09章工业催化剂制备与使用
- 格式:ppt
- 大小:608.00 KB
- 文档页数:39
2015年3月第23卷第3期 工业催化INDUSTRIALCATALYSIS Mar.2015Vol.23 No.3综述与展望收稿日期:2014-09-30;修回日期:2014-11-25 基金项目:内蒙古自治区高等学校科学研究项目(NJZY11034);内蒙古自治区重大基础研究开放课题(20130902)作者简介:郭晓燕,1989年生,在读硕士研究生,研究方向为多相催化。
通讯联系人:徐爱菊,教授,硕士研究生导师。
Ullmann偶联反应催化剂研究进展郭晓燕,徐爱菊 ,王 奖,贾美林,照日格图(内蒙古师范大学化学与环境科学学院,内蒙古自治区绿色催化重点实验室,内蒙古呼和浩特010022)摘 要:Ullmann偶联反应是典型的碳碳键偶联反应,反应合成的联苯类化合物是重要有机化工原料,应用前景广阔。
初期采用均相Pd催化剂,不能重复利用,工业化生产受到限制。
改用多相Pd催化剂催化反应,需要添加剂导致产物分离困难。
多相Au催化剂适用性受到限制,反应底物局限于碘代芳烃,双金属催化剂在催化活性与选择性方面均有较好的优势。
综述Ullmann-type偶联反应中均相Pd催化体系、多相Pd催化体系、多相Au催化体系以及多相双金属催化体系催化剂的研究进展,阐述反应机理,并对Ullmann偶联反应研究进行展望。
关键词:催化化学;Ullmann偶联反应;Pd催化剂;Au催化剂;双金属催化剂doi:10.3969/j.issn.1008 1143.2015.03.002中图分类号:O643.36;TQ426.8 文献标识码:A 文章编号:1008 1143(2015)03 0172 06ResearchadvancesinthecatalystsforUllmannCouplingReactionsGuoXiaoyan,XuAiju,WangJiang,JiaMeilin,BaoZhaorigetu(CollegeofChemistryandEnvironmentalScience,InnerMongoliaNormalUniversity,InnerMongoliaKeyLaboratoryofGreenCatalysis,Hohhot010022,InnerMongolia,China)Abstract:Ullmanncouplingreaction,asanefficientmethodofC—Cbondcoupling,isusedtosynthesizethebiaryls.Beingcrucialorganicchemicalrawmaterials,thesecompoundshavebroadapplicationpros pects.Intheearlydays,thehomogeneousPdcatalystscouldnotbeusedrepeatedlyandtheircommercialapplicationwasrestricted.Heterogeneouspalladiumcatalystscatalyzedthereactionresultindifficultsepa rationoftheproductsbecauseoftheadditionofadditives.Theapplicabilityofheterogeneousgoldcatalystsisrestrictedandthereactionsubstratesareconfinedtoaryliodides.Nevertheless,bimetalliccatalystshaveadvantagesintermsofthecatalyticactivityandselectivity.TheresearchprogressincatalystsystemsforUllmanncouplingreactions,suchashomogeneouspalladium,heterogeneouspalladium,heterogeneousgoldandbimetalliccatalystsandpossiblecatalyticpathwayswerereviewed.TheprospectsofUllmanncouplingreactionsareoutlined.Keywords:catalyticchemistry;Ullmanncouplingreaction;palladiumcatalyst;goldcatalyst;bimetalliccatalystdoi:10.3969/j.issn.1008 1143.2015.03.002CLCnumber:O643.36;TQ426.8 Documentcode:A ArticleID:1008 1143(2015)03 0172 06 1901年,UllmannF等[1]发现两分子卤代芳烃发生碳碳键偶联生成联苯类化合物,之后该反应被Copyright ©博看网. All Rights Reserved. 2015年第3期 郭晓燕等:Ullmann偶联反应催化剂研究进展 173 命名为经典Ullmann偶联反应。
第46卷第2期 2021年4月天然气化工一C1化学与化工NATURAL GAS CHEMICAL INDUSTRYVol.46 No.2Apr. 2021•试验研究•2鄄丙基-2-庚烯醛加氢制2鄄丙基庚醇催化剂制备工艺研究王雪峰,夏伟,许红云,李扬,李文龙(西南化工研究设计院有限公司国家碳一化学工程技术研究中心工业排放气综合利用国家重点实验室,四川成都610225)摘要:为制备高性能2-丙基-2-庚烯醛(PBA)加氢制2-丙基庚醇(2-PH)催化剂,探索最优的催化剂制备方法,对催化剂制 备工艺进行了研究,考察了盐溶液浓度、沉淀剂种类、加料方式、沉淀pH、焙烧温度等制备条件对Cu-Cr催化剂性能的影响。
结果 表明,当盐溶液浓度为0.5 mol/L、沉淀剂为Na2CO3、并流方式沉淀、pH为5.5、焙烧温度为400 T时催化剂活性最高,此时PBA转 化率达100%,2-PH收率97.9%。
关键词:2-丙基-2-庚烯醛;2-丙基庚醇;加氢;Cu-Cr催化剂中图分类号:TQ426;O643.3 文献标志码:A 文章编号:1001-9219(2021 )02-44-03Study on preparation process of catalysts for hydrogenation of 2-propyl-2-heptaneal to2-propyl heptanolWANG Xue-feng, XIA Wei, XU Hong-yun, LI Yang, LI Wen-long(State Key Laboratory of Industrial Vent Gas Reuse, National Engineering Research Center for C1 Chemistry, Southwest Institute ofChemical Co., Ltd., Chengdu 610225, Sichuan, China)Abstract: In order to prepare high performance catalysts for hydrogenation of 2-propyl-2-heptaneal (PBA) to 2-propyl heptanol (2-PH) and search the optimal preparation method, the preparation conditions of the catalyst were studied. The effects of salt solution concentration, precipitant, feeding method, precipitation pH and calcination temperature on the performance of Cu-Cr catalysts were investigated. The results show that when the concentration of salt solution is 0.5 mol/L, precipitant is Na2CO3, co-precipitation, pH is 5.5 and calcination temperature is 400 the activity of the catalyst is the highest, and the PBA conversion reaches 100% and the yield of 2-PH is 97.9%.Keywords: 2-propyl-2-heptaneal; 2-propyl heptanol; hydrogenation; Cu-Cr catalyst2-丙基庚醇(2-Propyl Heptanol,2-PH)主要用于 生产高性能环保增塑剂一邻增塑剂DPHP。
2 低温铁基催化剂2.1 催化剂制备方法低温铁基催化剂在制备的过程中,共沉淀法更为适用。
在实际的制备过程中,最为常规的制备流程为:提前准备好热硝酸铁和硝酸铜混合溶液,且这些溶液的温度要合适,达到沸腾状态,随后在这一混合溶液中添加至热的硝酸钠溶液,同样其温度应达到沸腾条件,将前期准备好的溶液与后续加热的溶液快速、均匀搅拌到混合状态,在搅拌混合的过程中伴随着化学反应的形成。
金属硝酸盐与碳酸根在热溶液下会出现复分解反应,最终的反应产物为水合氧化铁沉淀、二氧化碳气[2]。
在混合溶液的pH 值在7左右时,停止添加热硝酸铁和硝酸铜混合溶液。
在全部的反应结束以后,将最终的沉淀物收集起来,随后使用沸腾的脱盐水反复冲洗这些沉淀物,在冲洗的同时,其中的Na +和NO 3-得以去除。
将沉淀物重新打浆以后,将其与硅酸钾溶液充分搅拌并混合,在混合溶液中添加一定量的硝酸溶液,随后将该混合溶液的pH 值加以适当调整,使得其接近于中性。
在此前提下,利用过滤和浓缩的方式来处理这些混合浆液,获得催化剂前驱体[3]。
费托合成存在着多种工艺,在不同的工艺条件下,对催化剂前驱体实施相应的处理。
通常情况下,固定床反应器中所使用的催化剂可以将催化剂前驱体利用高压挤出,在成型后干燥得到;浆态床所使用的催化剂,对催化剂前驱体实施重新打浆处理,喷雾造粒和焙烧获得。
2.2 催化剂活性组分的研究催化剂的活性组分是决定催化剂活性的直接原因,为保障催化剂最佳的使用效果,在使用之前一般需进行还原活化处理,使得在经由这一处理以后可以满足费托反应的需求。
低温铁基催化剂是一类比较特殊的催化剂,其中的活性组分更多地源自催化剂产品中的α-Fe 2O 3。
催化剂的活化反应开0 引言费托合成反应最早诞生于20世纪二十年代,基于其反应原理的特殊性,有效实现了铁基催化剂向液体烃燃料的转化,有效扩宽了燃料的获取渠道,保持了燃料获取路径的多样性。
现阶段,低温费托合成铁基催化剂已然在很多领域得到了应用,费托合成转化效率、产物种类均与催化剂的整体性能有着直接的关系,因此,为有效创造更高的价值,专业人员需进行费托合成反应催化剂种类的选择、工艺条件的确定。