C O
B
若AC=14,BD=8, AB=10, 则△OAB的周长为 变式: 如图,在 AC+BD=40.
A
ABCD中,对角线AC与BD相交于点O,BC=15, A O B D
则△ BOC的周长是______.
设计意图:两个题由浅入深,加深学生对平行四边形对角线 互相平分性质的理解,达到巩固的效果。
(五)达标测试,总结评价
图1
图2
设计意图:考 察学生对平行 四边形性质的 掌握情况。
(五)达标测试,总结评价
学生独立完成出示答案,同桌互换、互批小组记分,当堂反馈
合上课本、合上 导学案,独立完 成 考完后要马上判 卷,或互换、或 组长代批
试卷情况要马上反馈,不要 等到下一节课;如果出现共 性问题,老师要拿出解决方 案,个别学生的问题在课后 要做好补差
性质 定义 判定 平 行 四 边 形
设计意图:以《平行四边形 》整节知识树的形式导入, 首先让学生对整节所要学习 的知识做一个总体的了解, 其次学生对已经学过的知识 得到复习,同时也明确了本 课的学习目标,使学生有的 放矢地去学习。
(一)创境导入,明确目标 2.如图,四边形ABCD是平行四边形,AB=8cm,BC=6cm,∠B=110°, 则AD=_____,CD=______,∠D=_______,∠A=_______,∠C=_______. D C A
《平行四边形的性质(第二课时)》教学设计 创境导入,明确目标 导学设疑,自主探究 合作汇报,精讲点拨 变式练习,巩固拓展 达标测试,总结评价
(一)创境导入,明确目标
平行四边形 对边平行 性质1: 平行四边形的 对边相等 两组对边分别平 行的四边形 性质3 (对角线) 性质2: 平行四边形的 对角相等 平行四边形 邻角互补