复合材料概论金属基复合材料
- 格式:ppt
- 大小:2.48 MB
- 文档页数:42
1、复合材料的定义由两种或两种以上的物理和化学性质不同的物质组合而成的一种多相固体材料。
2、同质复合材料和异质材料增强材料和基体材料属于同种物质的复合材料为同质材料。
异质材料则是不同物质。
3、金属基复合材料的性能在金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等增强物,明显提高了复合材料的比强度和比模量。
4、树脂基复合材料、金属基复合材料和陶瓷基复合材料性能区别树脂基复合材料的使用温度一般为60℃~250℃,其导热性能为0.35~0.45W/m·K金属基复合材料为400~600℃,其导热性能为50~65W/m·K和陶瓷基复合材料性能为1000~1500℃,0.7~3.5W/m·K。
陶瓷基复合材料大于金属基复合材料的硬度,金属基复合材料大于树脂基复合材料的硬度。
5、复合材料结构的分类从固体力学角度,分为三个“结构层次”:一次结构、二次结构、三次结构。
一次结构:由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能;二次结构:由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何;三次结构:通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
6、复合材料选择基体的原则①金属基复合材料的使用要求:高性能发动机要求有高强度比、比模量性能,要求具有优良的耐高温性能,能在高温、氧化性气氛中正常工作。
在汽车发动机中要求其零件耐热、耐磨、导热,一定的高温强度等,又要求成本低廉,适合批量生产。
②金属基复合材料组成特点:对于连续纤维增强金属基复合材料,纤维是主要承载物体,纤维本身具有很高的强度和模量。
对于非连续增强金属基复合材料,基体是主要承载物,基体的强度对非连续增强基复合材料具有决定性的影响。
③基体金属与增强物的相容性。
7、与树脂相比水泥基体的特征①水泥基体为多孔体系;②纤维与水泥的弹性模量比不大;③水泥基材的断裂延伸率较低,仅是树脂基体的1/10~1/20;④水泥基材中含有粉末或颗粒状的物料,与纤维呈点接触,故纤维的掺量受到很大限制;⑤水泥基材呈碱性,对金属纤维可起保护作用,但对大多数矿物纤维是不利的。
⾦属基复合材料以⾦属或合⾦为基体,并以纤维、晶须、颗粒等为增强体的复合材料。
按所⽤的基体⾦属的不同,使⽤温度范围为350~120℃。
其特点在⼒学⽅⾯为横向及剪切强度较⾼,韧性及疲劳等综合⼒学性能较好,同时还具有导热、导电、耐磨、热膨胀系数⼩、阻尼性好、不吸湿、不⽼化和⽆污染等优点。
例如碳纤维增强铝复合材料其⽐强度3~4×107mm,⽐模量为6~8×109mm,⼜如⽯墨纤维增强镁不仅⽐模量可达1.5×1010mm,⽽且其热膨胀系数⼏乎接近零。
⾦属基复合材料按增强体的类别来分类,如纤维增强(包括连续和短切)、晶须增强和颗粒增强等,按⾦属或合⾦基体的不同,⾦属基复合材料可分为铝基、镁基、铜基、钛基、⾼温合⾦基、⾦属间化合物基以及难熔⾦属基复合材料等。
由于这类复合材料加⼯温度⾼、⼯艺复杂、界⾯反应控制困难、成本相对⾼,应⽤的成熟程度远不如树脂基复合材料,应⽤范围较⼩。
树脂基复合材料通常只能在350℃以下的不同温度范围内使⽤。
近些年来正在迅速开发研究适⽤于350℃~1200℃使⽤的各种⾦属基复合材料。
⾦属基复合材料是以⾦属或合⾦为基体与各种增强材料复合⽽制得的复合材料。
增强材料可为纤维状、颗粒状和晶须状的碳化硅、硼、氧化铝及碳纤维。
⾦属基体除⾦属铝、镁外,还发展有⾊⾦属钛、铜、锌、铅、铍超合⾦和⾦属间化合物,及⿊⾊⾦属作为⾦属基体。
⾦属基复合材料除了和树脂基复合材料同样具有⾼强度、⾼模量外,它能耐⾼温,同时不燃、不吸潮、导热导电性好、抗辐射。
是令⼈注⽬的航空航天⽤⾼温材料,可⽤作飞机涡轮发动机和⽕箭发动机热区和超⾳速飞机的表⾯材料。
⽬前不断发展和完善的⾦属基复合材料以碳化硅颗粒铝合⾦发展最快。
这种⾦属基复合材料的⽐重只有钢的1/3,为钛合⾦的2/3,与铝合⾦相近。
它的强度⽐中碳钢好,与钛合⾦相近⽽⼜⽐铝合⾦略⾼。
其耐磨性也⽐钛合⾦、铝合⾦好。
⽬前已⼩批量应⽤于汽车⼯业和机械⼯业。
1、复合材料的定义和分类是什么?定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体构造、性能优异的一类新型材料体系。
分类:按用途可分为:功能复合材料和构造复合材料。
构造复合材料占了绝大多数。
按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料〔包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料〕按增强材料形态可分为:纤维增强复合材料〔包括连续纤维和不连续纤维〕、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。
3、金属基复合材料增强体的特性及分类有哪些?增强物是金属基复合材料的重要组成局部,具有以下特性:1〕能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2〕具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织构造和性能不发生明显的变化和退化;3〕有良好的浸润性:与金属有良好的浸润性,或通过外表处理能与金属良好浸润,基体良好复合和分布均匀。
此外,增强物的本钱也是应考虑的一个重要因素。
分类:纤维类增强体〔如:连续长纤维、短纤维〕、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。
4、金属基复合材料基体的选择原那么有哪些? 1〕、金属基复合材料的使用要求;2〕、金属基复合材料组成的特点;3〕、基体金属与增强物的相容性。
5、金属基复合材料如何设计?复合材料设计问题要求确定增强体的几何特征〔连续纤维、颗粒等〕、基体材料、增强材料和增强体的微观构造以及增强体的体积分数。
一般来说,复合材料及构造设计大体上可分为如下步骤:1〕对环境与负载的要求:机械负载、热应力、潮湿环境 2〕选择材料:基体材料、增强材料、几何形状 3〕成型方法、工艺、过程优化设计 4〕复合材料响应:应力场、温度场等、设计变量优化 5〕损伤及破坏分析:强度准那么、损伤机理、破坏过程6、金属基复合材料制造中的关键技术问题有哪些?1〕加工温度高,在高温下易发生不利的化学反响。
金属基复合材料简介金属基复合材料(Metal Matrix composites,MMCs)主要是指以金属、合金为基体材料,以纤维、晶须、颗粒等高强度材料作为增强体,制备而成的一种复合材料。
MMCs的常用的制备方法有:粉末冶金法、原位生成复合法、喷射成形法、铸造凝固成型法等。
按照不同增强相可以分为连续纤维增强(主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维、不锈钢丝和钨丝)、非连续纤维增强(包括碳化硅、氧化铝、碳化硼等颗粒增强,碳化硅、氧化铝、等晶须增强,氧化铝纤维等短纤维增强)和叠层复合三类复合材料。
引入增强相在一定程度上会改变基体材料的显微结构和组织,如亚结构、位错形态和晶粒尺寸等,从而提高和弥补了基体材料在某些性能上的缺陷,使得MMCs 具备高的比强度和比模量、耐高温、耐腐蚀、热膨胀系数小、尺寸稳定性强、良好的导电和导热性等优异的物理和力学性能。
因此,MMCs已经取代了部分传统材料,并逐渐成为国内外材料科学研究的重点领域。
铜是人类发现最早并最实用的金属之一,因其具有优良的延展性,仅次于银的电导率,仅次于金银的热导率,一直以来备受重视。
但是,铜的力学性能(耐磨性、硬度、强度、抗蠕变性等)较差,限制了铜在工业和军事等领域的应用。
在众多MMCs中,铜基复合材料以其优异的导电、导热性能、耐腐蚀性以及良好的加工性而被广泛关注。
从二十世纪六十年代开始,铜基复合材料的相关研究逐渐开展,许多科学家在铜基体中加入了不同的增强体,发现该复合材料既保持了铜的优点,又弥补了铜力学性能上的不足。
时至今日,铜基复合材料的研究已经持续了几十年,形成了以颗粒增强铜基复合材料、纤维增强铜基复合材料、晶须增强铜基复合材料三大类别。
1、颗粒增强铜基复合材料颗粒增强铜基复合材料目的是将性能优异的颗粒均匀分散于铜基体,提高铜基复合材料的综合性能。
颗粒增强相产生的钉扎作用能够极大的阻碍位错的运动从而增强复合材料的强度,使铜基复合材料的力学性能、耐磨以及高温性能大幅提高。