金属基复合材料
- 格式:ppt
- 大小:2.22 MB
- 文档页数:17
现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。
传统的单一材料已经很难满足这种需要。
因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。
其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。
作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。
现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。
金属基复合材料正是为了满足上述要求而诞生的。
1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。
金属基复合材料分为宏观组合型和微观强化型两大类。
前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。
根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性。
(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。
根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。
按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。
2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
金属基复合材料的制备方法
金属基复合材料是由两个或多个成分组成的材料,其中金属是主要组成部分,而其他成分通常是陶瓷、化学物质或其他金属。
这种复合材料具有良好的力学性能、高温抗性和耐腐蚀性能,可以被广泛应用于航空、航天、汽车、建筑等多个领域。
制备金属基复合材料的方法有很多种,下面我们将介绍其中几种:
1.混凝土铸造法
混凝土铸造法是一种简单的制备方法。
首先,选择需要混合的金属和非金属材料,并将它们进行粉碎,然后将粉末混合在一起。
接下来,在混合后的粉末中添加一定量的液相,使其形成可铸造的浆状物。
最后,将浆状物铸入模具中,进行加热和固化,制得所需的金属基复合材料。
2.电弧熔融法
电弧熔融法是一种在高温下将金属和非金属材料融合在一起的制备方法。
首先,在一个熔炉中加入所需的金属和非金属材料,然后通过电弧的作用进行熔化。
在熔融状态下,通过搅拌和浇铸等操作,将金属和非金属材料均匀地混合在一起。
最后,将熔融的金属基复合材料流入模具中,进行冷却和固化,最终得到所需的复合材料。
3.机械合金化法
机械合金化法是通过高能球磨器将金属和非金属粉末进行混合,再在高温下进行烧结,从而制备金属基复合材料的方法。
球磨过程中,金属和非金属粉末不断地被重复压缩和剪切,从而形成了一个均匀的混合。
在烧结过程中,粉末经过高温加热,原子之间将相互扩散和融合,最终形成金属基复合材料。
总之,金属基复合材料的制备方法多种多样,需要根据不同的材料和应用领域选择合适的方法。
未来随着科技的不断发展,金属基复合材料的制备方法也将不断地发展和完善,为各个领域提供更加优质的材料。
金属基复合材料书籍金属基复合材料是一种由金属基体和另一种或多种增强剂混合制成的新型材料。
该类材料具有较高的强度和耐磨性、良好的耐高温性能等特点,广泛应用于航空、航天、汽车、机械等领域。
如今,关于金属基复合材料的研究和应用越来越广泛,相关的技术和理论也越来越成熟。
因此,有必要推荐几本经典的金属基复合材料书籍,以便读者深入学习和探究这一领域。
首先推荐的是《金属基复合材料》(Metal Matrix Composites)一书,该书由美国化学会出版社出版,作者为L.J. Krajewski等人。
该书首次在1993年出版,该书包含了关于金属基复合材料的基本概念、组成、制备方法、性能特点等方面的详细内容,不仅覆盖了理论方面,还结合了实际应用领域的案例,具有较强的实用性和可读性。
其次推荐的是《金属基复合材料:制备、微观结构和力学行为》(Metal Matrix Composites: Processing, Microstructure and Properties),该书由英国材料研究学会出版,作者为M.G. Gee等人。
该书详细介绍了金属基复合材料的结构组成、制备过程、微观结构及相关机械特性等方面的知识,对于学习金属基复合材料的读者来说,该书是一本不可多得的权威参考资料。
最后推荐的是《金属基复合材料:材料科学、制备技术和应用》(Metal Matrix Composites: Materials Science, Manufacturing Techniques, and Applications),该书由CRC出版,作者为K. U. Kainer等人。
该书系统地介绍了金属基复合材料的制备工艺和应用前景,特别是替代传统材料、改进机械性能和提高可靠性等方面的优势,给读者提供了全面的知识体系以及未来的发展方向。
以上是我对金属基复合材料书籍的推荐,希望对学习金属基复合材料的读者有所帮助。
对于初学者来说,选择一本适合自己的书籍,系统地学习金属基复合材料的相关知识是很有必要的。
金属基复合材料制备金属基复合材料是指以金属作为基体,并添加一种或多种金属、非金属或有机物作为增强相,经一系列工艺制备而成的一种新型材料。
金属基复合材料具有金属的导电、导热、强度高等优点,同时又能克服金属材料的缺点,比如低的自重和高的成本。
因此,金属基复合材料具有广泛的应用前景,并被广泛运用于航空航天、汽车制造等领域。
一种常见的制备方法是粉末冶金法。
这种方法首先需要制备金属和增强相的可压粉末,然后通过压制、烧结等工艺将其烧结成块状材料。
具体操作步骤如下:1.混合:将金属和增强相的粉末按一定比例混合均匀,可以使用球磨机等设备进行混合。
2.压制:将混合好的粉末放入模具中,并施加一定的压力,压制成所需形状的绿体。
压制的压力和时间要根据材料的性质进行适当的控制。
3.烧结:将压制好的绿体置于高温炉中进行烧结。
在烧结过程中,金属和增强相之间会发生扩散反应,从而形成金属基复合材料的相。
另一种常见的制备方法是熔体复合法。
这种方法利用金属的熔化性质,在熔融状态下将增强相加入金属中,并通过一系列工艺制备所需的金属基复合材料。
具体操作步骤如下:1.准备金属和增强相:首先需要准备金属和增强相的原材料,可以选择适当的金属粉末、非金属粉末或有机物。
2.混合:将金属和增强相的原材料混合均匀,可以使用球磨机等设备进行混合。
混合时,可以根据需要添加一些助熔剂或增塑剂。
3.加热熔融:将混合好的原材料置于高温炉中进行加热,使其达到熔融状态。
加热温度和时间要根据材料的熔点和熔化性质进行适当的控制。
4.凝固:将熔融状态的金属和增强相冷却至固态,并形成金属基复合材料的块状。
除了上述制备方法,还有其他制备方法,比如穿梭法、叠层法等。
这些制备方法在不同的材料和需求下有不同的适用性。
金属基复合材料制备中需要注意的一些问题包括原材料的选择、混合均匀性、压制参数的选择、烧结温度的控制等。
此外,制备中还需要对所得到的材料进行性能测试和微观结构观察,以进一步确认制备的成功与否,并对其性能进行评估。
金属基复合材料现状与存在的问题
金属基复合材料是指由两种或两种以上的材料组成,其中至少一种为金属的复合材料。
随着现代制造技术的不断发展,金属基复合材料已经广泛应用于航空、汽车、船舶等领域。
但是,金属基复合材料的应用还存在一些问题:
1.成本高:由于金属基复合材料的制造工艺较为复杂,生产成本较高,限制了它的广泛应用。
2.强度不稳定:由于金属基复合材料的组成结构复杂,因此其强度和韧性会受到很多因素的影响,不够稳定。
3.可靠性差:由于金属基复合材料制造工艺复杂,难以完全掌握每个制造环节的质量,因此其可靠性较差。
4.热稳定性差:由于金属基复合材料的热膨胀系数与金属基体不同,容易在高温环境下出现龟裂等问题。
5.环保问题:金属基复合材料中常含有大量的有害物质,对环境造成污染。
因此,金属基复合材料在应用中仍需要进一步探索和改进,提高其可靠性和成本效益,以更好地满足现代工业的需求。
- 1 -。
金属基复合材料的制备技术
金属基复合材料是指通过将金属基体(主要由金属构成)与其他非金属材料(如陶瓷、聚合物等)相结合而形成的新材料。
这种材料具有金属的优良机械性能和非金属材料的特殊性能,被广泛应用于航空航天、汽车工业等领域。
制备金属基复合材料的技术包括粉末冶金法、表面增强方法和熔融混合法等。
粉末冶金法是制备金属基复合材料的一种常用方法。
该方法通过将金属和非金属粉末混合均匀,并在高压下通过热压或烧结等工艺,使粉末颗粒相互结合,形成具有金属基体和非金属颗粒分布均匀的复合材料。
该方法适用于制备高温强度、磨损性能要求较高的金属基复合材料。
表面增强方法是制备金属基复合材料的另一种常见方法。
该方法通过在金属表面涂覆一层非金属材料,如陶瓷、聚合物等,从而增强金属的力学性能、抗磨损性能、耐腐蚀性能等。
该方法可以通过喷涂、电沉积、热处理等手段实现。
熔融混合法是制备金属基复合材料的一种较为简单有效的方法。
该方法通常采用熔融、熔体热处理以及凝固等过程,将金属和非金属材料进行混合,然后通过冷却凝固使其形成金属基复合材料。
该方法适用于制备具有特殊物理性质要求的金属基复合材料。
除了上述方法外,还有其他一些特殊的制备技术可应用于金属基复合材料的制备。
例如,骨架熔渗法通过在金属骨架上填充非金属材料,并通过液相渗透使非金属材料与金属骨架紧密结合;金属转变法是一种通过在金属基体中形成间晶相,改变金属的熔点和机械性能的方法。
总之,金属基复合材料的制备技术多种多样,适用于不同的复合材料和应用领域。
通过选择合适的制备方法,可以制备出具有优异性能的金属基复合材料,满足不同领域的需求。
金属基复合材料增强体的分类
金属基复合材料具有很高的强度、刚度和耐磨性等优点,具有广
泛的应用前景。
在这些复合材料中,增强体的选择和分类对其性能起
着至关重要的作用。
本文将就金属基复合材料中常见的增强体进行分
类和详细介绍。
1、碳纤维增强体
碳纤维增强体具有高强度、高模量、低密度和耐腐蚀等优点,被
广泛应用于航空航天、汽车、体育用品和国防等领域。
在制备金属基
复合材料时,碳纤维常常被选作增强体,可以显著提高金属基复合材
料的强度和刚度。
2、陶瓷颗粒增强体
陶瓷颗粒增强体在金属基复合材料中也被广泛应用。
这种增强体
具有高硬度、高强度和高耐磨性等特点,可以显著增强金属基复合材
料的耐磨性和耐腐蚀性。
陶瓷颗粒的种类很多,常见的包括二氧化硅、氧化铝和碳化硅等。
3、金属颗粒增强体
金属颗粒增强体一般选用高强度的合金颗粒,常见的有碳化钨、
钛和铬等。
在金属基复合材料中,金属颗粒增强体的作用是增加材料
刚度和强度,同时也可以提高材料的导电性。
4、纤维/颗粒混合增强体
纤维/颗粒混合增强体是将不同种类的增强体混合使用的一种复合材料。
这种增强体在金属基复合材料中的优点是可以兼顾纤维和颗粒的优点,形成更完善的增强网络结构,从而提高材料的性能。
总之,增强体是影响金属基复合材料性能的重要因素之一。
在选择增强体时,需要综合考虑其特点和应用环境。
通过选择合适的增强体,可以打造具有高强度、高刚度、高耐磨性和高导电性等优点的金属基复合材料。
金属基复合材料的应用
金属基复合材料是由金属基体和添加的其他材料组成的复合材料。
金属基复合材料具有金属的高强度、刚性和导热性,同时又具备非金属材料的轻、强、耐高温、耐腐蚀等特点,因此在多个领域有广泛的应用。
1. 汽车和航空航天:金属基复合材料在汽车和航空航天领域中应用广泛,可以用于制造轻量化、高性能的车身和结构件,能有效减少车辆重量,提高燃油经济性和减少尾气排放。
2. 电子电气:金属基复合材料在电子领域中用于制造散热器、导热板等散热部件,提高电子设备的散热效果,保证设备的可靠性和稳定性。
3. 机械工程:金属基复合材料在机械工程中用于制造高强度、耐磨损的零件,如轴承、齿轮、刀具等,提高机械设备的性能和寿命。
4. 船舶建筑:金属基复合材料可以用于制造船舶的船体、舾装件等,能够减轻船舶重量、提高航行速度、降低燃油消耗。
5. 建筑工程:金属基复合材料在建筑领域中用于制造外墙装饰材料、屋顶材料等,具有抗腐蚀、防火、耐候性能,同时还能提供良好的隔热和隔音效果。
6. 医疗器械:金属基复合材料在医疗器械制造中可以用于制造骨矫正器、人工关节等,具有良好的生物相容性和机械性能,
能够提高医疗设备的性能和使用寿命。
总之,金属基复合材料的应用范围广泛,能够满足不同领域对材料性能的需求,提高产品的性能和可靠性。
金属基复合材料的研究历程
金属基复合材料是利用金属基体与其他材料(例如陶瓷、碳纤维等)的混合加工来制
备的一种新型材料。
其具有高强度、耐磨损、耐高温、抗腐蚀等特点,得到了广泛的应用。
以下是金属基复合材料的研究历程:
20世纪50年代,金属基复合材料在概念上首次被提出。
当时的研究主要集中在金属
基复合材料的制备方法研究上,主要使用的是物理加工方法(如热压、热爆粉等)和化学
加工方法(如浸渗、溶胶-凝胶等)。
20世纪60年代,随着计算机技术和材料表征方法的不断发展,对于金属基复合材料
的性能和应用进行了进一步的探索。
同时,也逐步发现了金属基复合材料中存在的问题,
例如接触损伤、界面反应等。
20世纪70年代,随着材料科学的快速发展,金属基复合材料的研究受到了越来越多
的关注。
这期间,研究人员开始尝试利用微结构设计方法来解决复合材料中的问题。
同时,也逐渐开始将金属基复合材料应用于航空、航天、电子等领域。
20世纪80年代,金属基复合材料的制备方法和性能研究得到了进一步的发展。
通过
优化制备工艺和改善微结构设计,金属基复合材料的性能得到了显著提高。
研究还逐渐向
多功能的复合材料方向拓展。
未来,金属基复合材料将继续得到广泛的关注和研究。
随着材料科学的不断发展,其
在航空、航天、电子、生物医学、环保等领域的应用也将不断扩展和深化。
同时,研究将
会逐步向材料多功能化、可持续发展等方向拓展。