桩土相互作用
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
桩土相互作用研究综述1 桩土相互作用的研究现状桩土相互作用问题属于固体力学中不同介质的接触问题,表现为材料非线性(混凝土、土为非线性材料)、接触非线性(桩土接触面在复杂受荷条件下有黏结、滑移、张开、闭合4形态)等,是典型的非线性问题。
为了能够全面地评价桩土的相互作用问题,通常需要确定桩、土体各自的应力和应变以及接触区域处位移和应力分布的数据,对影响桩土相互作用的各因素进行全面研究。
研究桩土相互作用问题需要考虑的因素有:(a)土的变形特征;(b)桩的变形特征;(c)桩的埋置深度;(d)时间效应(土的固结和蠕变);(e)外部荷载的形式(静载或动载);(f)施工顺序(即开挖、排水以及基础和上部结构施工各个阶段的影响)。
目前桩土相互作用的研究方法主要有理论分析法和试验方法。
1.1理论分析方法理论分析方法分为经典理论分析方法和数值分析方法。
1.1.1经典理论分析法(1)弹性理论法。
以Poulos方法为代表。
假定桩和土为弹性材料,土的杨氏模量ES或为常数或随深度按某一规律变化。
由轴向荷载下桩身的压缩求得桩的位移,由荷载作用于半无限空间内某一点所产生的Mindlin位移解求得桩周土体的位移。
假定桩土界面不发生滑移,即可求得桩身摩阻力和桩端力的分布,进而求得桩的位移分布。
如果假定Mindlin位移解在群桩的情况下仍旧适用,则弹性理论法可以被推广至群桩的相互作用分析中。
(2)剪切位移法。
以Cooke等为代表。
根据线性问题的叠加原理,可将剪切位移法推广到群桩的桩土相互作用分析中。
Nogami等基于上述思想再把每根桩分成若干段并考虑地基土分层特性,得到比Mindlin公式积分大为简化的数值计算方程组。
剪切位移法的优点是在竖向引入一个变化矩阵,可方便考虑层状地基的性况,均质土不需对桩身模型进行离散,分析群桩时不依赖于许多共同作用系数,便于计算。
(3)荷载传递法。
荷载传递法本质为地基反力法。
根据求取传递函数手段的不同,可将传递函数法分为Seed等提出的位移协调法和佐腾悟等提出的解析法。
概析桩-土相互作用机理1、引言当上部结构的荷载较大、适合于作为持力层的土层埋藏较深,并且采用天然浅基础或仅作简单的人工地基加固仍不能满足要求时,常采用的一种方法就是做桩基础。
把结构支撑在桩基础上,荷载通过桩传到深处的坚硬岩土上,从而保证建筑物满足地基稳定和变形容许量的要求。
桩通过其侧面和土的接触,將建筑荷载传递给桩周围的土体,或者传递给更深层的岩土,从而获得较大的承载能力以支撑上部的大型建筑物。
因此,研究桩土间的相互作用机理不仅能够对基础设计提供合理参考,在桩基施工过程中也可对安全施工做出贡献。
桩-土共同作用问题是地基基础与上部结构共同作用问题中的一个分支,研究地基基础与上部结构共同作用的理论,重要的是解决桩、地基土和基础之间共同作用的问题。
在该课题研究的几种方法中,比较完整的三维空间分析方法系由Hongladaromp等人和Hian提出。
进几十年来来,随着国内基础建设的兴起,桩基基础在全国各地都被广泛采用,桩-土共同作用机理也越来越被重视,许多学者采用各种试验方法并取得了不少有价值的研究成果。
但因为地下空间的复杂,影响桩-土共同作用的因素繁多,使桩-土共同作用问题研究仍然存在尚未解决的问题。
因此,本文将对这些具有代表性的研究成果进行简单的回顾,并阐述当今桩-土共同作用研究中存在的问题和今后的发展方向。
2、桩-土共同作用研究现状近年来,桩-土共同作用问题被广泛研究,主要影响因素有上部荷载形式以及桩型选取和土性变化,而桩型和土性影响可以归为桩-土界面影响因素。
下面主要详细介绍近几十年来桩-土共同作用机理研究进展。
80年代,费勤发等对建筑荷载下复杂的单桩位移影响系数以及桩对桩位移影响系数的计算给出了简易解法。
并且对单桩的一系列参数给出可以笔算的解析式。
将桩对桩以及桩对土的位移影响系数计算归并于单桩位移影响系数计算公式中。
将简化计算解与精确解进行详尽的比较和细致的分析给出简化计算解的最大相对误差范围,而简化计算结果足以满足工程要求。
考虑桩土相互作用的长桩基础打桩过程中桩身变形研究目录1. 内容描述 (2)1.1 研究背景及意义 (3)1.2 国内外研究现状 (4)1.3 研究内容及目的 (5)2. 理论基础 (6)2.1 桩土相互作用理论 (7)2.2 桩身变形理论 (8)2.3 长桩基础设计规范及代码 (10)3. 数值模拟方法 (11)3.1 有限元分析软件及模型建立 (12)3.2 桩土相互作用模型边界条件及参数确定 (14)3.3 仿真模拟方案及精度验证 (15)4. 实验研究方法 (16)4.1 实验平台及装置 (17)4.2 试验材料及模型制作 (18)4.3 桩身变形测量方法 (19)5. 研究结果 (21)5.1 桩身变形规律分析 (22)5.1.1 桩长对桩身变形的影响 (23)5.1.2 围岩性质对桩身变形的影响 (24)5.1.3 打桩工艺对桩身变形的影响 (25)5.2 影响因素耦合效应分析 (26)6. 结论与展望 (28)6.1 研究结论 (29)6.2 学术意义及应用价值 (30)6.3 今后研究方向 (31)1. 内容描述本文档旨在全面探讨考虑桩土相互作用的长桩基础打桩过程中的桩身变形特性。
在现代建筑和工程领域,长桩基础因其强度大、适应性广而广泛应用于高层建筑、桥梁工程以及海洋平台等大型结构中。
为确保结构的稳定和安全,深入研究桩土相互作用下的桩身变形极为重要。
首先是桩土接触的动态过程研究,通过分析桩土接触表面应力、应变分布和动力响应,理解桩身受力机制和动态变化规律。
其次,是桩身变形模式的判别,运用弹性动力学理论,结合时域动态仿真,分析桩身在不同打桩阶段的变形演化特性。
此外,还需分析桩土互作的频率响应特性以及桩间土对桩身变形的影响,提炼出桩土系统相互作用下的桩身频率与谐振特性。
此外,本文档还将综合考虑施工参数对桩身变形的影响,比如桩径、打桩顺序、锤击力度等因素。
通过对这些关键参数的控制,研究其在打桩过程中的动力响应特性,以获得最优化的桩身变形控制方案。
桩-土-桩相互作用有限元接触分析摘要:桩土体作为一个共同工作的系统,广泛存在于土木工程实践中,是典型的接触问题之一,对桩-土-桩相互作用的研究也是工程十分关心的,其中桩身摩阻力的分布更是关键所在。
本文基于有限元数值分析方法软件对此进行了深入研究。
关键词:有限单元法;接触非线性;桩土相互作用;桩侧摩阻力中图分类号:TU43 文献标识码:A 文章编号:1006-4311(2010)11-0108-020 引言桩土相互作用问题的实质是固体力学中不同介质的接触问题,具体表现为材料非线性、接触非线性等。
目前,有限单元法是解决复杂空间结构静、动力问题、弹塑性问题最有效的数值方法之一。
本文对桩土相互作用中接触问题进行分析时主要采用接触非线性有限元法,利用ABAQUS有限元软件进行研究。
1 ABAQUS软件概述ABAQUS是功能强大的有限元法软件[1,2],提供了广泛的功能且使用起来十分简明。
对于非线性分析,ABAQUS能自动选择合适的荷载增量和收敛精度,且拥有十分丰富的、可模拟任意实际形状的单元库。
2 ABAQUS桩土接触分析中需解决的问题2.1 单元类型的选择在接触模拟中采用二阶单元会引起接触面上等效节点力的计算出现混淆,因此接触面两侧的单元一般不宜采用二阶单元,只能采用线性单元。
2.2 主从接触面的建立可以通过定义接触面(surface)来模拟接触问题,本文所涉及的桩土体之间的接触面主要有两类:①桩侧单元构成的柔性接触面(桩侧土体表面)或刚性接触面(桩表面);②桩底土体一般采用节点构成的接触面,选取桩底土体节点时,不包含己定义在柔性接触面上的节点。
在模拟过程中,接触方向总是主面的法线方向,从面上的节点不会穿越主面,但主面上的节点可以穿越从面。
一般遵循以下原则:①应选择刚度较大的面作为主面,对于刚度相似的两个面,应选择网格较粗的面作为主面;②主面不能是由节点构成的面,并且必须是连续的;③如果接触面在发生接触的部位有很大的凹角或尖角,应该将其分别定义为两个面;④如果两个接触面之间的相对滑动小于接触面单元尺寸的20%,选用小滑动,否则选用有限滑动。
上拔力作用下桩土相互作用数值分析桩土相互作用是岩土工程中一个重要的研究课题,它影响着桩基工程的稳定性和承载力。
在实际工程中,桩土相互作用通常通过数值模拟方法进行研究。
其中,上拔力作用下桩土相互作用是一种具有挑战性的情况,需要进行细致的分析和研究。
首先,需要了解上拔力作用的原因。
上拔力是指桩基在土体中受到的由土体侧向位移引起的上拉力,这种力会对桩基产生一定的影响。
在实际工程中,上拔力的作用可能会导致桩基的稳定性降低,甚至引起桩基的失稳。
其次,需要建立合适的数值模型来模拟上拔力作用下的桩土相互作用。
数值模拟可以通过计算机软件对桩土相互作用进行模拟和分析,得出相关的计算结果。
在建立数值模型时,需要考虑土体的本构模型、桩基的几何形状和材料性质等因素,以确保模拟结果的准确性和可靠性。
接下来,可以通过数值模拟来分析上拔力作用下的桩土相互作用。
具体包括以下几个方面:1.桩基的受力特性:通过数值模拟可以得到桩基在受到上拔力作用时的受力状态,包括桩身和桩端的受力情况。
这有助于评估桩基的承载力和稳定性。
2.土体的变形特性:土体在受到上拔力作用时会发生一定的变形,数值模拟可以模拟土体的变形过程,并得到相应的位移、变形和轴力等信息。
3.拔桩过程的影响:在实际工程中,拔回桩基时可能会受到一定的阻力,这种阻力会对桩基产生一定的影响。
数值模拟可以模拟拔桩过程,并分析阻力的影响。
最后,需要对数值模拟结果进行验证和分析。
通过将数值模拟结果与实测数据进行对比,可以验证模拟结果的准确性和可靠性。
同时,对模拟结果进行分析,得出结论并提出相应的建议,以指导工程实践。
总之,上拔力作用下桩土相互作用的数值分析是一个复杂的工程问题,需要综合考虑土体、桩基和其他相关因素,通过建立数值模型进行模拟和分析,得出相应的结论和建议,以确保桩基工程的安全和稳定性。
基于abaqus的桩土相互作用分析桩土相互作用是土木工程中的重要研究领域,它关注的是桩与土壤之间的相互作用效应。
桩土相互作用分析对于确定桩基承载力和变形特性等参数具有重要的意义。
ABAQUS作为一个常用的有限元分析软件,可以用来进行桩土相互作用分析。
首先,进行桩土相互作用分析需要建立适当的有限元模型。
对于桩土相互作用的分析,一般需要包括桩身、土体和桩的相互作用界面等部分。
桩体可以是直桩、摩擦桩或末端摩擦桩等形式,土体可以是均质土或非均质土。
在建立有限元模型时,需要根据实际情况选择合适的单元类型和材料模型,以准确描述桩和土体的力学性质。
其次,进行桩土相互作用分析需要对桩土相互作用界面应用适当的边界条件。
桩与土体之间的相互作用主要是通过桩土界面传递负荷和变形。
在建立有限元模型时,需要对桩土界面施加适当的应力或位移边界条件,以模拟桩与土壤之间的相互作用过程。
然后,进行桩土相互作用分析需要定义合适的荷载和加载方式。
在实际工程中,桩往往要承受来自地震、风荷载、交通荷载等多种荷载的作用。
在进行桩土相互作用分析时,需要根据实际情况选择合适的荷载和加载方式,并将其应用于有限元模型中。
最后,进行桩土相互作用分析后需要对分析结果进行评估和解读。
ABAQUS可以输出桩的承载力、桩身和土体的变形等关键参数,通过对这些参数进行分析和解读,可以评估桩土相互作用的性能。
总之,基于ABAQUS的桩土相互作用分析可以通过建立合适的有限元模型、施加适当的边界条件、定义合理的荷载和加载方式,并对分析结果进行评估和解读,来分析桩土相互作用的行为和参数。
这对于土木工程中的桩基设计和施工具有重要意义。
桩土共同作用研究综述摘要:现如今桩基础在高层建筑、桥梁及港口工程中应用十分广泛。
通过桩土共同作用理论的分析,探究如何充分发挥出地基土的承载能力,从而实现桩土相互作用以达到提高桩基础的经济性、安全性、耐久性是一个十分有意义的课题。
本文对近年来国内外桩土共同作用理论研究的发展进行了归纳总结。
关键词:桩基础;桩土共同作用;地基承载力;研究现状引言桩基础具有承载力高、稳定性好、沉降量小,便于机械化施工等优点,所以与其他深基础相比,桩基础的应用最为广泛。
而在传统桩基础设计中通常只考虑桩来承担上部传来的所有荷载,而地基土的承载力不能得到发挥造成了较大的浪费。
在竖向荷载作用下,桩体发生弹性压缩变形,桩与桩侧土体产生相对位移形成向上的桩侧摩阻力,另一部分荷载通过桩身传至桩底使桩底土层产生压缩变形,桩端土对桩体产生桩端阻力,地基土在保证地基稳定性中起到了至关重要的作用,所以说,土与桩体之间的相互作用关系是研究桩基承载力设计时极为重要的一个环节。
国内外研究现状1988年,杨克己[1]等人通过模型试验研究提出桩间土在受荷过程中有迟后作用,若要使桩间土能够承担上部传来的荷载需满足的条件有:基础下的土体不产生自重固结沉降、湿陷等情况造成基础脱空;基础的荷载需大于其极限荷载,桩距需大于3.5桩径或边长,入土深度需大于1.5倍基础宽度;桩尖土的刺入变形大于桩间土的压缩变形。
1991年,杨军[2]等人通过自编的有限元软件FHDJ程序,对水泥粉煤灰碎石桩复合地基受荷进行分析,提出在基础与桩之间铺设褥垫层能够有效协调桩土之间的变形,为桩土共同作用提供了保证。
1991年,Y.K.Chow[3]采用线性弹性模型,考虑各桩周围土体的杨氏模量的径向变化,对荷载作用下群桩的沉降进行了分析。
并通粘土群桩现场试验实例的分析,论证了土的弱化区对桩-土相互作用的影响。
1995年,宰金珉[4]提出影响桩土荷载分担的主要因素有桩距、名义单桩平均荷载等。
深基坑桩锚支护结构和土体之间协同作用现如今,对于深基坑桩锚支护结构的研究越来越深入,但是,其与土体之间的协同作用分析比较少。
对此,本文首先对桩锚支护结构的应用范围进行介绍,然后桩锚支护与土体相互作用进行详细探究。
标签:桩锚支护结构;支护特点;协同作用1、引言在深基坑施工中,桩锚支护结构可起到主动支护的作用,能够有效降低土体结构的下滑力,保证深基坑结构稳定性。
在国内外很多深基坑工程研究中,都有对于预应力锚索与土体、支护桩与土体相互作用的研究,但是,对于桩锚支护结构与土体之间协同作用的分析并不全面,因此,亟需对深基坑桩锚支护结构和土体之间协同作用进行深入研究。
2、桩锚支护结构的支护特点和适用范围支护桩与锚杆支护可作为一种整体加固结构,通过土压力变化情况,即可显示出实际支护效果。
在深基坑开挖施工中,如果桩身结构受到基坑底部水压力、基坑以外土体等因素的影响,就会发生侧向移动,同时还会向坑内发生倾斜。
在支护桩锚固范围中,深基坑土体中会产生被动土压力,同时,支护桩也会向深基坑内侧发生倾斜,二者可发挥相互抗衡的作用,同时,锚杆预应力还可有效抵御土体压力。
如果在桩锚施工中,在锚固范围内,锚杆加固与土体被动土压力的综合大于支护桩主动土压力,则能够达到良好的支护效果。
3、支护桩与土体的协同作用支护桩是由锚固段侧向地基岩土抗力抵抗土压力的横向受力桩,桩后土压力的传递方式:第一,桩身嵌入基坑坑底以下的部分产生的抵抗矩;第二,桩侧土体与桩身的负摩阻力。
维持基坑的稳定是靠多种因素共同决定的,依靠以上两种方式,将桩后土体压力进行传递,直到离桩身较远的稳定地层,以其未被扰动的特性抵消这部分土压力。
支护桩与土体互相作用可以从以下几个方面着手:(1)支护群桩与土体作用时产生的土拱效应,掌握其荷载的传递机理。
(2)支护桩与土体相互作用时,作用在桩后土压力分布形式的确定,不同土质条件就决定了其分布形式的不同,矩形是比较常见的形式,此外还有三角形、梯形等分布形式;再加上基坑周边荷载对支护桩的作用,受力形式的简化要尽可能准确。
桩土相互作用研究综述
桩土相互作用是指桩和周围土体之间的力学相互作用过程。
这种相互作用在土木工程中非常重要,因为桩是支撑建筑物或其他结构的重要元素之一。
研究桩土相互作用是为了更好地理解和优化这些结构的设计和建造。
桩土相互作用的研究主要包括以下几个方面:
1. 桩的承载力和变形特性。
这涉及到桩的材料和几何形状,以
及周围土体的性质,包括土壤类型、密度、水分含量等。
2. 土体在桩周围的应力场。
这涉及到土体的力学特性,如弹性
模量、剪切模量、泊松比等,以及桩的位置和深度。
3. 土体在桩周围的变形特性。
这包括土体的水平和垂直变形,
以及桩的侧向位移和弯曲变形。
4. 桩的抗拔和抗侧力能力。
这涉及到桩的纵向和侧向刚度,以
及周围土体的摩擦系数和黏聚力。
5. 土体在桩周围的孔隙水压力。
这涉及到土壤的渗透性和水文
特性,以及桩的位置和深度。
6. 土体在桩周围的动力响应。
这涉及到土体的动力特性,如自
然频率和阻尼比,以及结构的震动频率和振幅。
综上所述,桩土相互作用研究是土木工程中非常重要的一个领域,它关系到建筑物和其他结构的安全和可靠性。
今后的研究应该进一步深入挖掘桩土相互作用的细节和机理,以便更好地指导工程实践。
- 1 -。
用MIDAS模拟桩-土相互作用(“m法”确定土弹簧刚度)北京迈达斯技术有限公司2009年05月1、引言土与结构相互作用的研究已有近60~70年的历史,待别是近30年来,计算机技术的发展为其提供了有力的分析手段。
桩基础是土建工程中广泛采用的基础形式之一,许多建于软土地基上的大型桥梁结构往往都采用桩基础,桩-土动力相互作用又是土-结构相互作用问题中较复杂的课题之一。
至今已有不少关于桩基动力特性的研究报告,国内外研究人员也提出了许多不同的桩-土动力相互作用计算方法。
从研究成果的归类来看,理论上主要有离散理论和连续理论及两者的结合,解决的方法一般有集中质量法、有限元法、边界元法和波动场法。
60~70年代,美国学者J.penzien等在解决泥沼地上大桥动力分析时提出了集中质量法,目前已在国内外得到了广泛的应用。
集中质量法将桥梁上部结构多质点体系和桩一土体系的质量联合作为一个整体,来建立整体耦联的地震振动微分方程组进行求解。
该模型假定桩侧土是Winkler连续介质。
以半空间的Mindlin静力基本解为基础,将桩-土体系的质量按一定的厚度简化并集中为一系列质点,离散成一理想化的参数系统。
并用弹簧和阻尼器模拟土介质的动力性质,形成一个包括地下部分的多质点体系。
土弹簧刚度的确定,除考虑使用较为精确的有限元或边界元方法外,较为简便的方法是采用Penzien模型中提供的土弹簧计算方法或参照现行规范中土弹簧的计算方法。
我国公路桥涵地基与基础设计规范(JTG D63-2007)用的“m法”计算方法和参数选取方面比Penzien 的方法要简单和方便,且为国内广大工程师所熟.“m法”的基本原理是将桩作为弹性地基梁,按Winkler假定(梁身任一点的土抗力和该点的位移成正比)求解。
但是,由于桩-土相互作用的实验数据不足,土的物性取值有时亦缺乏合理性,在确定土弹簧的刚度时,仍有不少问题未能很好解决。
特别是,“m法”中m的取值对弹簧刚度的计算结果影响很大,且不能反映地震波的频率特性和强度带来的影响。
桩土相互作用研究综述桩土相互作用是土木工程中一个重要的研究领域。
桩土相互作用的研究对于正确设计和建造桩基础具有重要的意义。
本文将综述桩土相互作用的研究进展,以及目前存在的问题和挑战。
一、桩土相互作用的概念和机理桩土相互作用是指桩与周围土体之间相互传递应力和变形的过程。
在桩基础设计中,了解桩土相互作用的机理对于准确预测桩的承载力和变形具有重要意义。
桩土相互作用的机理主要包括以下几个方面:1. 桩的承载机制:桩在土体中的承载主要有摩擦桩和端承桩两种机制。
摩擦桩主要通过桩身与土体之间的摩擦力来承担荷载,而端承桩则主要通过桩底的抗压强度来承担荷载。
2. 桩侧阻力的形成:桩侧阻力是指土体对桩身的摩擦力和侧向抗力。
桩侧阻力的形成与土体的固结、摩擦力以及桩身的形状和材料有关。
3. 桩的变形规律:桩在受到荷载作用时会发生一定的变形,包括沉降、弯曲、扭转等。
桩的变形规律与土体的性质、桩的刚度以及桩身的形状等因素密切相关。
二、桩土相互作用的研究方法桩土相互作用的研究方法主要包括实验方法、数值模拟方法和理论分析方法。
1. 实验方法:通过在实验室或现场建立模型,加以荷载并观测其变形和破坏形态,来研究桩土相互作用的规律。
实验方法可以直观地模拟实际情况,但成本较高且受到尺寸效应和边界效应的影响。
2. 数值模拟方法:利用有限元、边界元等数值方法,将桩和土体建模,并通过计算机模拟桩土相互作用的过程。
数值模拟方法可以对复杂的桩土相互作用进行较为准确的分析,但需要依赖于土体的本构模型和桩土界面的模型。
3. 理论分析方法:通过分析桩和土体之间的力学关系,推导出相应的理论公式或解析解,来研究桩土相互作用的规律。
理论分析方法可以快速得到一些近似解或推测结果,但需要对土体和桩的力学特性做出一定的假设。
三、桩土相互作用的研究进展桩土相互作用的研究已经取得了许多重要的成果。
在摩擦桩的研究方面,人们通过实验和理论分析,得出了一系列的计算公式和设计方法,可以较为准确地预测桩的承载力和变形。
基于abaqus的桩土相互作用分析在处理岩土结构桩基础受力分析时,我们经常使用ABAQUS软件模拟此类工程的受力情况,以更好的预测实际情况。
本文将介绍使用ABAQUS模拟桩土相互作用分析的基础知识,及如何有效地进行分析,以获得有用结果。
首先,应该有一个良好的桩基结构设计,因为结构设计是桩基分析的基础,如果桩基结构设计不合理,则可能导致分析错误。
其次,在建立桩土结构受力分析模型前,应当了解建筑物的承载力是由基础、地基两部分组成的,因此应该明确基础的形式和地基的状况。
接下来应当做好模型准备工作。
首先,模型中应当分别包括桩体、土体、桩土界面。
其次,应当考虑土层状态,如果地基有多种状态,那么模型中就应当分别定义每一种状态。
最后,要定义材料参数,如桩体的弹性模量、桩体的半径、土体的体积含水率、土体的杨氏模量等,以及定义相关接触参数如接触系数等。
接着进行桩土相互作用的分析,在ABAQUS中,有两种桩基力学分析方法,一种是考虑土壤的体积变化,即利用“超在拉”模型,属于有限元法;另一种是考虑土壤的孔隙模型,即使用“Elasto-plastic”模型,又称为“Cheng”模型,属于非线性动力学分析方法。
在模拟中,应首先指定桩体的位移和荷载,然后运行ABAQUS,ABQQUS将自动进行桩基力学分析,得到活塞的轴力、剪力等受力信息,以及桩基范围内土体的位移、应力信息等。
最后,分析结果的可靠性要由有关的计算和经验来证明。
因此,经常要与其他有关的分析进行比较,以确保结果的准确性。
同时,也要考虑设计的实际情况,检查分析结果是否正确,为设计提供参考依据。
综上所述,使用ABAQUS模拟桩土相互作用分析是一种有效的方法,本文简要介绍了ABAQUS模拟桩土相互作用分析的基础知识,讨论了模型准备工作和分析方法,并指出了分析结果的可靠性应由有关的计算和经验证明,以及要考虑设计的实际情况,检查分析结果是否正确。
因此,ABAQUS可以帮助设计人员和工程师更好地预测桩基受力情况,充分发挥它在基础工程领域的优势。
桩土相互作用模型分析及土弹簧的刚度确定桩基地基相互作用在工程领域中是一个非常重要的研究方向。
如何分析桩土相互作用,确定土弹簧的刚度,已经成为研究者们长期以来的研究方向。
本文将着重介绍桩土相互作用模型的分析以及土弹簧刚度的确定方法。
一、桩土相互作用模型分析桩土相互作用的分析是一个很复杂的问题,需要考虑很多因素,例如桩的形状、尺寸、材质、荷载作用方式以及土体的本构模型等等。
因此,建立一个合适的桩土相互作用模型是非常重要的。
常用的桩土相互作用模型主要包括刚性桩模型、柔性桩模型、弹性桩-地基模型和弹塑性桩-地基模型等。
具体模型的选择应根据实际工程情况进行合理选择。
在选择模型的同时,还需要考虑模型的精度和适用范围。
1. 刚性桩模型刚性桩模型是一种假设桩完全刚性的模型,桩与土体之间不存在变形,荷载沿着桩轴线方向传递。
该模型的应用比较广泛,特别是在短桩和单桩承载力计算中。
但是,刚性桩模型忽略了桩与土体之间的变形,因此在一些长桩、柔性桩及复杂荷载情况下,其结果可能需要进行修正。
2. 柔性桩模型柔性桩模型是一种假设桩的刚度较小,桩与土体间存在较大变形的模型。
因此,在该模型中,桩遭受荷载后,桩柄会发生变形,从而引起桩端和土体的变形。
这种模型适用于长桩或软土等复杂工程情况的分析。
但是,柔性桩模型的计算较为复杂,同时模型误差也较大。
3. 弹性桩-地基模型弹性桩-地基模型是一种假设桩和土体都是均质的弹性体的模型。
该模型假设桩和土体在弹性阶段的反应服从弹性理论,可以较好地反映桩与土体之间的相互作用关系。
其应用比较广泛,适用于一些较小荷载的工程应用。
4. 弹塑性桩-地基模型弹塑性桩-地基模型是一种新的桩土相互作用模型,既考虑了弹性行为,也考虑了土体的塑性行为。
该模型能够比较准确地反映桩与土体之间的相互作用关系。
其应用范围广泛,特别适用于长桩和承载力较大的复杂应力场中的计算分析。
二、土弹簧的刚度确定在桩土相互作用中,土弹簧承担着承载荷载的重要作用。
桩-土-结构相互作用初探0引言桩-土-结构相互作用(Pile-soil-structure-interaction,简称PSSI)广泛存在于土木工程的各个领域中。
由于桩-土-结构相互作用问题十分复杂,涉及到动力特性、基础形状、上部结构体系以及动力反应等,因此这方面的研究也较为持久,而且很难得出比较符合实际的成果。
随着科学计算技术的迅猛发展和实验手段的不断改进,重大和复杂体系工程的不断建造,促进了与结构动力相互作用的深入研究,几十年来一直引起国内外的广泛重视和研究。
1桩基简介1.1桩基桩基,一般指利用设置在地基中的桩来加固地基时桩与桩间土联合构成的一种复合地基,而且主要是纵向增强体复合地基。
在桩基中,桩体是纵向增强体,而桩间土则为基体。
随着地基处理技术的发展和桩基理论的日益完善,工程实践中桩的应用已拓展到承受轴向荷载、横向荷载及轴向横向共同作用的情况;以承受横向荷载为主的桩有围护桩、抗滑桩、锚桩等。
因此,广义的“桩基”概念应该也包括这种类型的桩及其基体。
桩基的使用经历了漫长的历史年代,但在水泥未问世以前,实际上能利用的桩型只是由天然材料做成的木桩和石桩。
特别是木桩,我国迄今仍在个别地区使用着。
19世纪中叶以后,由于水泥工业的出现和发展,钢筋混凝土在建筑工程中开始应用,于是出现了混凝土桩和钢筋混凝土桩。
但在初级阶段,由于所采用的混凝土强度和钢筋强度都比较低,钢筋混凝土的计算理论也尚未建立,那时的钢筋混凝土桩,无论从桩型或桩基工程的施工技术来看,都是处于较低的水平。
只是在20世纪20年代特别是第二次世界大战以后,桩基的理论和技术有了更大的发展,桩的应用范围也不断扩大,出现了形形色色的、花样繁多的桩型。
例如预应力钢筋混凝土桩、高强度钢筋混凝土桩以及钢桩等。
桩从古老的、简陋的形式发展为现代桩基的各种不同体系过程中,桩的型式、规格和工作机理都发生了质的变化。
桩的多种类型以及它们的丰富多样的功能,使得它几乎可以用于各种工程地质条件和各种类型的工程中。
桩土相互作用研究综述
1 桩土相互作用的研究现状
桩土相互作用问题属于固体力学中不同介质的接触问题,表现为材料非线性(混凝土、土为非线性材料)、接触非线性(桩土接触面在复杂受荷条件下有黏结、滑移、张开、闭合4形态)等,是典型的非线性问题。
为了能够全面地评价桩土的相互作用问题,通常需要确定桩、土体各自的应力和应变以及接触区域处位移和应力分布的数据,对影响桩土相互作用的各因素进行全面研究。
研究桩土相互作用问题需要考虑的因素有:(a)土的变形特征;(b)桩的变形特征;(c)桩的埋置深度;(d)时间效应(土的固结和蠕变);(e)外部荷载的形式(静载或动载);(f)施工顺序(即开挖、排水以及基础和上部结构施工各个阶段的影响)。
目前桩土相互作用的研究方法主要有理论分析法和试验方法。
1.1理论分析方法
理论分析方法分为经典理论分析方法和数值分析方法。
1.1.1经典理论分析法
(1)弹性理论法。
以Poulos方法为代表。
假定桩和土为弹性材料,土的杨氏模量ES或为常数或随深度按某一规律变化。
由轴向荷载下桩身的压缩求得桩的位移,由荷载作用于半无限空间内某一点所产生的Mindlin位移解求得桩周土体的位移。
假定桩土界面不发生滑移,即可求得桩身摩阻力和桩端力的分布,进而求得桩的位移分布。
如果假定Mindlin位移解在群桩的情况下仍旧适用,则弹性理论法可以被推广至群桩的相互作用分析中。
(2)剪切位移法。
以Cooke等为代表。
根据线性问题的叠加原理,可将剪切位移法推广到群桩的桩土相互作用分析中。
Nogami等基于上述思想再把每根桩分成若干段并考虑地基土分层特性,得到比Mindlin公式积分大为简化的数值计算方程组。
剪切位移法的优点是在竖向引入一个变化矩阵,可方便考虑层状地基的性况,均质土不需对桩身模型进行离散,分析群桩时不依赖于许多共同作用系数,便于计算。
(3)荷载传递法。
荷载传递法本质为地基反力法。
根据求取传递函数手段的不同,可将传递函数法分为Seed等提出的位移协调法和佐腾悟等提出的解析法。
荷载传递法可较好地模拟单桩性状。
由于没有考虑土体的连续性,荷载传递法一般不能直接用于群桩,除非经分层积分位移迭代或与有限元耦合。
1.1.2数值分析方法
随着计算机技术的不断发展,计算机处理非线性问题的能力有了极大的提高,以有限元法为主的数值分析方法逐渐成为桩土相互作用分析的最有效方法。
汪克让等采用Biot固结理论,使用8结点等参元、无界元、接触面单元对桩土体系进行离散,通过分析土体固结过程中地面的沉降特性,研究桩间土承受荷载的可能性。
张崇文等提出一种解决三维空间桩与土相互作用的有限层-有限元混合模型,将半无限空间问题转化为准二维平面问题进行求解。
王玉杰等应用有限棱柱单元、无限棱柱单元离散桩土体系,在计算中用理想弹塑性弹簧模拟桩土之间的相互作用,对在集中荷载作用下由4根长桩组成的群桩与土相互作用体系进行了三维弹塑性分析。
黄昌礼等通过在土和桩之间设置接触面单元,对某工程的2个剖面进行桩土相互作用平面非线性有限元分析,以详细了解桩及土的变形场及应力场分布。
娄亦红等使用有厚度的接触面单元与有限元、无界元相耦合进行数值分析,求解桩土相互作用体系的应力和变形,计算结果与现场观测数据能较好地吻合。
1.2试验方法
1.2.1室内模型试验
限于人力、物力、财力、时间或其他因素无法进行现场原型试验时,模型试验成为研究问题的一种有效方法。
室内模型试验主要有常规模型试验和离心模型试验。
(1)常规模型试验。
王幼青等在实验室进行了不同桩距和桩数的模型桩基础载荷试验,通过试验认识到桩距和桩数对土体相互作用的影响规律。
黄海峰等通过改进的三轴试验,研究了碎石桩复合地基横向桩土的相互作用,提出碎石桩复合地基的桩土相互作用可用桩土相互作用系数kps表征。
杨进等按10∶1的比例,进行了黏性土质条件下的群桩施工模拟试验。
通过试验,研究了群桩条件下的桩土相互作用,得出群桩作用对土应力场的影响关系。
(2)离心模型试验。
离心模型试验可在高重力场条件下全仿真模拟施加荷载及挖方、填方等施工过程,但试验费用较高,试验规模很大,周期较长。
1.2.2现场原型试验
在桩基工程中,最能说明问题的是群桩或单桩的原型试验。
河海大学岩土工程科学研究所为研究PCC桩复合地基理论开展了包括单桩静载荷试验,复合地基静载荷试验,静力触探,小应变测试,表面沉降观测,分层沉降观测,地下水平位移观测,桩顶、桩间土压力观测在内的大量现场试验,论证了其加固软土地基的可行性和科学性,同时也为PCC桩桩土相互作用的研究提供了第一手资料。
2存在的问题
从Winkler模型提出到现在,人们对桩土之间的相互作用进行了大量有益的理论分析和
试验研究,取得了不少成果,但还存在不少问题。
2.1理论分析问题
2.1.1经典理论分析法
经典理论分析法发展较为完善,目前已经进入群桩分析研究阶段,可以用于桩筏基础分析,是目前数值方法无法处理大范围问题时的必要替代。
但必须注意到使用经典理论分析法分析桩土相互作用时,不能很好地描述对桩相互作用影响很大的桩土接触面的力学特性。
2.1.2数值分析方法
数值分析法存在的问题主要有接触面的处理、材料的本构、计算参数的选用、计算机容量的限制等。
(1)接触面问题。
为了更好地反映桩与土间的相互作用,真实模拟桩与土体接触面上的力学行为,需要在桩土之间设置接触面单元。
目前常用的接触面单元主要分为3类:以Goodman为代表的无厚单元,以Desai为代表的薄单元,以Katona为代表的接触摩擦元。
虽然接触面单元较多,但有的单元并不能完全反映桩土间的相互作用力学机理,因此需要针对所要研究的桩型选用恰当的单元形式来描述桩土间的接触特性,必要时通过专门试验,确定接触面单元的本构。
(2)材料本构问题。
由于土的突出非线性,到目前为止,还没有哪个本构模型可以体现土的各种特性。
不同土的本构,往往针对某个问题才具有合理性,因此要根据所研究的问题灵活选用土体本构。
较土而言,混凝土材料的本构要简单的多。
混凝土的本构,在低应力情况下,通常采用线弹性模型;在进行桩的极限状态分析时可选用损伤本构模型。
(3)计算参数的选用问题。
现场土体的性质很不均匀,且各向异性,选取计算参数比较困难。
实际计算时,往往对某一段范围内土体进行简化。
另外,用仪器很难测定地基的侧压力系数,其一般按经验公式取值,带有随意性。
计算参数取值不同,计算结果也不同,这将影响数值分析的可信度。
(4)计算容量有限。
无论是有限元法还是其他的数值计算方法,计算模型大多比较简单,这是因为目前的计算机内存容量还不足以处理大规模的非线性三维模拟问题,严重制约着复合地基的三维分析。
鉴于以上难题,目前的理论分析只有在评价影响桩的工作性状参数时才有意义。
2.2试验问题
由于不能模拟自重应力条件,桩的小比例尺模型试验无法准确地观测到桩基深处土层在实际应力条件下的性状及其与桩的相互作用。
室内试验存在着尺寸效应。
而桩的现场静载荷
试验,因影响因素过多,必须经过大量的试验积累,才能找出规律。
3今后发展的方向
3.1接触面本构的完善
桩土作为整体进行数值建模时,关键是桩土接触面的处理问题。
虽然接触面单元较多,但有的单元并不能正确反映桩土间的相互作用力学机理,因此需要针对所研究的桩型选用恰当的单元形式来描述桩土间的接触特性,寻找一个恰当的接触面本构。
3.2计算方法的改进
计算方法的改进方式主要有:(a)有限元法自身完善,如广义位移法在土-结构相互作用问题分析中的应用。
(b)有限元法与其他方法相结合,如有限元与无界元耦合,有限元与有限层耦合,以及有限元法同经典理论分析方法相结合等。
(c)新方法不断涌现,如目前备受岩土工程界注意的神经网络,十分适合处理类似于桩土相互作用这种非线性十分突出的力学问题。
虽然还没有神经网络用于桩土相互作用研究的报道,但可以相信其前景十分广阔。
3.3数值分析方法与室内外试验相结合
模型试验和数值分析相结合,进行优势互补,是桩土相互作用分析领域的发展方向之一,其最终目的是提出和验证更为简单有效的计算方法。
例如,将离心试验与数值分析相结合,参照离心模型试验的加载过程,采用数值方法模拟模型的应力和变形,将结果与离心试验结果进行比较,以验证数值分析方法的合理性,再采用数值分析方法计算原型的应力和变形。
4结语
接触面问题是桩土相互作用分析中最为突出的问题,针对桩型采用恰当的接触面单元,是保证桩土相互作用数值分析正确性的首要任务。
限于当前的计算机技术水平,桩土相互作用的研究需要探索更好的计算方法,模型试验为其提供了便利。
模型试验与数值分析方法相结合是今后桩土相互作用研究的一大发展方向。