大学物理实验阿贝成像原理与空间滤波
- 格式:ppt
- 大小:686.50 KB
- 文档页数:11
阿贝成像原理和空间滤波实验报告阿贝成像原理和空间滤波实验报告引言:阿贝成像原理是一种常用于光学显微镜的成像原理,它通过对样本的光学信息进行收集和处理,使我们能够观察到微小的细胞结构和微生物。
而空间滤波则是一种用于图像处理的技术,通过对图像的频谱进行调整,可以改善图像的质量和细节。
实验目的:本实验旨在通过阿贝成像原理和空间滤波技术,对显微镜下的样本进行观察和图像处理,以提高图像的清晰度和对细节的分辨。
实验器材:1. 光学显微镜:用于观察样本。
2. 样本:可选择植物组织或昆虫标本等。
3. 数字相机:用于拍摄显微镜下的图像。
4. 图像处理软件:用于对图像进行空间滤波处理。
实验步骤:1. 准备样本:选择一片植物组织或昆虫标本,将其放置在显微镜的载物台上。
2. 调整显微镜:使用显微镜的目镜和物镜,调整焦距和放大倍数,以获得清晰的图像。
3. 观察样本:通过显微镜的目镜观察样本,调整物镜的焦距和位置,以获得最佳的观察效果。
4. 拍摄图像:将数字相机与显微镜相连,通过相机拍摄显微镜下的图像,保存为数字图像文件。
5. 图像处理:将保存的数字图像文件导入图像处理软件中,使用空间滤波技术对图像进行处理,以提高图像的质量和细节。
6. 比较结果:将处理后的图像与原始图像进行比较,观察处理效果的差异。
实验结果:经过空间滤波处理后,图像的清晰度和细节得到了明显的改善。
原始图像中模糊的细胞结构和微生物轮廓变得更加清晰可见,细胞核和细胞器的形状和位置也更加明确。
此外,空间滤波还能够去除图像中的噪声和干扰,使得图像的背景更加干净和均匀。
讨论与分析:阿贝成像原理和空间滤波技术的应用使得显微镜成像的质量得到了显著提高。
阿贝成像原理通过改变物镜的焦距和位置,使得样本的光学信息能够被有效地收集和放大,从而获得清晰的图像。
而空间滤波技术则通过调整图像的频谱,去除噪声和干扰,提高图像的质量和细节。
这两种技术的结合应用,使得我们能够更好地观察和研究微小的细胞结构和微生物。
课程名称:物理光学实验实验名称:阿贝成像与空间滤波实验图1 阿贝成像原理示意图像和物不可能完全一样,这是由于透镜的孔径是有限的,角度较大的高次成分(高频信息)不能进入到物镜而被丢弃了,所以像的信息总是比物的信滤波函数,c)滤波后的谱分布(振幅分布),d)3d,像(强度分布)出现衬度反转,原来的亮区变为暗区,原来光栅,b)滤波函数,c)滤波后的谱分布(振幅),d)滤波后像(光强)a<d/2时,加滤波器和不加滤波器的像相似,图像对比度略有下降。
如果在焦平面上人为的插上一些滤波器(吸收板或移相板)以改变焦平面上光振幅和位相就可以根据需要改变频谱面上的频谱,这就叫做空间滤波。
最简单的滤波器就是把一些特殊形式的光阑插到焦平面上,使一个或几个频率分量能通过,而挡住其他频率分量,像平面上的图像只包括一种或几种频率分量,对这些现象的观察能使我们对空间傅立叶变换和空间滤波有更清晰的概念。
阿贝成像原理和空间滤波预示了在频谱平面上设置滤波器可以改变图像的结构这是无CCD相机双凸透镜图4 阿贝成像与空间滤波实验示意图图5实验软件操作图图6(a) 滤波前图6(b) 滤掉x向衍射级(选做)将狭缝旋转90度固定,使狭缝正好滤掉x向衍射级次,并且观察滤波后的条纹方向,观察衍射图样,分析现象。
将狭缝替换为大圆孔(用最大孔径的圆孔,2mm直径),仅使像方焦平面(图就是像方焦平面,即像点尺寸最小的平面)的0级和±1级通过,前后移动相机图7(a)大圆孔低通滤波图7(b)次大圆孔低通滤波图7(c)大圆屏高通滤波图7(d)次大圆屏高通滤波图8(a)滤波前实验效果图图8(b)挡住零级的滤波效果图9 加入正交光栅后成的像向衍射级图10 滤掉x方向衍射级成的像向衍射级图11 滤掉y方向衍射级成的像D=2mm圆孔滤波图12 D=2mm圆孔滤波后成的像D=0.5mm圆孔滤波图 13 D=0.5mm的圆孔滤波成的像圆屏滤波图14 D=2mm圆屏滤波后成的像D=0.5mm圆屏滤波图15 D=0.5mm圆屏滤波后成的像六、数据处理同数据记录七、结果陈述:实验得到了正交光栅所成像、正交光栅经过x方向滤波所成像、正交光栅经过波所成像、正交光栅经过D=2mm的圆孔滤波所成的像、正交光栅经过D=0.5m的圆孔滤波所成的像、正交光栅经过D=2mm的圆屏滤波所成的像、正交光栅经过D=0.5mm滤波所成的像。
[阿贝成像原理]阿贝成像原理与空间滤波实验报告篇一: 阿贝成像原理与空间滤波实验报告阿贝成像原理和空间滤波1.了解阿贝成像原理,懂得透镜孔径对成像的影响.2.了解透镜的傅里叶变换功能及空间频谱的概念.3.了解两种简单的空间滤波.4.掌握在相干光条件下调节多透镜系统的共轴.光具座,氦氖激光器,溴钨灯及直流电源,薄透镜若干,可变狭缝光阑,可变圆孔光?调制用光阑,阑,光栅,光学物屏,游标卡尺,白屏,平面镜.阿贝在1873年为德国蔡斯工厂改进显微镜时发现,大孔径的物镜能导致较高的分辨率,这是因为较大的孔径可以收集全部衍射光,这些衍射光到达像平面时相干叠加出较细的细节.例如,用一定空间频率的光栅作为物,并且用单色光加以照明,物后的衍射光到达透镜时,当O级与?1级衍射光到达像平面时,相干叠加成干涉条纹,就是光栅的像;如果单色光波长较长或者L孔径小,只接收了零级光而把?1级光挡去,那么到达像平面上的只有零级光,就没有条纹出现,我们说像中缺少了这种细节.根据光栅方程,d??sin?1?sin?不难算出,物体上细节d能得以在像平面有反映的限制为?为透镜半径对物点所张的角.换句话说,可分辨的空间频率为d?物平面上细节越细微、即空间频率越高,其后衍射光的角度就越大,更不可能通过透镜的有限孔径到达像平面,当然图像就没有这些细节.透镜就成像光束所携带的空间f截?sin?频率而言,是低通滤波器,其截止频率就是式所示的,?.瑞利在1896年认为物平面每一点都发出球面波,各点发出的波在透镜孔径上衍射,到达像面时成为爱里斑,并给出分辨两个点物所成两个模糊像——两个爱里斑的判据.其实阿贝与瑞利两种方法是等价的.波特在1906年把一个细网格作物,但他在透镜的焦平面上设置一些孔式屏对焦平面上的衍射亮点进行阻挡或允许通过时,sin?得到了许多不同的图像.设焦平面上坐标为?,那么?与空间频率?sin?相应关系为?fsin??tgf,f为焦距,).焦平面中央亮点对应的是物平面上总,焦平面上离中央亮点较近的光强反映物平面上频率较低的光栅调制度.1934年译尼克在焦平面中央设置一块面积很小的相移板,使直?流分量产生2位相变化,从而使生物标本中的透明物质不须染色变成明暗图像,因而可研究活的细胞,这种显微镜称为相衬显微镜.为此他在1993年获得诺贝尔奖.在20世纪50年代,通信理论中常用的傅里叶变换被引入光学,60年代激光出现后又提供了相干光源,一种新观点与新技术就此发展起来.物的内容中如含周期性结构,可以看成是各种频率的光栅组合而成,用数学语言讲就是把物展开成空间的傅里叶级数.如物的内容不是周期性的,在数学上就要作傅里叶变换,在物理上可由透镜来实现.可以证明,由于透镜作为位相变换器能把平面波转换为球面波,当单色平面波照射在透明片上[其振幅透射率为f]时,如图1中光路所示,透镜后焦平面上光场复振幅分布即为其傅里叶变换ffe?i2?dxdy图1uf,vf,实际上这也就是t的夫琅和费衍射.当t不在透镜前焦面上式中时,后焦面上仍为其傅里叶变换,但要乘上位相弯曲因子.当入射的不是平面波,而是球面波,则在入射波经透镜后形成的会聚点所在平面上也是傅里叶变换,只是也附加上了位相弯曲因子.傅里叶变换的例子如?函数?1,1??函数,rect函数?sinc函数及许多性质的标度、卷积定理都可以由此在物理上演示出来.如图2所示,在透镜后再设一透镜,则在Q面上的复振幅分布又经过一次傅里叶变换,fQ?Fei2d?d??fP物函数的倒置也就是f的像.前述在平面波照射下在前焦平面上的f时,在2照明光会聚点有其傅里叶变换,但要加上位相弯曲因子,该位相弯曲相当于会聚球面波照在傅里叶变换上,到达该球面波会聚点所在平面Q时,也是完成第二次傅里叶变换,只是标度有变化,即像是放大或缩小的.因此从波动光学的观点来看,正是透镜的傅里叶变换功能造成了其成像的功能.这样,就用波动光学的观点叙述了成像过程.这不但说明了几何光学已经说明的透镜成像功能,而且还预示了在频谱平面上设置滤波器可以改变图像的结构,这后者是无法用几何光学来解释的.前述相衬显微镜即是空间滤波的一个成功例子.除了下面实验中的低通滤波、方向滤波及?调制等较简单的滤波特例外,还进行特征识别、图像合成、模糊图像复原等较复杂的光学信息处理.因此透镜的傅里叶变换功能的涵义比其成像功能更深刻、更广泛.图2共轴调节.首先,要调激光束平行于光具座,并位于光具座正上方,把屏Q插在光具座滑块上,并移近激光架LS,把LS作上下、左右移动,使光束偏离O,调节LS的俯仰及侧转,使光束又穿过小孔;再把Q推至LS边上,反复调节,直到Q在光具座平移时激光束均穿过O为圆心的孔,以后就不再需要改变LS的位置。
实验一 阿贝成像原理和空间滤波一、实验目的1.了解透镜孔径对成像的影响和两种简单的空间滤波。
2.掌握在相干光条件下调节多透镜系统的共轴。
3.验证和演示阿贝成像原理,加深对傅里叶光学中空间频谱和空间滤波概念的理解。
4.初步了解简单的空间滤波在光信息处理中的实际应用。
二、实验原理1.阿贝成像原理1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原理为当今正在兴起的光学信息处理奠定了基础。
如图1-1所示,用一束平行光照明物体,按照传统的成像原理,物体上任一点都成了一次波源,辐射球面波,经透镜的会聚作用,各个发散的球面波转变为会聚的球面波,球面波的中心就是物体上某一点的像。
一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。
这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。
阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。
成像过程的这两步本质上就是两次傅里叶变换。
如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。
如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。
空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。
这也是相干光学处理的实质所在。
以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(f x ,f y )即为g(x ,y)的傅里叶变换:2(,)(,)(,)x y i f x f y x y G f f g x y edxdy π∞-∞-=⎰⎰ (1-1)图1-1 阿贝成像原理设,x y ''为透镜后焦面上任一点的位置坐标,则式中为x x f F λ'=,y y f Fλ'= (1-2) 方向的空间频率,量纲为L -1, F 为透镜焦距,λ为入射平行光波波长。
阿贝成像原理和空间滤波一、实验目的1.透镜的傅里叶变换作用;2.空间频谱面的位置及空间频谱的观察;3. 孔径对成像质量的影响;4.验证阿贝成像原理,强化空间滤波概念的理解。
二、实验原理1.阿贝成像原理1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原理为当今正在兴起的光学信息处理奠定了基础。
如图1-1所示,用一束平行光照明物体,按照传统的成像原理,物体上任一点都成了一次波源,辐射球面波,经透镜的会聚作用,各个发散的球面波转变为会聚的球面波,球面波的中心就是物体上某一点的像。
一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。
这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。
阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。
成像过程的这两步本质上就是两次傅里叶变换。
如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。
如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。
空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。
这也是相干光学处理的实质所在。
以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(fx ,fy)即为g(x ,y)的傅里叶变换:2(,)(,)(,)x y i f x f y x y G f f g x y e dxdy π∞-∞-=⎰⎰ (1-1)图1-1 阿贝成像原理设,x y ''为透镜后焦面上任一点的位置坐标,则式中为x x f F λ'=,y y f F λ'= (1-2)方向的空间频率,量纲为L-1, F 为透镜焦距,λ为入射平行光波波长。
北京航空航天大学实验报告实验名称:E 09 阿贝成像原理和空间滤波数据记录及处理和试验现象及解释: (1)阿贝成像原理试验: ① 求相应空间频率:He-Ne 激光器波长λ=632.8nm ,透镜F=250mm ,x fξ'=,将实验数据带入下表:② 在频谱面上放置各种滤波器,成像变化特点及相应解释:③ 测量二维光栅像面上x ',y '方向光栅条纹间距:像面上沿x '方向条纹间距△x '=2.0mm ,y '方向光栅条纹间距△y '=2.0mm ④ 在屏谱面图上依次放置不同小孔及不同取向光阑,观察像面变化 综上所述:从所得到的实验结果可以看出,对像中某一方向结构有贡献的是与该方向垂直的频谱。
学号:38270104 姓名:王文征 日期:4月10日晚同组者:刘思沂指导老师:段亚飞评分:(2)高低通滤波:①将物面换上3号样品,则在像面上出现带网格的“光”字。
②用白屏观察焦面上物的空间频谱。
光栅为一周期性函数,其频谱是有规律排列的分立点阵。
而字迹不是周期性函数,它的频谱是连续的,一般不易看清。
由于光字笔画较粗,空间低频成分较多,因此频谱面的光轴附近只有光字信息而没有网格信息,由于仅保留了离轴较近的低频成份,因而图像细结构消失。
③将3号滤波器(φ=1mm 的圆孔光阑)放在后焦面的光轴上,出现“光”字,网格信息消失,亮度较暗。
换上4号滤波器(φ=0.4mm的圆孔光阑),光字更暗。
④将频谱面上光阑作一平移,使不在光轴上的一衍射点通过光阑,发现越偏离光轴图像越暗。
换上4号样品,使之成像。
然后在后焦面上放上5号滤波器,发现未放之前出现红色十字,放上5号滤波器后“十”字中间变暗,四周轮廓也较为清晰,它阻挡低频分量而允许高频成份通过,可以实现图像的衬度反转或边缘增强,所以图像轮廓明显。
(3)θ调制试验:衍射频上花、叶、背景的光栅走向蓝(背景)红(花)绿(叶)利用阿贝成像实验中的结论,对像中某一方向结构有贡献的是与该方向垂直的频谱。
课程名称:大学物理实验(二)实验名称:阿贝成像原理和空间滤波
图2 透镜的低通滤波作用
特別当物的结构非常精细(例如很密的光栅),或物镜的孔径非常小时,有可能只有
则在像平面上只有光斑而完全不能形成图像。
根据上面讨论,我们可以看到显微镜中的物镜的孔径实际上起了高频滤波(即低通滤波)的作用。
这也启示我们,如果在谱平面上人为地插上一些滤波器以提取某些频段的光信息,从而使图像发生相应的变化,
图3空间滤波
图4 图像处理系统
2.4θ调制
将一幅透明画拆分成三部分:房子、草地、天空,将这三部分分别刻在三片不同取向的光栅上,将光栅叠在一起作为物,此物叫调制片,用白光照明调制片,光束发生衍射,衍射光束经透镜后在其焦平面成像形成衍射谱(彩色光斑),如在谱平面上放置频谱滤波器(即能让一部分光通过的挡板),在房子谱方向只让红色光谱通过,在草地谱方向只让绿色通过,在天空谱方向只让蓝色谱通过,在像平面上将看到图像被“着上”不同颜色
图4 实验现象图
图5 物镜孔径大小影响示意图。