cos 3C =,则C 为锐角,所以,222sin 1cos 3C C =-=,因此,ABC的外接圆半径为2sin 83cr C===.. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.16.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan 3B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =, 由正弦定理得sin cos sin B C C =,整理得sin tan 3B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan 2ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a b c c c c C ab c c +-+-===+⨯⨯⨯=,(0,)C π∈,3c =时取等号.此时,3a =, 06Cπ∴<,∴当C 取最大值6π时,ABC 的面积11222S =⨯=. 【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.19.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.20.【分析】求得在三角形中利用余弦定理求得【详解】依题意画出图象如下图所示在三角形中由正弦定理得所以在中所以在三角形中由余弦定理得所以故答案为:【点睛】本小题主要考查正弦定理余弦定理解三角形属于中档题 解析:22【分析】求得,BD CD ,在三角形BCD 中利用余弦定理求得BC . 【详解】依题意,画出图象如下图所示,2AD =,301545BDC ∠=︒+︒=︒,903060BDA ∠=︒-︒=︒,45,180********CAD ACD ∠=︒∠=︒-︒-︒-︒=︒,在三角形ACD 中,由正弦定理得2sin 30sin 45CD=︒︒,所以22CD =.在Rt ABD △中,906030ABD ∠=︒-︒=︒,所以24BD AD ==. 在三角形BCD 中,由余弦定理得()2224222422cos 458BC =+-⨯⨯⨯︒=,所以22BC =. 故答案为:22【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.三、解答题21.选择见解析,3A π=,512C π=. 【分析】选择条件①,利用正弦定理结合余弦定理求出cos A 的值,结合角A 的取值范围可求得A2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件②,利用诱导公式、正弦定理以及三角恒等变换思想求出sin2A的值,结合角A的取值范围可求得角A 2b c +=可得出sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件③,由正弦定理以及两角差的正弦公式可求得tan A 的值,结合角A 的取值范围可求得角A 2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果. 【详解】(1)选择条件①,由()22sin sin sin sin sin A B C B C --=及正弦定理知()22a b c bc --=,整理得,222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又因为()0,A π∈,所以3A π=,2b c +=sin 2sin A B C +=,由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭,即1sin 2sin 222C C C ++=,即3sin C C =6C π⎛⎫-= ⎪⎝⎭sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=; 选择条件②,因为A B C π++=,所以222B C Aπ+=-, 由sinsin 2B C b a B +=得cos sin 2Ab a B =,由正弦定理知,sin cossin sin 2sin cos sin 222A A AB A B B ==, ()0,B π∈,()0,A π∈,可得0,22A π⎛⎫∈ ⎪⎝⎭, 所以,sin 0B >,cos02A >,可得1sin 22A =,所以,26A π=,故3A π=.以下过程同(1)解答;选择条件③,由2sin sin 3a B b A π⎛⎫=-⎪⎝⎭, 及正弦定理知,2sin sin sin sin 3A B B A π⎛⎫=- ⎪⎝⎭,()0,B π∈,则sin 0B >,从而21sin sin cos sin 322A A A A π⎛⎫=-=+⎪⎝⎭,则sin A A =,解得tan A =又因为()0,A π∈,所以3A π=,以下过程同(1)解答.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.22.1) 1.2+【分析】在ADC 中,求得754530DAC ∠=-=,根据正弦定理可得AC =AEC 中,由sin AE AC α=⋅,即可求解.【详解】在ADC 中,根据题意可得754530DAC ∠=-=,由正弦定理可得20sin sin 4sin sin6CD DAC DACππ⨯===在直角AEC中,可得sin sin 75202sin(3045)AEAC α=⋅==+30cos 45cos30sin 45)10(31)=+=所以建筑的高为1) 1.2AB =+. 23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b a c ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤, ∴当3ac ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3π;(2. 【分析】(1)由2b cos B =a cos C +c cos A ,利用正弦定理与两角和的正弦公式算出2sin B cos B =sin (A +C ),再根据诱导公式化简可得cos B 12=,结合B ∈(0,π)可得角B 的大小.(2)由余弦定理求得cos C 的值,可得C 的值,利用三角形内角和公式求得A 的值,再利用正弦定理求得AB 的值,从而求得S △ABC 12=⋅AB ⋅AC ⋅sin A 的值. 【详解】(1)∵2b cos B =a cos C +c cos A ,∴根据正弦定理,可得2sin B cos B =sin A cos C +sin C cos A ,即2sin B cos B =sin (A +C ).又∵△ABC 中,sin (A +C )=sin (180°﹣B )=sin B >0∴2sin B cos B =sin B ,两边约去sin B 得2cos B =1,即cos B 12=, ∵B ∈(0,π),∴B 3π=.(2)∵在△ACD 中,AD =2,且AC =CD =1, ∴由余弦定理可得:cosC222==, ∴C 4π=,∴A =π﹣B ﹣C 512π=, 由sin sin AC AB B C =sin sin 34AB π=, ∴AB =2,∴S △ABC 12=⋅AB ⋅AC ⋅sin A 12= ⋅2⋅⋅sin (46ππ+)=⋅(sin 4πcos 6π+cos 4πsin 6π)=⋅4+)= 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.25.(1)2C π=或3C π=;(2)33+或1. 【分析】(1)利用二倍角余弦公式可得22cos cos C C -=-,从而可得cos 0C =或1cos 2C =,即求.(2)由(1)知3C π=或2C π=,当3C π=时,利用正弦定理求出,a b ,再根据三角形的面积公式即可求解;当2C π=时,根据直角三角形即可求解. 【详解】(1)由221sin cos 22A B C +-=,得222sin 2cos 12A B C +-=, 化简得222cos 12sin2A B C +-=-, 即()22cos cos C A B -=+,即22cos cos C C -=-,即()cos 2cos 10C C -=,解得cos 0C =或2cos 10C -=.即cos 0C =或1cos 2C =. 又0C π<<,所以2C π=或3C π=. (2)由(1)得3C π=或2C π=,当3C π=时,由正弦定理sin sin sin a b c A B C ==得,sin sin c a A C =⋅=, 2sinsin 34c b B C ππ⎛⎫=⋅=- ⎪⎝⎭ 22sin cos cos sin3434ππππ⎫=-⎪⎭122223⎛⎫=⨯--⨯= ⎪⎝⎭⎦,故113sin 223323ABC S ab C +==⨯⨯=△;当2C π=时,由2c =,4A π=,得4B π=,a b ==因此11122ABC S ab ===△.综上,ABC 或1. 26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
第一章 解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
4.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。
[综合训练B 组]一、选择题1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( )A .大于零B .小于零C .等于零D .不能确定3.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 24.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .不能确定D .等腰三角形5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )A .090B .060C .0135D .01506.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81- 7.在△ABC 中,若tan 2A B a b a b --=+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题1.若在△ABC 中,060,1,ABC A b S ∆∠===则CB A c b a sin sin sin ++++=_______。
2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。
3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。
4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。
5.在△ABC 中,若=+===A c b a 则226,2,3_________。
6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。
三、解答题1. 在△ABC 中,0120,,ABC A c b a S =>c b ,。
2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。
3. 在△ABC 中,求证:2cos 2cos 2cos4sin sin sin C B A C B A =++。
4. 在△ABC 中,若0120=+B A ,则求证:1=+++ca b c b a 。
5.在△ABC 中,若223cos cos 222C A b a c +=,则求证:2a c b += [提高训练C 组]一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( )A .)2,2(B .)2,2(-C .]2,1(-D .]2,2[-2.在△ABC 中,若,900=C 则三边的比cb a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .36 4.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .090 B .060 C .0120 D .0150 6.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。
3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+==则z y x ,,的大小关系是___________________________。
4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。
5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。
6.在△ABC 中,若ac b =2,则B B C A 2cos cos )cos(++-的值是_________。
三、解答题1.在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。
2. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值。
3. 已知△ABC 的三边c b a >>且2,2π=-=+C A b c a ,求::a b c4.在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=AB 边上的高为,,A B C 的大小与边,,a b c 的长参考答案与解析第一章 [基础训练A 组]一、选择题1.C 00tan 30,tan 302b b a c b c b a=====-=2.A 0,sin 0A A π<<> 3.C cos sin()sin ,,22A A B A B ππ=->-都是锐角,则,,222A B A B C πππ->+<> 4.D 作出图形 5.D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150 6.B 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 二、填空题 1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201c o s ,12022b c a A A bc +-==-=3.26- 00sin 215,,4sin 4sin154sin sin sin 4a b b A A a A A B B ======⨯ 4. 0120 a ∶b ∶c =s i n A ∶s i n B ∶s i n C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5. 4 ,,sin sin sin sin sin sin AC BC AB AC BC AB B A C B A C+===+A C B C +sin )cos 22A B A B A B +-=+= max 4cos 4,()42A B AC BC -=≤+= 三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-=cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。
2. 证明:将ac b c a B 2cos 222-+=,bca cb A 2cos 222-+=代入右边 得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-= 22a b a b ab b a-==-=左边, ∴)c o s c o s (aA bB c a b b a -=- 3.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴s i n s i n ()2A B π>-,即s i n c o s A B >;同理s i n c o s B C >;s i n c o s C A > ∴C B A C B A cos cos cos sin sin sin ++>++4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222A C A CB B +-=,∴1sin cos 2224B A C -==,而0,22B π<<∴cos 24B =,∴sin 2sin cos 222B B B ===839 [综合训练B 组]一、选择题1.C 12,,,::sin :sin :sin 263222A B C a b c A B C πππ====== 2.A ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-=3.D sin sin 22sin cos ,2cos A B B B a b B ===4.D sin sin lg lg 2,2,sin 2cos sin cos sin cos sin A A A B C B C B C=== sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-=sin()0,B C B C -==,等腰三角形5.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,c o s ,6022b c a b c a bc A A bc +-+-==== 6.C 2222c o s 9,3c a b a b C c =+-==,B 为最大角,1c o s 7B =- 7.D 2cossin sin sin 22tan 2sin sin 2sin cos 22A B A B A B a b A B A B A Ba b A B +----===+-++, tan 2tan ,tan 022tan 2A B A B A B A B ---==+,或tan 12A B += 所以A B =或2A B π+= 二、填空题 1.3392211s i n ,4,113222ABC S bc A c c a a ∆==⨯====9s i n s i n s i n s i 3a b c a A B C A ++===++2.> ,22A B A B ππ+>>-,即s i n ()2t a n t a n ()2c o s ()2B A B B πππ->-=- c o s 1s i n t a n B B B ==,1t a n ,t a n t a n 1t a n A A B B>> 3. 2 s i n s i n t a n t a n c o s c o sB C B C B C +=+ s i n c o s c o s s i n s i n ()2s i n 1c o s c o s s i n s i n 2B C B C B C A B C A A +++=== 4. 锐角三角形 C 为最大角,c o s0,C C >为锐角 5. 060222231cos 22b c aA bc +-==== 6.222222222222213,49,594a b c c a c bc c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩⎩三、解答题1.解:1sin 4,2ABC S bc A bc ∆=== 2222c o s ,5a b c b A b c =+-+=,而c b >所以4,1==c b 2. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴s i n s i n ()2A B π>-,即s i n c o s A B >;同理s i n c o s B C >;s i n c o s C A > ∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B C A B C A B C A B C>> ∴1tan tan tan >⋅⋅C B A3. 证明:∵sin sin sin 2sin cos sin()22A B A B A B C A B +-++=++ 2s i n c o s 2s i n c o s 2222A B A B A B A B +-++=+ 2s i n (c o s c o s )222A B A B A B +-+=+ 2c o s 2c o s c o s 222C A B =⋅ 4c o s c o s c o s 222A B C = ∴2cos 2cos 2cos4sin sin sin C B A C B A =++ 4.证明:要证1=+++c a b c b a ,只要证2221a ac b bc ab bc ac c +++=+++, 即222a b c ab +-=而∵0120,A B +=∴060C = 2222220cos ,2cos602a b c C a b c ab ab ab+-=+-== ∴原式成立。