第六章 两种常用的概率分布
- 格式:ppt
- 大小:180.50 KB
- 文档页数:49
管理统计学(李金林版教材)课后习题答案~~~第六章基础习题1. 解释总体分布、样本分布和抽样分布的含义。
答:总体分布:整体取值的概率分布规律,即随机变量X 服从的分布;样本分布:从总体中按照一定的抽样规则抽取的部分个体的分布,若从总体中简单随机抽取容量为n 的样本,则样本分布为(X 1,X 2,...,X n );抽样分布:样本统计量的分布。
2. 简述卡方分布、t 分布、F 分布及正态分布之间的关系,它们的概率密度曲线各有什么特征?答:若随机变量X 服从N(μ,σ2),则Z =X−μσ服从N(0,1);若随机变量X 服从N(0,1),则Y =∑(X i )2n i=1服从自由度为n 的χ2分布;若随机变量X~N(0,1),随机变量Y~χ2(n),且X 与Y 相互独立,则称随机变量T =√Y n⁄服从自由度为n 的t 分布;若随机变量X~χ2(n),若随机变量Y~χ2(m),且X 与Y 相互独立,则称随机变量F n,m =X n ⁄Y m ⁄服从第一自由度为n ,第二自由度为m 的F 分布,记为F n,m ~F(n,m)。
χ2分布的概率密度曲线分布在第一象限内,随着自由度n 的增大,曲线向正无穷方向延伸,并越来越低阔,越来越趋近于正态分布的曲线形态。
t 分布的概率密度曲线以0为中心,左右对称,随着自由度n 的增大,t 分布的概率密度曲线逐渐接近标准正态分布的概率密度曲线。
F 分布的概率密度曲线分布在第一象限内,当第一个自由度不变,第二个自由度增大时,曲线越来越向右聚拢,当两个自由度都增加时,F 分布概率密度曲线逐渐接近正态分布的概率密度曲线。
3. 解释中心极限定理的含义。
从均值为μ,方差为σ2的任意一个总体中抽取样本容量为n 的随机样本,则当n 充分大时,样本均值x̅的抽样分布近似服从均值为μ,方差为σ2n ⁄的正态分布,即x̅~N(μ, σ2n ⁄)。
4. 某公司有20名销售员,以下是他们每个人的销售量:3,2,2,3,4,3,2,5,3,2,7,3,4,5,3,3,2,3,3,4。
第六章概率与概率分布-社会统计学第六章概率与概率分布第⼀节概率论随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对⽴事件、互相独⽴事件)·先验概率与古典法·经验概率与频率法第⼆节概率的数学性质概率的数学性质(⾮负性、加法规则、乘法规则)·排列与样本点的计数·运⽤概率⽅法进⾏统计推断的前提第三节概率分布、期望值与变异数概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数⼀、填空1.⽤古典法求算概率.在应⽤上有两个缺点:①它只适⽤于有限样本点的情况;②它假设()。
2.分布函数)(x F 和)(x P 或)(x 的关系,就像向上累计频数和频率的关系⼀样。
所不同的是,)(x F 累计的是()。
3.如果A 和B (),总合有P(A/B)=P 〔B/A 〕=0。
4.()和()为抽样推断提供了主要理论依据。
5.抽样推断中,判断⼀个样本估计量是否优良的标准是()、()、()。
6.抽样设计的主要标准有()和()。
7.在抽样中,遵守()是计算抽样误差的先决条件。
8.抽样平均误差和总体标志变动的⼤⼩成(),与样本容量的平⽅根成()。
如果其他条件不变,抽样平均误差要减⼩到原来的1/4,则样本容量应()。
9.若事件A 和事件B 不能同时发⽣,则称A 和B 是()事件。
10.在⼀副扑克牌中单独抽取⼀次,抽到⼀张红桃或爱司的概率是();在⼀副扑克牌中单独抽取⼀次,抽到⼀张红桃且爱司的概率是()。
⼆、单项选择1.古典概率的特点应为()。
A 基本事件是有限个,并且是等可能的;B 基本事件是⽆限个,并且是等可能的;C 基本事件是有限个,但可以是具有不同的可能性;D 基本事件是⽆限的,但可以是具有不同的可能性。
2.随机试验所有可能出现的结果,称为()。
A 基本事件;B 样本;C 全部事件;D 样本空间。
常用的概率分布类型与其特征3.1 二点分布和均匀分布1、两点分布许多随机事件只有两个结果.如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效.描述这类随机事件变量只有两个取值,一般取0和1.它服从的分布称两点分布.其概率分布为:其中 Pk=P〔X=Xk〕,表示X取Xk值的概率:0≤P≤1.X的期望 E〔X〕=PX的方差 D〔X〕=P〔1—P〕2、均匀分布如果连续随机变量X的概率密度函数f〔x〕在有限的区间[a,b]上等于一个常数,则X服从的分布为均匀分布.其概率分布为:X的期望 E〔X〕=〔a+b〕/2X的方差 D〔X〕=〔b-a〕2/123.2 抽样检验中应用的分布3.2.1 超几何分布假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n 件作为被检样品,样品中的不合格数X服从的分布称超几何分布.X的分布概率为:X=0,1,……X的期望 E〔X〕=nd/NX的方差 D〔X〕=〔〔nd/N〕〔〔N-d〕/N〕〔〔N-n〕/N〕〕〔1/2〕3.2.2 二项分布超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐.二项分布就可以看成是超几何分布的一个简化.假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布.X的概率分布为:0<p<1x=0,1,……,nX的期望 E〔X〕=npX的方差 D〔X〕=np〔1-p〕3.2.3 泊松分布泊松分布比二项分布更重要.我们从产品受冲击〔指瞬时高电压、高环境应力、高负载应力等〕而失效的事实引入泊松分布.假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件:〔1〕、两个不相重叠的时间间隔内产品所受冲击次数相互独立;〔2〕、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计;〔3〕、在单位时间内发生冲击的平均次数λ〔λ>0〕不随时间变化,即在时间间隔Δt内平均发生λΔt次冲击,它和Δt 的起点无关.则在[0,t]时间内发生冲击的次数X服从泊松分布,其分布概率为:X的期望 E〔X〕=λtX的方差 D〔X〕=λt假设仪表受到n次冲击即发生故障,则仪表在[0,t]时间内的可靠度为:其中:x =0,1,2,……,λ>0,t>0.3.2.4 x2分布本分布是可靠性工程中最常用的分布之一,虽然其概率密度形式较复杂,但可由标准正态分布推出.设有v个相互独立的随机变量X1,X2,…… Xv,它们服从于标准正态分布N 〔0,1〕.记x2 =X12 + X22 +…Xv2 ,x2读作"卡方"则x2服从的分布称为x2分布.它的概率密度函数为:该式称为随机变量x2服从自由度为V的x分布.式中:V—为自由度,是个自然数x2分布最重要的性质是:当m为整数时:3.3 产品的寿命分布3.3.1 指数分布指数分布是电子产品在可靠性工程学中最重要的分布.通常情况下,电子产品在剔除了早期故障后,到发生元器件或材料的老化变质之前的随机失效阶段其寿命服从指数分布规律.指数分布是唯一的失效率不随时间变化而变化的连续随机变量的概率分布.容易推出:指数分布有如下三个特点:1.平均寿命和失效率互为倒数;MTBF=1/λ2.特征寿命就是平均寿命;3.指数分布具有无记忆性.〔即产品以前的工作时间对以后的可能工作时间没有影响〕3.3.2 威布尔分布从上面的描述可知,指数分布只适用于浴盆曲线的底部,但任何产品都有早期故障,也总有耗损失效期.在可靠性工程学中用威布尔分布来描述产品在整个寿命期的分布情况.将指数分布中的〔-λt〕替换为〔-〔t/η〕m〕,就得到威布尔分布.容易得到:3.3.3 正态分布与对数正态分布正态分布又称为常态分布或高斯分布.它的概率密度函数为:式中:-∞<x<∞分布函数记为:对数正态分布是指:若寿命T的对数lnT服从正态分布N〔u,σ〕,则T服从对数正态分布.它的概率密度函数为:式中:t,σ为正数,μ和σ分别称为对数正态分布的"对数均值"和"对数标准差".3.4 为进行统计推断所构造的分布3.4.1 t分布〔学生氏分布〕t—分布常用于区间估计、正态总体的假设检验以与机械概率设计之中.服从t—分布的随机变量记住t.它是服从标准正态分布N〔0,1〕的随机变量U和服从自由度为v的x2分布的随机变量x2〔v〕的函数.它的概率密度函数f〔t〕为:3.4.2 F—分布F分布主要用于两个总体的假设检验与方差分析.服从F分布的随机变量F是两个相互独立的x2分布随机变量x2〔v1〕和x2〔v2〕的函数:式中:F只能取正值.F分布的概率密度函数为:另外还有β—分布等.中位秩是β—分布的中位数,一般用下式求出:中位秩值≈〔i-0.3〕/<n+0.4> 式中:n为样本总数.。