厚薄膜混合集成电路课件-4-5-6厚膜工艺
- 格式:ppt
- 大小:4.53 MB
- 文档页数:73
第4章厚膜工艺厚膜工艺是指将电子浆料通过丝网印刷等方法印制在陶瓷基板或者其他绝缘基板上,经干燥、烧结后形成厚度为几微米到数十微米的膜层。
在微电子领域中,用厚膜技术在基板上形成导体、电阻和各类介质膜层,并在基板上组装分立的半导体器件芯片、单片集成电路或微型元件,封装后构成厚膜混合集成电路。
厚膜混合集成电路能耐受较高的电压、较大的电流和功率,广泛用于民用无线产品、高可靠小批量的军用、航空航天产品中。
本章主要介绍几种主要的厚膜浆料及特性;厚膜图案形成工艺;厚膜的干燥和烧成等厚膜工艺。
§4.1 厚膜浆料厚膜浆料是由一种或多种无机微粒分散在有机高分子或低分子化合物溶液中组成的胶状体或悬浮体;有机化合物溶液称为有机载体。
4.1.1 厚膜浆料的特性和制备厚膜浆料是构成厚膜电路的关键材料,其组成、特性直接决定电路的电性能和工艺性能:如流变触变性、工艺重现性、相容性和烧结特性等。
1. 厚膜浆料的组成厚膜浆料一般都是由三种主要成分组成:功能相,粘结相和有机载体。
功能相决定厚膜的电性能。
根据功能相的不同,厚膜浆料可分为导体浆料,电阻浆料,介质(电容)浆料和磁性(电感)浆料等。
导体浆料的功能相一般是贵金属、贱金属或合金的混合物;在电阻浆料中,通常是导电氧化物、合金、化合物或盐类等;介质浆料的功能相一般是铁电体氧化物、盐类、玻璃、晶化玻璃或玻璃-陶瓷以及这些材料的混合物;磁性浆料中功能相主要是铁氧体材料。
粘结相的作用是将功能相粘结在一起,并使膜层与基片牢固结合。
粘结相通常是玻璃釉粉的混合物。
玻璃釉粉是由各种金属氧化物在高温下熔融淬火而得到的玻璃粉。
根据在玻璃中的主要作用,氧化物大致可分为三类:第一类为构成玻璃基本骨架的氧化物,如SiO2、B2O3等,它们能单独形成机械性能和电性能优良的玻璃;第二类是调节玻璃的物理、化学性能的氧化物,如Al2O3、PbO、BaO、ZnO等,它们可改善玻璃的热膨胀系数、机械强度、热和化学稳定性等;第三类是用于改进玻璃性能的氧化物,如PbO、BaO、B2O3、CaF2等,它们能降低玻璃的熔化温度,同时还保证玻璃的电性能和化学性能。
薄膜混合集成电路的制作工艺摘要本文主要介绍了薄膜混合集成电路工艺以及薄膜形成的技术由于薄膜技术在电电子领域的推广,是电子元件在小型化,高功能,高可靠,批量生产,低成本方面占有很大优势。
似的薄膜技术在电子元件制造领域占有相当重要的地位。
而薄膜在薄膜电阻,薄膜电容,薄膜声表面波器件应用尤为广泛。
关键词薄膜混合集成电路的工艺基片薄膜的制备薄膜元器件引言在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。
所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。
按无源网路中元件参数的集中和分布情况,薄膜集成电路分为集中参数和分布参数两种。
前者适用范围从低频到微波波段,后者只适用于微波波段。
1.薄膜混合集成电路1.1薄膜集成电路在抛光的陶瓷基片(99.5%氧化铝)、微晶玻璃基片或者Si基片上溅射电阻薄膜和导电薄膜,经电镀,光刻,形成具有部分无源元件和导体电路的基片。
然后贴装芯片和各种片状元件,键合互连形成特定功能的电路模块。
1.2薄膜混合集成电路的工艺1.3基片1.3.1基片的选择原则基片是微波电磁场传输媒质,又是电路的支撑体。
其主要性能指标:(1)高频损耗tgδ,随温度T和工作频率fo升高而增加,在微波频段工作的材料,其高频吸收能量P=2πfV2εrtgδ。
(2)介电常数ε=0.22εrA/t,εr大时电路尺寸可以小,有利集成; 但频率太高时,有时为了减小加工难度,选εr较小的材料。
(3)表面光洁度形响到电路损耗,薄膜的附着力,和线条的分辨率,划痕等缺陷。
(4)基片平整度(基片上最高点与最低点的距离叫平整度)基片翘度:最高点与最低点的距离除的基片的长度,经研磨和抛光,翘度可小于0.0001in/in。
(5)化学稳定性。
基片对酸碱的耐性,对金属膜是否相互作用。
如微晶玻璃就应避免Ti/Pt/Au系统。
(6)CTE基片的热膨胀系数应与管壳材料,元器件材料相匹配,以避免产生应力,影响可靠性。