思维脉络
课前篇 自主预习
[激趣诱思]
在物理和工程技术的许多问题中,经常会遇到形如y=Asin(ωx+φ) 的函数
(其中A,ω,φ为常数),例如,在简谐运动中位移与时间的函数关系就是形如
y=Asin(ωx+φ)的函数,其中振子在一段时间内的图象如图所示.
你能根据图象,求出函数解析式吗?
[知识点拨]
反思感悟 给出y=Asin(ωx+φ)的图象的一部分,确定A,ω,φ的方法.
(1)逐一定参法:先通过图象确定A和ω,再选取“第一零点”(即“五点法”作图
中的第一个点)的数据代入“ωx+φ=0”(要注意正确判断哪一点是“第一零
点”),求得φ的值.
(2)待定系数法:通过若干特殊点代入函数式,可以求得相关待定系数A,ω,φ.
,0
2π
π
3
4
解析 令 4x+ =kπ,k∈Z,则 x=
故离原点最近的对称中心为
π
12
π
π
π
6
6
12
− ,k∈Z,当 k=0 时,x=- ;当 k=1 时,x= ,
,0 .
π
5.(题型1、3)已知曲线y=Asin(ωx+φ) A>0,ω>0,|φ|≤2 上一个最
高点为(2, 2),该最高点与相邻的最低点间的曲线与x轴交于点(6,0).
π
答案 y=2sin 2x+4
.
解析 根据函数 y=Asin(ωx+φ)的部分图象知,A=2,T=2×
5π
8
π
− 8 =π,所以
2π
ω= =2.
π
π
π