实验7 rlc串联谐振电路的研究
- 格式:doc
- 大小:423.00 KB
- 文档页数:6
RLC串联电路的谐振特性研究实验报告摘要本研究讨论了RLC串联电路的谐振特性。
串联电路的最大谐振频率和最小谐振频率通过实验测量,通过电路计算来验证。
特性曲线的形状是理论测量的结果一致的,说明实验结果可靠。
结果表明,当阻抗器的电阻值增加时,最大和最小谐振频率比较稳定。
关键词:RLC串联电路;谐振特性;实验测量;计算验证;特性曲线1 引言RLC串联电路是电力系统中常见的高阻抗电源和测量电路,它由电阻R、电感L及电容C三个元件组成,是用于测量谐振特性最常见的电路之一。
由于谐振特性及其相关特性与RLC串联电路的参数密切相关,所以要准确测量谐振特性,就必须对这三个基本元件的各种特性进行准确的测试和验证。
本文将对RLC串联电路的谐振特性进行测量和验证,以分析其特性表现,以作为进一步的基础研究。
2 电路实验RLC串联电路的实验图如图1所示,由电阻R、电感L和电容C三个元件组成。
示波器用来测量RLC串联电路中交流电压的波形变化,正弦波发生器用来产生一定的输出电压,可改变频率来测量最大、最小谐振频率的值,而变阻器用来改变RLC串联电路的电阻R的电阻值,可分析子图形1中电感L、电容C外部给定的谐振频率。
实验采用正弦波发生器输出不同频率信号,对RLC串联电路中U-V示波器测量输出电压波形,当变阻器的电阻值一定时,随着输出电压频率变化而变化。
当输出电压频率与RLC电路谐振频率相符时,其输出电压有更显著的波动,电源从高频到低频,以及由低频到高频,都能够找到一个共振的频率值,这个值分别是最大谐振频率和最小谐振频率。
3 结果分析本次实验结果显示,随着阻抗器电阻值的改变,最大谐振频率和最小谐振频率也有所变化,而在不同的电阻值上,谐振频率的变化幅度都很小。
比较理论计算和实验测量的结果,证明了实验测量的准确性。
可以发现,实验测量和理论计算的特性曲线基本构成一致,并且越靠近频率值越接近,证明了谐振特性的实验测量结果的可靠性。
rlc串联谐振电路的研究实验报告实验目的:通过对rlc串联谐振电路的研究实验,探究在不同频率下电压、电流和相位的变化规律,加深对谐振电路的理解。
实验原理:rlc串联谐振电路是由电阻R、电感L和电容C串联而成的电路。
在谐振频率下,电感和电容的阻抗大小相等,电路中的电流和电压将达到最大值。
谐振频率的计算公式为f=1/(2π√(LC))。
在谐振频率下,电路中的电压和电流相位相同,电压和电流呈正弦关系。
实验仪器:1. 信号发生器。
2. 电压表。
3. 电流表。
4. 电阻箱。
5. 电感。
6. 电容。
实验步骤:1. 按照实验电路图连接好电路。
2. 调节信号发生器的频率,测量电路中的电压和电流。
3. 记录数据并绘制电压、电流随频率变化的曲线图。
4. 分析实验数据,得出结论。
实验结果:通过实验测量和数据处理,我们得到了以下实验结果:1. 当信号发生器的频率逐渐接近谐振频率时,电路中的电压呈现出明显的增大趋势,最后达到最大值。
2. 在谐振频率下,电路中的电流也达到最大值,且电压和电流的相位相同。
3. 在谐振频率上下,电路中的电压和电流均呈现出振荡变化,但相位差逐渐增大。
实验分析:根据实验结果,我们可以得出以下结论:1. 在rlc串联谐振电路中,当频率接近谐振频率时,电路中的电压和电流都会达到最大值。
2. 在谐振频率下,电路中的电压和电流相位相同,呈正弦关系。
3. 谐振电路的谐振频率与电感和电容的数值有关,频率与电感成反比,与电容成正比。
实验总结:通过本次实验,我们深入了解了rlc串联谐振电路的工作原理和特性。
在实验中,我们通过测量电路中的电压和电流随频率变化的规律,验证了谐振电路的谐振特性。
同时,我们也掌握了在实验中使用信号发生器、电压表、电流表等仪器的操作方法,提高了实验操作能力。
总之,本次实验为我们进一步学习电路谐振提供了宝贵的实践经验,也为我们今后的学习和科研工作打下了坚实的基础。
愿我们在今后的学习和实践中能够不断提高自己的实验能力,更好地应用所学知识。
实验7 RLC串联谐振电路的研究1 、实验目的( 1 )学习测定 RLC 串联电路谐振曲线的方法,加深对串联谐振电路特性的理解。
( 2 )学习对谐振频率、通频带和品质因数的测试方法。
2 、原理说明( 1 ) RLC 串联电路(图 4-7-1)的阻抗是电源角频率ω的函数,即当ωL- 1/ωC =0 时,电路处于串联谐振状态,谐振角频率为ω0= 谐振频率为f0=图4-7-1显然,谐振频率仅与元件 L 、C 的数值有关,而与电阻 R 和激励电源的角频率ω无关。
当ω<ω0时,电路呈容性,阻抗角φ< 0 ;当ω>ω0时,电路呈感性,阻抗角φ> 0 。
( 2 )电路处于谐振状态时的特性①由于回路总电抗 X0= ω0L-1/ω0C =0 ,因此,回路阻抗|Z0|为最小值,整个回路相当于一个纯电阻电路,激励电源的电压与回路的响应电流同相位。
②由于感抗ω0L 与容抗1/ω0C 相等,所以电感上的电压L与电容上的电压C数值相等,相位相差180 °。
电感上的电压(或电容上的电压)与激励电压之比称为品质因数Q ,即:在 L 和 C 为定值的条件下,Q 值仅仅决定于回路电阻 R 的大小。
③在激励电压(有效值)不变的情况下,回路中的电流 I= Us/R为最大值。
( 3 )串联谐振电路的频率特性①回路的响应电流与激励电源的角频率的关系称为电流的幅频特性(表明其关系的图形为串联谐振曲线),表达式为:当电路的 L 和 C 保持不变时,改变 R 的大小,可以得出不同 Q 值时电流的幅频特性曲线(如图 4-7-2 )。
显然, Q 值越高,曲线越尖锐。
为了反映一般情况,通常研究电流比 I/I0与角频率比ω/ω0之间的函数关系,即所谓通用幅频特性。
其表达式为:这里, I0为谐振时的回路响应电流。
图 4-7-3 画出了不同 Q 值下的通用幅频特性曲线,显然, Q 值越高,在一定的频率偏移下,电流比下降得越厉害。
幅频特性曲线可以由计算得出,或用实验方法测定。
rlc串联谐振电路的研究实验结论以rlc串联谐振电路的研究实验结论为标题,写一篇文章研究实验结论:rlc串联谐振电路是一种能够在特定频率下实现电压最大化的电路。
通过对该电路进行实验研究,我们得出以下结论:1. 谐振频率的确定:在实验中,我们通过改变电容器的电容值和电感器的电感值,观察到当电容和电感的值满足一定关系时,电路会在特定频率下发生谐振现象。
通过实验数据的分析,我们可以计算得到谐振频率的数值,从而确定谐振频率的计算公式。
2. 电压的最大化:在谐振频率下,串联谐振电路的电压会达到最大值。
这是因为在该频率下,电感和电容的阻抗大小相等且相互抵消,使电路的总阻抗最小化。
因此,电压信号能够充分通过电路而不受阻碍,导致电压最大化。
3. 相位差的变化:在实验中,我们还观察到串联谐振电路中电压与电流之间存在相位差。
在低于谐振频率时,电流超前于电压;而在高于谐振频率时,电压超前于电流。
这是由于电感和电容的阻抗特性导致的。
在谐振频率时,相位差为零,电流与电压同相。
4. 能量损耗的存在:在实验中,我们发现串联谐振电路存在能量损耗的现象。
这是由于电阻的存在导致的,电阻会消耗电路中的能量并产生热量。
因此,在实际应用中,我们需要考虑电路中的能量损耗问题,以避免电路的过热或其他损坏情况的发生。
通过对rlc串联谐振电路的研究实验,我们得出了谐振频率的确定、电压最大化、相位差的变化以及能量损耗的存在等结论。
这些结论对于我们理解和应用谐振电路具有重要意义,也为进一步研究和应用提供了基础。
因此,在电路设计和工程实践中,我们可以根据这些结论来优化电路设计,提高电路的性能和效率。
RLC串联电路的谐振特性研究实验报告.doc 实验目的:1. 了解RLC串联电路的工作原理及其谐振特性;2. 掌握测量RLC串联电路谐振频率和谐振带宽的方法。
实验仪器:1. RLC串联电路实验箱;2. 信号源;3. 示波器。
实验原理:RLC串联电路是由电阻、电感和电容串联形成的电路,它可以产生共振现象。
当其频率为共振频率时,电路中流过电流的大小取决于电路中的电感和电容。
此时,电路呈现出很高的阻抗,电流最大。
谐振频率 f0 由以下公式给出:f0 = 1 / (2π√LC)其中,L 为电路中的电感,C 为电路中的电容。
Z0 = R + j(XL - XC)谐振带宽 BW 的计算公式为:BW = Δf = f2 - f1其中,f1 和 f2 分别为电路总阻抗等于Z0/√2 时的频率。
实验步骤:1. 连接实验电路:将电阻、电感和电容串联起来,组成 RLC 串联电路,并连接信号源和示波器。
2. 设置信号源:将信号源的频率调节旋钮设置到最小值,同时将信号源电压调节旋钮调整到最大值。
3. 测量谐振频率:将示波器调节到 X-Y 模式,然后调节信号源频率调节旋钮,逐渐增大频率,直到示波器屏幕上显示出一个正弦波。
此时,记录下示波器显示的频率值,即为电路的谐振频率 f0。
实验结果:1. 在本次实验中,使用的电阻、电感和电容的值分别为:R = 1kΩ,L = 10mH,C = 0.1μF。
2. 在逐渐增大信号源频率的过程中,当频率达到 2231 Hz 时,电路中开始出现正弦波,此时记录下的频率值即为电路的谐振频率 f0。
3. 继续增大信号源频率,当频率达到 2358 Hz 时,电路总阻抗等于Z0/√2 时,记录下此时信号源频率调节旋钮的读数。
5. 通过计算,得到电路的谐振带宽为 157 Hz。
1. RLC串联电路可以产生共振现象,其频率为谐振频率 f0。
2. 对于给定的 RLC 串联电路,谐振频率 f0 取决于电路中的电感和电容的值。
1实验七 RLC 串联谐振电路的研究一、实验目的(1)测定RLC 串联电路的谐振频率,加深对其谐振条件和特点的理解。
(2)测量RLC 串联电路的幅频特性、通频带和品质因数Q 值。
二、实验原理1.RLC 串联谐振在图7-1所示的RLC 串联电路中,电路的复阻抗:1()L C Z R j L R j R jX Z X X Cw j w 骣÷ç=+-=+-=+= ÷ç÷ç桫电路的电流:ss1U U I ZR j L C w w 贩·==骣÷ç+-÷ç÷ç桫改变输入正弦交流信号的频率(w )时,电路中的感抗、容抗都随之改变,电路的电流大小和相位也发生了变化。
当RLC 串联电路的总电抗为零,即10L Cw w -=时,电路处于谐振状态。
此时Z R =,S U ·与I ·同相。
谐振角频率:0w =0f =显然,电路的谐振频率0f 与电阻值无关,只与L 、C 的大小有关。
当0f f <时,电路呈容性,阻抗角0j <;当0f f =时,电路处于谐振状态,阻抗角0j =,电路呈电阻性,此时电路的阻抗最小,电流0I 达到最大;当0f f >时,电路呈感性,阻抗角0j >;2.品质因数Q当RLC 串联谐振时,电感电压与电容电压大小相等,方向相反,且有可能大于电源电压。
电感(或电容)上的电压与信号源电压之比,称为品质因数Q ,即0C L 0S S 1L U U Q R RCU U w w =====L 、C 不变时,不同的R 值可得到不同的Q 值。
3.幅频特性和通频带RLC 串联电路的电流大小与信号源角频率的关系,称为电流的幅频特性,其表达式为RU SU SU RU图7-1 RL C 串联电路2I ==电流I 随频率f 变化的曲线,如图7-2所示。
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:本文旨在研究RLC串联谐振电路的特性和性能。
RLC串联谐振电路是一种常见的电路结构,它由电阻(R)、电感(L)和电容(C)组成。
在特定频率下,RLC串联谐振电路能够表现出共振现象,这对于电子工程领域的应用具有重要意义。
实验目的:1. 研究RLC串联谐振电路的频率响应特性;2. 探究电阻、电感和电容对谐振频率和带宽的影响;3. 分析RLC串联谐振电路的相位差和频率之间的关系;4. 理解RLC串联谐振电路的功率传输和能量转换机制。
实验步骤:1. 搭建RLC串联谐振电路实验装置,包括电源、电阻、电感和电容等元件;2. 测量不同频率下电压和电流的数值;3. 绘制电压-频率和相位差-频率曲线,并找出谐振频率和带宽;4. 分析实验数据,总结RLC串联谐振电路的性能特点。
实验结果:通过实验测量和数据处理,我们得到了以下结果:在RLC串联谐振电路中,当输入信号频率等于谐振频率时,电路中的电流和电压达到最大值。
此时,电容的电压和电感的电流互相抵消,只有电阻消耗能量。
在谐振频率附近,电路的带宽较小,能够保持较高的品质因数。
而当频率远离谐振频率时,电路的电流和电压将会衰减。
讨论:通过实验数据和分析,我们可以得出以下结论:RLC串联谐振电路具有选择性放大特性,在谐振频率附近,电路能够对特定频率的信号进行放大,而对其他频率的信号进行衰减。
这种特性使得RLC串联谐振电路在无线通信、音频放大和滤波等领域有着广泛的应用。
实验结果还显示,电阻、电感和电容对RLC串联谐振电路的性能有着重要影响。
电阻的增加会减小电路的品质因数,降低谐振频率和带宽;电感值的增加会提高电路的品质因数,增大谐振频率和带宽;而电容的变化则会对谐振频率产生较大影响。
结论:通过本次实验,我们深入了解了RLC串联谐振电路的特性和性能。
该电路在电子工程领域具有重要应用,能够对特定频率的信号进行放大和滤波。
实验7 RLC串联谐振电路的研究
1 、实验目的
( 1 )学习测定 RLC 串联电路谐振曲线的方法,加深对串联谐振电路特性的理解。
( 2 )学习对谐振频率、通频带和品质因数的测试方法。
2 、原理说明
( 1 ) RLC 串联电路(图 4-7-1)的阻抗是电源角频率ω的函数,即
当ωL- 1/ωC =0 时,电路处于串联谐振状态,谐振角频率为
ω0= 谐振频率为
f0=
图4-7-1
显然,谐振频率仅与元件 L 、C 的数值有关,而与电阻 R 和激励电源的角频率ω无关。
当
ω<ω0时,电路呈容性,阻抗角φ< 0 ;当ω>ω0时,电路呈感性,阻抗角φ> 0 。
( 2 )电路处于谐振状态时的特性
①由于回路总电抗 X0= ω0L-1/ω0C =0 ,因此,回路阻抗|Z0|为最小值,整个回路相当于一
个纯电阻电路,激励电源的电压与回路的响应电流同相位。
②由于感抗ω0L 与容抗1/ω0C 相等,所以电感上的电压L与电容上的电压C数值相等,相位
相差180 °。
电感上的电压(或电容上的电压)与激励电压之比称为品质因数Q ,即:
在 L 和 C 为定值的条件下,Q 值仅仅决定于回路电阻 R 的大小。
③在激励电压(有效值)不变的情况下,回路中的电流 I= Us/R为最大值。
( 3 )串联谐振电路的频率特性
①回路的响应电流与激励电源的角频率的关系称为电流的幅频特性(表明其关系的图形为串联
谐振曲线),表达式为:
当电路的 L 和 C 保持不变时,改变 R 的大小,可以得出不同 Q 值时电流的幅频特性曲线(如
图 4-7-2 )。
显然, Q 值越高,曲线越尖锐。
为了反映一般情况,通常研究电流比 I/I0与角频率比ω/ω0之间的函数关系,即所谓通用幅
频特性。
其表达式为:
这里, I0为谐振时的回路响应电流。
图 4-7-3 画出了不同 Q 值下的通用幅频特性曲线,显然, Q 值越高,在一定的频率偏移下,
电流比下降得越厉害。
幅频特性曲线可以由计算得出,或用实验方法测定。
图4-7-2 图4-7-3
②为了衡量谐振电路对不同频率的选择能力,定义通用幅频特性中幅值下降至峰值的 0.707
倍时的频率范围(图 4-7-3 )为相对通频带(以 B 表示),即
B= ω
2/ω0 - ω1 -ω0
显然, Q 值越高,相对通频带越窄,电路的选择性越好。
③激励电压和回路响应电流的相角差φ与激励源角频率ω的关系称为相频特性,它可由公式 :
φ(ω)=
arctan[(ωL-1/ωC)/R]
计算得出或由实验测定。
相角φ与ω/ω0的关系称为通用相频特性,如图 4-7-4 所示。
谐振电路的幅频特性和相频特性是衡量电路特性的重要标志。
( 4 )串联谐振电路中,电感电压
电容电压
显然, U L与 U C都是激励ω源角频率ω的函数, U L(ω)和 U C(ω)曲线如图 4-7-5 所示。
当 Q > 0.707 时, U C 和 U L才能出现峰值,并且 U C 的峰值出现在ω = ωC <ω0处, U L的
峰值出现在ω = ωL>ω0处。
Q 值越高,出现峰值处离ω0越近。
图4-7-4 图4-7-5
3 、实验内容
( 1 )测量 RLC 串联电路响应电流的幅频特性曲线的 U L(ω)、U C(ω)曲线
实验电路如图 4-7-6 所示。
确定元件 R 、L 、C 的数值之后,保持正弦信号发生器输出电压
Us (有效值)不变,测量不同频率时的 U R、U L和 U C。
为了取点合理,可先将频率由低到高初测一次,注意找出谐振频率 f0以及出现 U C最大值时的
频率 f C和出现 U L最大值时的频率 f L。
然后,根据曲线形状选取频率,进行正式测量。
记录表格
自拟。
( 2 )保持 Us 和 L 、C 数值不变,改变电阻 R 的数值(即改变回路 Q 值),重复上述实验
( 3 )测量 RLC 串联电路的相频特性曲线。
保持 Us 不变,用示波器测量不同频率时 Us 与 U R 的
相角差(测量方法参见第 3 章中“示波器及其测量方法”有关部分)。
记录表格自拟。
图4-7-6
4 、选做实验
将图 4-7-6 中电容换成另一值,测量其幅频特性。
5 、注意事项
( 1 )每次改变信号电源的频率后,注意调节输出电压(有效值),使其保持为定值。
( 2 )实验前应根据所选元件数值,从理论上计算出谐振频率 f0和不同 Q 值时的ω0、ωC、ωL
等数值,以便和测量值加以比较。
( 3 )在测量U L和 U C时,注意信号源和测量仪器(晶体管毫伏表或示波器等)公共地线的接法
6 、预习思考题
( 1 )实验中,当 RLC 串联电路发生谐振时,是否有 U R=Us 和 U C=U L?若关系式不成立,试分析
其原因。
( 2 )可以用哪些实验方法判别电路处于谐振状态?
7 、实验报告要求
( 1 )根据实验数据,在坐标纸上绘出不同 Q 值下的通用幅频特性曲线、相频特性曲线以及
U C(ω)、 U L(ω)曲线,分别与理论计算值相比较,并作简略分析。
( 2 )通过实验总结 RLC 串联谐振电路的主要特点。
( 3 )回答思考题。
8 、实验设备
( 1 )示波器 1 台
( 2 )信号发生器 1 台
( 3 )晶体管毫伏表 1 只
( 4 )电感线圈 1 个
( 5 )电容箱 1 只
( 6 )电阻箱 1 只。