拉深工艺及拉深模设计
- 格式:doc
- 大小:1.05 MB
- 文档页数:35
管壳件的拉深工艺与拉深模具设计篇一:《管壳件的拉深工艺与拉深模具设计》嘿,你知道管壳件吗?这可真是个超级有趣的东西呢。
我呀,就像发现了一个大宝藏一样,对管壳件的拉深工艺和拉深模具设计充满了好奇。
先来说说管壳件吧。
管壳件就像一个个小卫士,在好多地方都有着很重要的作用呢。
它们的形状有点特别,长长的,像个小筒子。
我就想啊,这么个小筒子一样的东西,是怎么被制造出来的呢?这就和拉深工艺有关系啦。
拉深工艺啊,就像是把一块平平的面团变成一个小筒子的魔法。
你看,我们有一块平平的材料,就像一张纸一样平。
然后呢,通过一些特别的方法,就慢慢地把它变成了管壳件的形状。
这可不是一件简单的事情哦。
就好比我们要把一块方形的泥巴捏成一个长长的小棍,需要有技巧的。
拉深的时候,材料要受到力的作用,这个力就像是一双无形的大手,在慢慢地推着材料变形。
要是这双手的力气太大了,材料可能就会被弄坏,就像我们捏泥巴的时候用力过猛,泥巴就会裂开一样。
要是力气太小呢,材料又不能变成我们想要的形状。
这可真让人头疼啊。
那拉深模具呢?拉深模具就像是为这个魔法专门打造的工具。
它就像一个特别的模具,材料在它里面经过拉深工艺,就变成了管壳件。
拉深模具的设计可复杂啦。
我就想啊,那些设计模具的叔叔阿姨们,可真是厉害得不得了。
我问过我的老师,我说:“老师,拉深模具的设计怎么这么难呀?”老师笑着告诉我:“孩子啊,这就像是建房子一样,每一个部分都得考虑到。
”我就更疑惑了,建房子?老师看我不明白,就接着说:“你看,拉深模具的各个部件就像房子的各个部分。
比如说,有一部分就像是房子的地基,它得稳稳地支撑着整个拉深的过程。
要是这个地基不稳,那拉深就会出问题,就像房子的地基不牢,房子就会倒一样。
”我又问:“那还有呢?”老师说:“还有像房子的墙壁一样的部分啊。
这些部分要把材料限制在一定的范围内,让它按照我们想要的形状去变形。
就像房子的墙壁把房子里面的空间给限制住了一样。
”我听了之后,好像有点明白了。
拉深工艺及拉深模具的设计拉深工艺是一种常见的金属加工方法,用于将平面金属材料加工成具有凹凸形状的器件或零件。
它通常涉及到将金属板材通过拉伸的方式使其变形,以达到所需的形状和尺寸。
而拉深模具则是用于支撑和引导金属板材在拉深过程中发生变形的工具。
拉深工艺的设计需要考虑多个因素,包括材料的性质、板材的厚度和尺寸、拉深的形状和深度等。
首先,根据所需拉深的形状设计模具的结构和形状,并确定所需的深度和尺寸。
其次,需要选择合适的材料和工艺参数,以确保金属材料在拉深过程中能够保持良好的塑性变形能力,并且不会发生过度拉伸、断裂或破裂。
此外,还需要考虑到加工效率和成本等因素,以优化拉深工艺的设计。
拉深模具的设计是实现拉深工艺的关键。
它通常由多个部分组成,包括上模板、下模板、导柱、导套、导向装置、弹簧等。
上模板和下模板是用于支撑金属板材并施加压力的主要部分,它们的形状和结构决定了拉深的形状和深度。
导柱和导套用于引导上模板的移动,以确保拉深的精度和稳定性。
导向装置用于确保上模板和下模板的对位精度,避免偏移和倾斜。
而弹簧则用于提供足够的弹性力,以使上模板在拉深过程中能够平稳地移动。
在拉深模具的设计过程中,需要考虑到多个因素。
首先,需要进行模具的结构和形状设计,确保其能够满足所需拉深的形状和深度。
其次,需要选择合适的材料,以确保模具具有足够的强度和硬度。
同时,还需要进行模具的冷却设计,以提高模具的寿命和加工效率。
此外,需要进行模具的装配和调试,确保其能够正常使用并满足要求的加工精度和质量。
总之,拉深工艺及拉深模具的设计需要考虑到多个因素,包括材料的性质、工艺参数、加工效率和成本等。
通过合理的设计和优化可以实现高效、精确和稳定的拉深加工。
第四章拉深工艺及拉深模具设计复习题答案一、填空题1.拉深是是利用拉深模将平板毛坯压制成开口空心件或将开口空心件进一步变形的冲压工艺。
2.拉深凸模和凹模与冲裁模不同之处在于,拉深凸、凹模都有一定的圆角而不是锋利的刃口,其间隙一般稍大于板料的厚度。
3.拉深系数m是拉深后的工件直径和拉深前的毛坯直径的比值,m越小,则变形程度越大。
4.拉深过程中,变形区是坯料的凸缘部分。
坯料变形区在切向压应力和径向拉应力的作用下,产生切向压缩和径向伸长的变形。
5.对于直壁类轴对称的拉深件,其主要变形特点有:(1)变形区为凸缘部分;(2)坯料变形区在切向压应力和径向拉应力的作用下,产生切向压缩与径向的伸长,即一向受压、一向收拉的变形;(3)极限变形程度主要受传力区承载能力的限制。
6.拉深时,凸缘变形区的起皱和筒壁传力区的拉裂是拉深工艺能否顺利进行的主要障碍。
7.拉深中,产生起皱的现象是因为该区域内受较大的压应力的作用,导致材料失稳_而引起。
8.拉深件的毛坯尺寸确定依据是面积相等的原则。
9.拉深件的壁厚不均匀。
下部壁厚略有减薄,上部却有所增厚。
10.在拉深过程中,坯料各区的应力与应变是不均匀的。
即使在凸缘变形区也是这样,愈靠近外缘,变形程度愈大,板料增厚也愈大。
11.板料的相对厚度t/D越小,则抵抗失稳能力越愈弱,越容易起皱。
12.因材料性能和模具几何形状等因素的影响,会造成拉深件口部不齐,尤其是经过多次拉深的拉深件,起口部质量更差。
因此在多数情况下采用加大加大工序件高度或凸缘直径的方法,拉深后再经过切边工序以保证零件质量。
13.拉深工艺顺利进行的必要条件是筒壁传力区最大拉应力小于危险断面的抗拉强度。
14.正方形盒形件的坯料形状是圆形;矩形盒形件的坯料形状为长圆形或椭圆形。
15.用理论计算方法确定坯料尺寸不是绝对准确,因此对于形状复杂的拉深件,通常是先做好拉深模,以理论分析方法初步确定的坯料进行试模,经反复试模,直到得到符合要求的冲件时,在将符合要求的坯料形状和尺寸作为制造落料模的依据。
拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
因此,有必要分析拉深时的应力、应变状态,从而找出产生起皱、拉裂的根本原因,在设计模具和制订冲压工艺时引起注意,以提高拉深件的质量。
根据应力应变的状态不同,可将拉深坯料划分为凸缘平面区、凸缘圆角区、筒壁区、筒底圆角区、筒底区等五个区域。
1.凸缘平面部分(A区)这是拉深的主要变形区,材料在径向拉应力和切向压应力的共同作用下产生切向压缩与径向伸长变形而被逐渐拉人凹模。
在厚度方向,由于压料圈的作用,产生了压应力,但通常和的绝对值比大得多。
厚度方向的变形决定于径向拉应力和切向压应力之间的比例关系,一般板料厚度有所增厚,越接近外缘,增厚越多。
如果不压料(=0),或压料力较小(小),这时板料增厚比较大。
当拉深变形程度较大,板料又比较薄时,则在坯料的凸缘部分,特别是外缘部分,在切向压应力作用下可能失稳而拱起,形成所谓起皱。
图5-3 拉深过程的应力与应变状态2.凸缘圆角部分(B区)这是位于凹模圆角部分的材料,径向受拉应力而伸长,切向受压应力而压缩,厚度方向受到凹模圆角的压力和弯曲作用产生压应力。
由于这里切向压应力值不大,而径向拉应力最大,且凹模圆角越小,由弯曲引起的拉应力越大,板料厚度有所减薄,所以有可能出现破裂。
3.筒壁部分(C区)这部分材料已经形成筒形,材料不再发生大的变形。
但是,在拉深过程中,凸模的拉深力要经由筒壁传递到凸缘区,因此它承受单向拉应力σ1的作用,发生少量的纵向伸长变形和厚度减薄。
4.底部圆角部分(D区)这是与凸模圆角接触的部分,它从拉深开始一直承受径向拉应力和切向拉应力的作用,并且受到凸模圆角的压力和弯曲作用,因而这部分材料变薄最严重,尤其与侧壁相切的部位,所以此处最容易出现拉裂,是拉深的“危险断面”。
5.筒底部分(E区)筒底区在拉深开始时即被拉入凹模,并在拉深的整个过程中保持其平面形状。
它受切向和径向的双向拉应力作用,变形是双向拉伸变形,厚度弱有减薄。
但这个区域的材料由于受到与凸模接触面的摩擦阻力约束,基本上不产生塑性变形或者只产生不大的塑性变形。
上述筒壁区、底部圆角区和筒底区这三个部分的主要作用是传递拉深力,即把凸模的作用力传递到变形区凸缘部分,使之产生足以引起拉深变形的经向拉应力σ1,因而又叫传力区。
5.1.3 拉深件的主要质量问题及控制生产中可能出现的拉深件质量问题较多,但主要的是起皱和拉裂。
1.起皱拉深时坯料凸缘区出现波纹状的皱折称为起皱。
起皱是一种受压失稳现象。
(1) 起皱产生的原因凸缘部分是拉深过程中的主要变形区,而该变形区受最大切向压应力作用,其主要变形是切向压缩变形。
当切向压应力较大而坯料的相对厚度t/D(t为料厚,D为坯料)又较小时,凸缘部分的料厚与切向压应力之间失去了应有的比例关系,从而在凸缘的整个周围产生波浪形的连续弯曲,如图5-4a所示,这就是拉深时的起皱现象。
通常起皱首先从凸缘外缘发生,因为这里的切向压应力绝对值最大。
出现轻微起皱时,凸缘区板料仍有可能全部拉入凹模内,但起皱部位的波峰在凸模与凹模之间受到强烈挤压,从而在拉深件侧壁靠上部位将出现条状的挤光痕迹和明显的波纹,影响工件的外观质量与尺寸精度,如图5-4b所示。
起皱严重时,拉深便无法顺利进行,这时起皱部位相当于板厚增加了许多,因而不能在凸模与凹模之间顺利通过,并使径向拉应力急剧增大,继续拉深时将会在危险断面处拉破,如图5-4c所示。
图5-4 拉深件的起皱破坏(2) 影响起皱的主要因素①坯料的相对厚度t/D坯料的相对厚度越小,拉深变形区抵抗失稳的能力越差,因而就越容易起皱。
相反,坯料相对厚度越大,越不容易起皱。
②拉深系数m根据拉深系数的定义m=d/D可知,拉深系数m越小,拉深变形程度越大,拉深变形区内金属的硬化程度也越高,因而切向压应力相应增大。
另一方面,拉深系数越小,凸缘变形区的宽度相对越大,其抵抗失稳的能力就越小,因而越容易起皱。
有时,虽然坯料的相对厚度较小,但当拉深系数较大时,拉深时也不会起皱。
例如,拉深高度很小的浅拉深件时,即属于这一种情况。
这说明,在上述两个主要影响因素中,拉深系数的影响显得更为重要。
③拉深模工作部分的几何形状与参数凸模和凹模圆角及凸、凹模之间的间隙过大时,则坯料容易起皱。
用锥形凹模拉深的坯料与用普通平端面凹模拉深的坯料相比,前者不容易起皱,如图5-5所示。
其原因是用锥形凹模拉深时,坯料形成的曲面过渡形状(图5-5b)比平面形状具有更大的抗压失稳能力。
而且,凹模圆角处对坯料造成的摩擦阻力和弯曲变形的阻力都减到了最低限度,凹模锥面对坯料变形区的作用力也有助于使它产生切向压缩变形,因此,其拉深力比平端面凸模要小得多,拉深系数可以大为减小。
图5-5 锥形凹模的拉深(3) 控制起皱的措施为了防止起皱,最常用的方法是在拉深模具上设置压料装置,使坯料凸缘区夹在凹模平面与压料圈之间通过,如图5-6所示。
当然并不是任何情况下都会发生起皱现象,当变形程度较小、坯料相对厚度较大时,一般不会起皱,这时就可不必采用压料装置。
判断要否采用压料装置可查表确定。
图5-6 带压料圈的模具结构2.拉裂(1) 拉裂产生的原因在拉深过程中,由于凸缘变形区应力应变很不均匀,靠近外边缘的坯料压应力大于拉应力,其压应变为最大主应变,坯料有所增厚;而靠近凹模孔口的坯料拉应力大于压应力,其拉应变为最大主应变,坯料有所变薄。
因而,当凸缘区转化为筒壁后,拉深件的壁厚就不均匀,口部壁厚增大,底部壁厚减小,壁部与底部圆角相切处变薄最严重(见图5-4)。
变薄最严重的部位成为拉深时的危险断面,当筒壁的最大拉应力超过了该危险断面材料的抗拉强度时,便会产生拉裂,如图5-7所示。
另外,当凸缘区起皱时,坯料难以或不能通过凸、凹模间隙,使得筒壁拉应力急剧增大,也会导致拉裂(见图5-4c)。
图5-7 拉深件的拉裂破坏(2) 控制拉裂的措施生产实际中常用适当加大凸、凹模圆角半径、降低拉深力、增加拉深次数、在压料圈底部和凹模上涂润滑剂等方法来避免拉裂的产生。
5.2 拉深件的工艺性5.2.1 拉深件的形状、尺寸及精度1. 拉深件的形状与尺寸(1) 拉深件应尽量简单、对称,并能一次拉深成形。
(2) 拉深件壁厚公差或变薄量要求一般不应超出拉深工艺壁厚变化规律。
根据统计,不变薄拉深工艺的筒壁最大增厚量约为(0.2~0.3)t,最大变薄量约为(0.1~0.18)t(t为板料厚度)。
(3) 当零件一次拉深的变形程度过大时,为避免拉裂,需采用多次拉深,这时在保证必要的表面质量前提下,应允许内、外表面存在拉深过程中可能产生的痕迹。
(4) 在保证装配要求的前提下,应允许拉深件侧壁有一定的斜度。
(5) 拉深件的底部或凸缘上有孔时,孔边到侧壁的距离应满足a≥R+0.5t(或r+0.5t),如图5-8a所示。
(6) 拉深件的底与壁、凸缘与壁、矩形件的四角等处的圆角半径应满足:r≥t,R≥2t,r g≥3t,如图5-8所示。
否则,应增加整形工序。
一次整形的,圆角半径可取r≥(0.1~0.3)t,R≥(0.1~0.3)t。
图5-8 拉深件的孔边距及圆角半径(7) 拉深件的径向尺寸应只标注外形尺寸或内形尺寸,而不能同时标注内、外形尺寸。
带台阶的拉深件,其高度方向的尺寸标注一般应以拉深件底部为基准,如图5-9a所示。
若以上部为基准(图5-9b),高度尺寸不易保证。
图5-9 带台阶拉深件的尺寸标注2. 拉深件的精度一般情况下,拉深件的尺寸精度应在IT13级以下,不宜高于IT11级。
对于精度要求高的拉深件,应在拉深后增加整形工序,以提高其精度。
由于材料各向异性的影响,拉深件的口部或凸缘外缘一般是不整齐的,出现“突耳”现象,需要增加切边工序。
5.2.2 拉深件的材料用于拉深件的材料,要求具有较好的塑性,屈强比σs/σb小、板厚方向性系数r大,板平面方向性系数∆r小。
屈强比σs/σb值越小,一次拉深允许的极限变形程度越大,拉深的性能越好。
例如,低碳钢的屈强比σs/σb≈0.57,其一次拉深的最小拉深系数为m=0.48~0.50;65Mn钢的σs/σb≈0.63,其一次拉深的最小拉深系数为m=0.68~0.70。
所以有关材料标准规定,作为拉深用的钢板,其屈强比不大于0.66。
板厚方向性系数r和板平面方向性系数∆r反映了材料的各向异性性能。
当r较大或∆r 较小时,材料宽度的变形比厚度方向的变形容易,板平面方向性能差异较小,拉深过程中材料不易变薄或拉裂,因而有利于拉深成形。
5.3 旋转体拉深件坯料尺寸的确定5.4 圆筒形件的拉深工艺计算(1)学习目的与要求:1.掌握拉深毛坯形状与尺寸确定的原则;2.2.掌握旋转体拉深件坯料尺寸确定的方法;3.3.掌握圆筒形拉深工艺的计算。