高考物理大一轮复习第五章第4讲功能关系能量守恒定律讲义含解析教科版
- 格式:docx
- 大小:412.67 KB
- 文档页数:18
取夺市安慰阳光实验学校第4节功能关系能量守恒定律知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功等于物体重力势能的变化.(3)弹簧弹力做功等于弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.3.表达式(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.1.正误判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)(4)能量在转化或转移的过程中,其总量会不断减少.(×)(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(6)滑动摩擦力做功时,一定会引起能量的转化.(√)2.[功能关系的理解]自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )图541A.增大B.变小C.不变D.不能确定A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]3.[摩擦生热的理解]如图542所示,木块A放在木板B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )【:92492233】图542A. W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2A[设木板B长s,木块A从木板B左端滑到右端克服摩擦力所做的功W =F f s,因为木板B不固定时木块A的位移要比木板B固定时长,所以W1<W2;摩擦产生的热量Q=F f l相对,两次都从木块B左端滑到右端,相对位移相等,所以Q1=Q2,故选A.]4.[几种常见的功能关系应用](多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh -12mv2C.他的机械能减少了FhD.他的机械能减少了mghAC[合力做的功等于动能的变化,合力做的功为(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]对功能关系的理解及应用1(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.2.几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性1.(多选)(2017·枣庄模拟)如图543所示,取一块长为L的表面粗糙的木板,第一次将其左端垫高,让一小物块从板左端的A点以初速度v0沿板下滑,滑到板右端的B点时速度为v1;第二次保持板右端位置不变,将板放置水平,让同样的小物块从A点正下方的C点也以初速度v0向右滑动,滑到B点时的速度为v2.下列说法正确的是( )图543A.v1一定大于v0B.v1一定大于v2C.第一次的加速度可能比第二次的加速度小D.两个过程中物体损失的机械能相同BCD[物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则物块做加速运动,若重力向下的分力小于摩擦力,则物块做减速运动.故A错误;斜面的倾角为θ时,物块受到滑动摩擦力:f1=μmg cos θ,物块克服摩擦力做功W1=f1L=μmg cos θ·L.板水平时物块克服摩擦力做功:W2=μmg·L cos θ=W1.两次克服摩擦力做的功相等,所以两个过程中物体损失的机械能相同;第一次有重力做正功.所以由动能定理可知第一次的动能一定比第二次的动能大,v1一定大于v2,故B、D正确.物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则:a1=mg sin θ-fm,板水平时运动的过程中a2=fm,所以第一次的加速度可能比第二次的加速度小,故C正确.]2.(多选)(2017·青岛模拟)如图544所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为F f,则小球从开始下落至最低点的过程( )【:92492234】图544A.小球动能的增量为零B.小球重力势能的增量为mg(H+x-L)C.弹簧弹性势能的增量为(mg-F f)(H+x-L)D.系统机械能减小F f HAC[小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功W G=mgh=mg(H+x-L),根据重力做功量度重力势能的变化W G=-ΔE p得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:W G+W f+W弹=0-0=0,所以W弹=-(mg-F f)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔE p得:弹簧弹性势能的增量为(mg-F f)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:F f(H+x-L),所以系统机械能减小为:F f(H+x-L),故D 错误.]功能关系的应用技巧1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析,W总=ΔE k.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析,即W G =-ΔE p.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,即W其他=ΔE.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析,即W电=-ΔE p.对能量守恒定律的理解及应用1(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE 增,最后由ΔE减=ΔE增列式求解.[多维探究]●考向1 涉及弹簧的能量守恒定律问题1.如图545所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止.现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度.在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是( )图545A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加B[在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误.]2.如图546所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图546(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.【:92492235】【解析】(1)A与斜面间的滑动摩擦力f=2μmg cos θ,物体从A向下运动到C点的过程中,根据能量守恒定律可得:2mgL sin θ+12·3mv20=12·3mv2+mgL+fL解得v=v20-gL.(2)从物体A接触弹簧,将弹簧压缩到最短后又恰回到C点,对系统应用动能定理-f·2x=0-12×3mv2解得x=v202g-L2.(3)弹簧从压缩到最短到恰好能弹到C点的过程中,对系统根据能量守恒定律可得:E p+mgx=2mgx sin θ+fx所以E p=fx=3mv204-3mgL4.【答案】(1)v20-gL(2)v202g-L2(3)3mv204-3mgL4●考向2 能量守恒定律与图象的综合应用3.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图547中两直线所示.g 取10 m/s 2,下列说法正确的是( )图547A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 JD [在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理得:-fH -mgH =12mv 2-12mv 20,解得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理得:-fh ′-mgh ′=E k2-12mv 20,解得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.]摩擦力做功与能量的转化关系1.(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量. (2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量. 2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l相对,产生的内能Q =F f ·l 相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:图 5-4-8(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【自主思考】(1)1.9 s 内工件是否一直加速?应如何判断?提示:若工件一直匀加速,由v m 2×t =hsin θ可得:工件的最大速度v m =61.9m/s>v 0,故工件在1.9 s 内应先匀加速运动再匀速运动.(2)工件在上升过程中其所受的摩擦力是否变化? 提示:变化,先是滑动摩擦力,后是静摩擦力.(3)电动机传送工件的过程中多消耗的电能转化成了哪几种能量? 提示:工件的动能、重力势能及因摩擦力做功产生的热量三部分. 【解析】 (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmg cos θ-mg sin θ=ma解得:μ=32.(2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J.【答案】 (1)32 (2)230 J[母题迁移]●迁移1 水平传送带问题1.如图549所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )【:92492236】 图549A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv ,选项D 正确.]●迁移2 倾斜传送带 逆时针转动 2.(多选)(2017·太原模拟)如图5410所示,与水平面夹角为θ=37°的传送带以恒定速率v =2 m/s沿逆时针方向运动.将质量为m =1 kg 的物块静置在传送带上的A 处,经过1.2 s 到达传送带的B 处.已知物块与传送带间的动摩擦因数为μ=0.5,其他摩擦不计,物块可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列对物块从传送带A 处运动到B 处过程的相关说法正确的是( )【:92492237】图5410A .物块动能增加2 JB .物块机械能减少11.2 JC .物块与传送带因摩擦产生的热量为4.8 JD .物块对传送带做的功为-12.8 JBC [由题意可知μ<tan 37°,因而物块与传送带速度相同后仍然要加速运动.物块与传送带速度相同前,由牛顿第二定律有mg (sin θ+μcos θ)=ma 1,v =a 1t 1,x 1=12a 1t 21, 解得a 1=10 m/s 2,t 1=0.2 s ,x 1=0.2 m ,物块与传送带速度相同后,由牛顿第二定律有mg (sin θ-μcos θ)=ma 2,v ′=v +a 2t 2,x 2=vt 2+12a 2t 22,而t 1+t 2=1.2 s ,解得a 2=2 m/s 2,v ′=4 m/s ,x 2=3 m ,物块到达B 处时的动能为E k =12mv ′2=8 J ,选项A 错误;由于传送带对物块的摩擦力做功,物块机械能变化,摩擦力做功为W f =μmgx 1cos θ-μmgx 2cos θ=-11.2 J ,故机械能减少11.2 J ,选项B 正确;物块与传送带因摩擦产生的热量为Q =μmg (vt 1-x 1+x 2-vt 2)cos θ=4.8 J ,选项C 正确;物块对传送带做的功为W =-μmgvt 1cos θ+μmgvt 2cos θ=6.4 J ,选项D 错误.]1.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转移.2.滑动摩擦力做功,其他形式的能量转化为内能;静摩擦力做功,不产生内能.3.公式Q=F f·l相对中l相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则l相对为总的相对路程.。
功能关系能量守恒定律目标要求 1.熟练掌握几种常见的功能关系;理解能量守恒定律。
2.掌握应用功能关系或能量守恒定律解决问题的方法。
3.应用能量观点解决生活生产中的实际问题。
考点一功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能量转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.常见的功能关系能量功能关系表达式势能重力做的功等于重力势能减少量W=E p1-E p2=-ΔE p 弹力做的功等于弹性势能减少量静电力做的功等于电势能减少量分子力做的功等于分子势能减少量动能合外力做的功等于物体动能变化量W=E k2-E k1=12m v2-12m v02机械能除重力和弹力之外的其他力做的功等于机械能变化量W其他=E2-E1=ΔE摩擦产生的内能一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q=F f·x相对(多选)如图所示,载有防疫物资的无人驾驶小车,在水平MN段以恒定功率200 W、速度5 m/s匀速行驶,在斜坡PQ段以恒定功率570 W、速度2 m/s 匀速行驶。
已知小车总质量为50 kg,MN=PQ=20 m,PQ段的倾角为30°,重力加速度g取10 m/s2,不计空气阻力。
下列说法正确的有()A.从M 到N ,小车牵引力大小为40 NB.从M 到N ,小车克服摩擦力做功800 JC.从P 到Q ,小车重力势能增加1×104 JD.从P 到Q ,小车克服摩擦力做功700 J解析:ABD 从M 到N ,由P 1=F 1v 1可得小车牵引力F 1=P 1v 1=2005 N =40 N ,A 正确;从M 到N ,小车匀速行驶,牵引力等于摩擦力,可得摩擦力F f1=F 1=40 N ,小车克服摩擦力做的功W f1=F f1·MN =40×20 J =800 J ,B 正确;从P 到Q ,由P 2=F 2v 2可得小车牵引力F 2=P 2v 2=5702 N =285 N ,从P 到Q ,小车匀速行驶,小车牵引力F 2=F f2+mg sin 30°,解得F f2=F 2-mg sin 30°=285 N -50×10×12N =35 N ;从P 到Q ,小车克服摩擦力做的功W f2=F f2·PQ =35×20 J =700 J ,D 正确;从P 到Q ,小车上升的高度h =PQ sin 30°=20×0.5 m =10 m ,小车重力势能的增加量ΔE p =mgh =50×10×10 J =5000 J ,C 错误。
第4讲功能关系能量守恒定律一、几种常见的功能关系及其表达式自测1(多选)(2018·江西省赣州市十四县市期中)一个质量为m的物体以a=2g的加速度竖直向下运动,则在此物体下降h高度的过程中,物体的( )A.重力势能减少了2mghB.动能增加了2mghC.机械能保持不变D.机械能增加了mgh答案BD解析下降h高度,则重力做正功mgh,所以重力势能减小mgh,A错误;根据动能定理可得F合h=ΔE k,又F合=ma=2mg,故ΔE k=2mgh,B正确;重力势能减小mgh,而动能增大2mgh,所以机械能增加mgh,C错误,D正确.二、两种摩擦力做功特点的比较自测2 如图1所示,一个质量为m 的铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为( )图1A.43mgR B .mgR C.12mgR D.34mgR 答案 D三、能量守恒定律 1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.自测3(多选)如图2所示为生活中磨刀的示意图,磨刀石静止不动,刀在手的推动下从右向左匀速运动,发生的位移为x,设刀与磨刀石之间的摩擦力大小为f,则下列叙述中正确的是( )图2A.摩擦力对刀做负功,大小为fxB.摩擦力对刀做正功,大小为fxC.摩擦力对磨刀石做正功,大小为fxD.摩擦力对磨刀石不做功答案AD命题点一功能关系的理解1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析.例1(2018·广东省惠州市第三次调研)质量为2 kg的物体以10 m/s的初速度,从起点A出发竖直向上抛出,在它上升到某一点的过程中,物体的动能损失了50 J,机械能损失了10 J,设物体在上升、下降过程空气阻力大小恒定,则该物体再落回到A点时的动能为(g=10 m/s2)( )A.40JB.60JC.80JD.100J答案 B解析物体抛出时的总动能为100J,物体的动能损失了50J时,机械能损失了10J,则动能损失100J时,机械能损失了20J,此时到达最高点,返回时,机械能还会损失20J,故从A 点抛出到落回到A点,共损失机械能40J,所以该物体再落回到A点时的动能为60J,A、C、D错误,B正确.变式1(多选)(2018·四川省攀枝花市第二次统考) 物体由地面以120J的初动能竖直向上抛出,当它从抛出至上升到某一点A的过程中,动能减少40J,机械能减少10J.设空气阻力大小不变,以地面为零势能面,则物体( )A.落回到地面时机械能为70JB.到达最高点时机械能为90JC .从最高点落回地面的过程中重力做功为60JD .从抛出到落回地面的过程中克服阻力做功为60J 答案 BD解析 物体以120J 的初动能竖直向上抛出,向上运动的过程中重力和空气阻力都做负功,当上升到某一高度时,动能减少了40J ,而机械能损失了10J .根据功能关系可知:合力做功为-40J ,空气阻力做功为-10J ,对从抛出点到A 点的过程,根据功能关系:mgh +fh =40J ,fh =10J ,得f =13mg ;当上升到最高点时,动能为零,动能减小120J ,设最大高度为H ,则有:mgH +fH =120J ,解得mgH =90J ,fH =30J ,即机械能减小30J ,在最高点时机械能为120J -30J =90J ,即上升过程机械能共减少了30J ;当下落过程中,由于阻力做功不变,所以机械能又损失了30J ,故整个过程克服阻力做功为60J ,则该物体落回到地面时的机械能为60J ,从最高点落回地面的过程中重力做功为mgH =90J ,故A 、C 错误,B 、D 正确.命题点二 功能关系的综合应用例2 (多选)(2016·全国卷Ⅱ·21)如图3所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N点的过程中( )图3A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案 BCD解析 因M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知小球在M 处时弹簧处于压缩状态,在N 处时弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,小球在竖直方向受到的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻小球的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力方向与速度方向垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因小球在M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确. 变式2 (多选)(2018·福建省龙岩市上学期期末)如图4所示,轻质弹簧一端固定在水平面上的光滑转轴O 上,另一端与套在粗糙固定直杆A 处质量为m 的小球(可视为质点)相连.A 点距水平面的高度为h ,直杆与水平面的夹角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,经过B 处的速度为v ,并恰能停在C 处.已知重力加速度为g ,则下列说法正确的是( )图4A .小球通过B 点时的加速度为g2B .小球通过AB 段与BC 段摩擦力做功相等 C .弹簧具有的最大弹性势能为12mv 2D .A 到C 过程中,产生的内能为mgh 答案 BCD解析 因在B 点时弹簧处于原长,则到达B 点时的加速度为a =g sin30°-μg cos30°<12g ,选项A 错误;因AB 段与BC 段关于B 点对称,则在两段上弹力的平均值相等,则摩擦力平均值相等,摩擦力做功相等,选项B 正确;设小球从A 运动到B 的过程克服摩擦力做功为W f ,弹簧具有的最大弹性势能为E p ,根据能量守恒定律得,对于小球从A 到B 的过程有:mg ·12h+E p =12mv 2+W f ,从A 到C 的过程有:mgh =2W f ,解得:W f =12mgh ,E p =12mv 2.即弹簧具有的最大弹性势能为12mv 2,A 到C 过程中,产生的内能为2W f =mgh ,选项C 、D 正确.例3 (多选)(2018·广东省潮州市下学期综合测试)如图5所示,竖直平面内有一半径为R 的固定14圆轨道与水平轨道相切于最低点B .一质量为m 的小物块P (可视为质点)从A 处由静止滑下,经过最低点B 后沿水平轨道运动,到C 处停下,B 、C 两点间的距离为R ,物块P 与圆轨道、水平轨道之间的动摩擦因数均为μ.现用力F 将物块P 沿下滑的路径从C 处缓慢拉回圆弧轨道的顶端A ,拉力F 的方向始终与物块P 的运动方向一致,物块P 从B 处经圆弧轨道到达A 处过程中,克服摩擦力做的功为μmgR ,下列说法正确的是( )图5A .物块P 在下滑过程中,运动到B 处时速度最大B .物块P 从A 滑到C 的过程中克服摩擦力做的功等于2μmgR C .拉力F 做的功小于2mgRD .拉力F 做的功为mgR (1+2μ) 答案 CD解析 当重力沿圆轨道切线方向的分力等于滑动摩擦力时速度最大,此位置在AB 之间,故A 错误;将物块P 缓慢地从B 拉到A ,克服摩擦力做的功为μmgR ,而物块P 从A 滑到B 的过程中,物块P 做圆周运动,根据向心力知识可知物块P 所受的支持力比缓慢运动时要大,则滑动摩擦力增大,所以克服摩擦力做的功W f 大于μmgR ,因此物块P 从A 滑到C 的过程中克服摩擦力做的功大于2μmgR ,故B 错误;由动能定理得,从C 到A 的过程中有W F -mgR -μmgR -μmgR =0-0,则拉力F 做的功为W F =mgR (1+2μ),故D 正确;从A 到C 的过程中,根据动能定理得mgR -W f -μmgR =0,因为W f >μmgR ,则mgR >μmgR +μmgR ,因此W F <2mgR ,故C 正确.变式3 (2018·四川省第二次“联测促改”)高速公路部分路段旁建有如图6所示的避险车道,车辆可驶入避险.若质量为m 的货车刹车后以初速度v 0经A 点冲上避险车道,前进距离l 时到B 点减速为0,货车所受阻力恒定,A 、B 两点高度差为h ,C 为A 、B 中点,已知重力加速度为g ,下列关于该货车从A 运动到B 的过程说法正确的是( )图6A .克服阻力做的功为12mv 02B .该过程产生的热量为12mv 02-mghC .在AC 段克服阻力做的功小于在CB 段克服阻力做的功D .在AC 段的运动时间等于在CB 段的运动时间 答案 B解析 根据动能定理有-mgh -fl =0-12mv 02,克服阻力做的功为W f =fl =12mv 02-mgh ,故A错误;克服阻力做的功等于系统产生的内能,则该过程产生的热量为12mv 02-mgh ,故B 正确;阻力做的功与路程成正比,在AC 段克服阻力做的功等于在CB 段克服阻力做的功,故C 错误;从A 到B 做匀减速运动,AC 段的平均速度大于BC 段的平均速度,故在AC 段的运动时间小于在CB 段的运动时间,故D 错误.命题点三 摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能. 2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: ①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能. (3)摩擦生热的计算:Q =fx 相对.其中x 相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的总功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.例4 如图7所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段物体与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )图7A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第一阶段物体和传送带间因摩擦产生的热量等于第一阶段物体机械能的增加量D .物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功 答案 C解析 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,合力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段物体的运动时间为t ,传送带速度为v ,对物体有x 1=v2t ,对传送带有x 1′=v ·t ,因摩擦产生的热量Q=fx 相对=f (x 1′-x 1)=f ·v 2t ,物体机械能增加量ΔE =f ·x 1=f ·v2t ,所以Q =ΔE ,C 正确.变式4 质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图8所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )图8A.12mv 02-μmg (s +x ) B.12mv 02-μmgx C .μmgs D .μmg (s +x )答案 A解析 根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由能量守恒定律可得 12mv 02=W 弹+W f ,W 弹=12mv 02-μmg (s +x ),故选项A 正确. 变式5 (多选)(2019·湖南省怀化市调研)质量为m 的物体在水平面上,只受摩擦力作用,以初动能E 0做匀变速直线运动,经距离d 后,动能减小为E 03,则( )A .物体与水平面间的动摩擦因数为2E 03mgdB .物体再前进d3便停止C .物体滑行距离d 所用的时间是滑行后面距离所用时间的3倍D .若要使此物体滑行的总距离为3d ,其初动能应为2E 0 答案 AD解析 由动能定理知W f =μmgd =E 0-E 03,所以μ=2E 03mgd,A 正确;设物体总共滑行的距离为s ,则有μmgs =E 0,所以s =32d ,物体再前进d2便停止,B 错误;将物体的运动看成反方向的初速度为0的匀加速直线运动,则连续运动三个d2距离所用时间之比为(3-2)∶(2-1)∶1,所以物体滑行距离d 所用的时间是滑行后面距离所用时间的(3-1)倍,C 错误;若要使此物体滑行的总距离为3d ,则由动能定理知μmg ·3d =E k ,得E k =2E 0,D 正确.命题点四 能量守恒定律的理解和应用例5 如图9所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相切,半圆形导轨的半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B 点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C .不计空气阻力,试求:图9(1)物体在A 点时弹簧的弹性势能;(2)物体从B 点运动至C 点的过程中产生的内能. 答案 (1)72mgR (2)mgR解析 (1)设物体在B 点的速度为v B ,所受弹力为N B ,由牛顿第二定律得:N B -mg =m v B 2R由牛顿第三定律知N B =N B ′=8mg 由能量守恒定律可知物体在A 点时的弹性势能E p =12mv B 2=72mgR(2)设物体在C 点的速度为v C ,由题意可知mg =m v C 2R物体由B 点运动到C 点的过程中,由能量守恒定律得Q =12mv B 2-(12mv C 2+2mgR )解得Q =mgR .变式6 如图10所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0(v 0>gL ),使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图10(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案 (1)v 02-gL (2)12(v 02g -L ) (3)34m (v 02-gL )解析 (1)物体A 与斜面间的滑动摩擦力f =2μmg cos θ, 对A 向下运动到C 点的过程,对A 、B 组成的系统,由动能定理有 2mgL sin θ-mgL -2μmgL cos θ=32m (v 2-v 02)解得v =v 02-gL(2)从物体A 接触弹簧将弹簧压缩到最短后又恰好回到C 点的过程,对系统由动能定理得 -f ·2x =0-12×3mv 2解得x =v 022g -L 2=12(v 02g-L )(3)从弹簧被压缩至最短到物体A 恰好弹回到C 点的过程中,由能量守恒定律得E p +mgx =fx +2mgx sin θ解得E p =3m 4(v 02-gL ).1.(多选)(2018·福建省三明一中模拟)滑沙是人们喜爱的游乐活动,如图1是滑沙场地的一段斜面,其倾角为30°,设参加活动的人和滑车总质量为m ,人和滑车从距底端高为h 处的顶端A 沿滑道由静止开始匀加速下滑,加速度为0.4g ,人和滑车可视为质点,则从顶端向下滑到底端B 的过程中,下列说法正确的是( )图1A .人和滑车减少的重力势能全部转化为动能B .人和滑车获得的动能为0.8mghC .整个下滑过程中人和滑车减少的机械能为0.2mghD .人和滑车克服摩擦力做功为0.6mgh 答案 BC解析 沿斜面的方向有ma =mg sin30°-f ,所以f =0.1mg ,人和滑车减少的重力势能转化为动能和内能,故A 错误;人和滑车下滑的过程中重力和摩擦力做功,获得的动能为E k =(mg sin30°-f )hsin30°=0.8mgh ,故B 正确;整个下滑过程中人和滑车减少的机械能为ΔE=mgh -E k =mgh -0.8mgh =0.2mgh ,故C 正确;整个下滑过程中克服摩擦力做功等于人和滑车减少的机械能,所以人和滑车克服摩擦力做功为0.2mgh ,故D 错误.2.(多选)(2018·安徽省安庆市二模)一运动员穿着飞翔装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,如图2所示,运动方向与水平方向成53°,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是( )图2A .运动员重力势能的减少量为3mgh5B .运动员动能的增加量为3mgh4C .运动员动能的增加量为1516mghD .运动员的机械能减少了mgh16答案 CD解析 运动员下落的高度是h ,W =mgh ,运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离L =h sin53°=54h ,运动员受到的合外力F 合=ma =34mg ,动能的增加量等于合外力做的功,即ΔE k =W 合=34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.3.(多选)(2019·山东省临沂市模拟)如图3所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h 的过程中( )图3A .物块A 的重力势能增加量一定等于mghB .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的和C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的和D .物块A 和弹簧组成系统的机械能增加量等于斜面对物块的支持力和B 对弹簧的拉力做功的和 答案 CD解析 当物块具有向上的加速度时,弹簧弹力在竖直方向上的分力和斜面的支持力在竖直方向上的分力的合力大于重力,所以弹簧的弹力比物块静止时大,弹簧的伸长量增大,物块A 相对于斜面向下运动,物块A 上升的高度小于h ,所以重力势能的增加量小于mgh ,故A 错误;对物块A 由动能定理有物块A 的动能增加量等于斜面的支持力、弹簧的拉力和重力对其做功的和,故B 错误;物块A 机械能的增加量等于斜面支持力和弹簧弹力做功的和,故C 正确;物块A 和弹簧组成系统的机械能增加量等于斜面对物块的支持力和B 对弹簧的拉力做功的和,故D 正确.4.(2019·四川省德阳市调研)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( ) A .W =0,Q =mv 2B .W =0,Q =2mv 2C .W =mv 22,Q =mv 2D .W =mv 2,Q =2mv 2答案 B解析 对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v2μg ,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.5.(多选)(2018·陕西省黄陵中学考前模拟)如图4所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失;换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是()图4A .两滑块到达B 点的速度相同 B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同 答案 CD解析 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于在B 点时的速度不同,故上升的最大高度不同,故B 错误;两滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·hsin θ,则mgh =E p1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmghtan θ,结合C 可知D 正确.6.(多选)(2018·黑龙江省佳木斯市质检)如图5所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()图5A .升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B .升降机匀加速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能D.升降机上升的全过程中,升降机拉力做的功大于升降机和人增加的机械能答案BC解析根据动能定理可知,合外力对物体做的功等于物体动能的变化量,所以升降机匀加速上升过程中,升降机底板对人做的功和人的重力做功之和等于人增加的动能,故A错误;除重力外,其他力对人做的功等于人机械能的增加量,B正确;升降机匀速上升过程中,升降机底板对人做的功等于人克服重力做的功(此过程中动能不变),即增加的机械能,C正确;升降机上升的全过程中,升降机拉力做的功等于升降机和人增加的机械能,D错误.7.(多选)(2018·河南师大附中模拟)如图6所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图6A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加量C.轻绳对m做的功等于m机械能的增加量D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案CD解析由于斜面ab粗糙,故两滑块组成系统的机械能不守恒,故A错误;由动能定理得,重力、拉力、摩擦力对M做的总功等于M动能的增加量,故B错误;除重力、弹力以外的力做功,将导致机械能变化,轻绳对m做的功等于m机械能的增加量,故C正确;摩擦力做负功,故造成机械能损失,故D正确.8.(多选)(2018·山东省泰安市上学期期中)一小球在竖直方向的升降机中,由静止开始竖直向上做直线运动,运动过程中小球的机械能E与其上升高度h关系的图像如图7所示,其中0~h1过程的图线为曲线,h1~h2过程中的图线为直线.下列说法正确的是( )图7A.0~h1过程中,升降机对小球的支持力一定做正功B.0~h1过程中,小球的动能一定在增加C .h 1~h 2过程中,小球的动能可能不变D .h 1~h 2过程中,小球重力势能可能不变 答案 AC解析 设升降机对小球的支持力大小为N ,由功能关系得Nh =E ,所以E -h 图像的斜率的绝对值等于小球所受支持力的大小,从题图可知机械能增大,所以升降机对小球的支持力做正功,在0~h 1过程中斜率的绝对值逐渐减小,故在0~h 1过程中小球所受的支持力逐渐减小.所以开始先做加速运动,当支持力减小后,可能会做匀速运动,也可能会做减速运动,还可能仍做加速运动,故A 正确,B 错误;由于小球在h 1~h 2过程中E -h 图像的斜率不变,所以小球所受的支持力保持不变,故小球可能做匀速运动,动能可能不变,C 正确;由于小球在h 1~h 2过程中高度一直增大,重力势能随高度的增大而增大,故D 错误.9.(多选)(2018·山东省泰安市上学期期末)如图8,三个小球A 、B 、C 的质量均为m ,A 与B 、C 间通过铰链用轻杆连接,杆长为L .B 、C 置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A 由静止释放下降到最低点,两轻杆间夹角α由60°变为120°.A 、B 、C 在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g .则此下降过程中( )图8A .A 的动能最大时,B 、C 的动能均为零 B .A 的动能最大时,B 受到地面的支持力等于32mgC .弹簧的弹性势能最大时,A 的加速度为零D .弹簧的弹性势能最大值为3-12mgL 答案 BD解析 A 的加速度为零时速度最大,此时速度仍向下,弹簧要继续伸长,B 、C 继续运动,故二者动能不为零,故选项A 错误;A 的动能最大时,设B 和C 受到的地面的支持力大小均为N ,此时整体在竖直方向受力平衡,可得2N =3mg ,所以N =32mg ,故选项B 正确;A 的加速度为零时速度最大,此时速度仍向下,弹簧要继续伸长,所以弹簧的弹性势能继续增大,当A 到达最低点时动能为零,此时弹簧的弹性势能最大,A 仍有加速度,故C 错误;A 下降的高度为。