大孔吸附树脂技术
- 格式:ppt
- 大小:304.00 KB
- 文档页数:75
大孔树脂吸附法名词解释Title: An Explanation of Macroporous Resin Adsorption Method大孔树脂吸附法名词解释大孔树脂吸附法是一种用于分离和提取物质的技术方法。
该方法通过利用大孔树脂对溶液中目标物质的吸附特性,将其从溶液中有效地分离出来。
下面对大孔树脂吸附法中的关键术语进行解释。
1. 大孔树脂 (Macroporous Resin):大孔树脂是一种具有大孔径和高比表面积的高分子吸附材料。
它具有良好的化学稳定性和可重复使用性。
大孔树脂的大孔径可以提供更大的吸附表面积,从而提高吸附效果。
2. 吸附 (Adsorption):吸附是指物质在固体表面上沉积或附着的过程。
在大孔树脂吸附法中,溶液中的目标物质与大孔树脂表面发生作用,将目标物质附着到树脂的孔道内部。
3. 目标物质 (Target Substance):目标物质是指在溶液中需要被分离和提取的特定物质。
它可以是有机物、无机物、金属离子或其他化学物质。
4. 吸附剂 (Adsorbent):吸附剂是指在吸附过程中用于吸附目标物质的材料。
在大孔树脂吸附法中,大孔树脂起到吸附剂的作用,通过其孔道结构和大表面积,吸附目标物质。
5. 吸附剂再生 (Regeneration of Adsorbent):吸附剂再生是指将吸附剂中吸附的目标物质从吸附剂表面解吸或去除的过程。
大孔树脂可以通过物理或化学方法进行再生,使其恢复到吸附前的状态,以便继续使用。
大孔树脂吸附法在分离和提取领域具有广泛的应用。
它可以用于工业生产中的废水处理、药物提取、食品加工以及环境监测等方面。
该方法具有操作简单、吸附效果好、物质回收高的特点,因此受到了越来越多研究人员和工程师的关注和应用。
大孔吸附树脂方法
大孔吸附树脂方法是一种将大分子物质从溶液中吸附和分离的方法。
它利用大孔吸附树脂的特性,通过吸附作用将目标分子从溶液中富集,然后通过洗脱将目标分子从吸附树脂上解吸出来。
大孔吸附树脂通常具有高表面积和大孔隙体积,可以容纳较大的目标分子。
其工作原理是基于吸附剂和目标分子之间的相互作用力,如静电吸附、范德华力、离子交换等。
吸附树脂可以选择性地吸附目标物质,而不吸附其他成分,从而实现目标分子的分离纯化。
大孔吸附树脂方法的步骤一般包括:
1. 树脂预处理:将吸附树脂浸泡或冲洗以去除杂质和残余物质。
2. 样品预处理:对待测样品进行预处理,如去除颗粒、蛋白质沉淀等。
3. 吸附:将样品与吸附树脂接触,使目标分子与吸附树脂发生吸附作用,并将其富集在树脂上。
4. 洗脱:通过改变洗脱液的条件,如改变温度、pH、离子浓度等,使目标分子从吸附树脂上解吸出来。
5. 纯化收集:将洗脱液中的目标分子收集下来,以获得纯净的目标物。
大孔吸附树脂方法在生物制药、食品、环境等领域中具有广泛的应用。
它可以用于分离和纯化蛋白质、抗体、病毒颗粒、多肽、核酸等大分子物质。
大孔合成吸附树脂介绍><: 提纯介质大孔树脂吸附技术是上世纪七十年代发展起来的一种新工艺。
这是一种纯化精制药的有效方法,其工艺程序是药液通过大孔树脂吸附,其中的有效成分吸附在树脂上,再经洗脱回收,除掉药液中杂质。
当然,根据药液成分和提取物的不同,可选择不同型号的树脂。
非极性吸附树脂在吸附药液中成分时,主要依靠物理结构(如比表面、孔径等)起作用,不同的树脂有不同的针对性。
其操作的基本程度大多是:提取液-通过大孔树脂-吸附上有效成分的树脂-洗脱-洗脱液回收-洗脱液干燥-半成品。
该技术目前已广泛应用于新药的开发和生产中,主要用于分离和提纯。
1.(1)适合中等程度的水溶性化合物:中药、天然色素、从发酵液中提取抗生素(青霉素、先锋霉素、螺旋霉素)、蛋白质(胰岛、肽系抗生素)、功能性食品添加剂(维生素)等。
(2)聚苯乙烯合成吸附树脂:吸附含有π电子的合化物,如含有苯环和共轭双键的化合物。
(3)甲基丙烯酸甲酯类吸附剂:吸附含羧基、酯基、氨基、酰胺基等与H可结合的官能团的化合物。
合成吸附树脂的选择标准必须以其吸附能力、吸附速度、选择性、树脂寿命等为主要决定因素,其中树脂的微孔结构影响最大,因为它决定了树脂吸附能力的高低。
此外,在有机溶剂中的膨胀程度、耐压性能和比重也是考滤选用的重要因素。
(1)水溶性较高的化合物应采用离子交换或分子尺寸排除模式提取。
(2)水不溶化合物应使用溶剂提取或正相色谱等提取。
2.(1)同一类药采用大孔树脂提纯后,药效得到显著提高。
这一结论已经通过药效学试验和临床观察得以证实。
该工艺一次完成了除杂和浓缩两道工序,如人参茎叶中也含人参皂甙,可以提取出来作为药用,但含量低,用一般方法提取麻烦,而用大孔树脂吸附技术提纯后,人参皂甙含量可达70%以上,提取方法简便。
(2)减小产品的吸潮性。
传统工艺制备的中成药大部分都有较强的吸潮性,是中药生产及贮藏中长期存在的难题。
经大孔树脂吸附技术处理后,有效地去除了水煎液中大量的糖类、无机盐、黏液质等吸潮成分,有利于多种中药剂型的生产、增强产品的稳定性。
化工分离工程课程论文摘要大孔吸附树脂是20世纪60年代发展起来的继离子交换树脂后的分离新技术之一,已在环保、食品、医药等领域得到了广泛的应用。
通过参考国内外的一些关于大孔吸附树脂的文献和书籍,对大孔吸附树脂的分离原理,最新研究进展和应用情况以及影响因素进行了总结。
并且列举了一些在中药分离纯化中的应用,表现出了其优越性,有着广阔的应用前景。
关键词:大孔吸附树脂;柱层析;分离原理;工业应用大孔吸附树脂分离技术1.大孔吸附树脂分离技术简介1.1大孔吸附树脂的简介和基本产品大孔吸附树脂是一类不含交换基团且有大孔结构的高分子吸附树脂,是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,具有良好的大孔网状结构和较大的比表面积,可以通过物理吸附从水溶液中有选择地吸附有机物。
是20世纪60年代发展起来的继离子交换树脂后的分离新技术之一,已在环保、食品、医药等领域得到了广泛的应用。
根据其骨架材料的不同可分为极性、中性和非极性3 种类型[1]美国的Kunin 教授发明了大孔网状聚合物吸附,并于1966 年研制成功了第一个大网格吸附剂,此后大孔吸附树脂材料成为一个崭新的技术领域,受到欧美及日本等国的高度重视,研制开发了一批类型不同的、性能良好的吸附树脂,并形成了商品供应。
目前,美、英、法、德及日本等国均有专业公司研究生产【1】。
我国在这方面也在逐步发展,也有很多性能优良的产品问世。
表1-1 常用国产大孔树脂的型号和主要特性【2】树脂极性结构粒径范围(mm) 比表面积(m2/g)平均孔径(nm)用途S-8 极性交联聚苯乙烯型0.3~1.25 100~120 28~30 有机物提取分离AB-8 弱极性0.3~1.25 480~520 13~14 有机物提取,甜菊糖、银杏叶黄铜提取X-5 非极性0.3~1.25 500~600 29~30 抗生素、中草药提取NKA-2 极性0.3~1.25 160~200 145~155 酚类、有机物去除NKA-9 极性0.3~1.25 250~290 15~16.5 胆红素去除,生物碱分离、黄酮类提取H103 非极性0.3~0.6 1000~85~95 抗生素提取分离,去除酚类,1100氯化物D-101非极性苯乙烯型0.3~1.25480~52013~14中草药中皂甙、黄酮、内酯、萜类及天然色素的提取HPD100 非极性 苯乙烯型 0.3~1.2 650 90 天然物提取分离,如人参皂苷、三七皂苷HPD400 中极性 苯乙烯型 0.3~1.2 550 83 中药复方提取、氨基酸、蛋白质提纯HPD600 极性 苯乙烯型 0.3~1.2 550 85 银杏黄酮、甜菊苷、茶多酚、黄芪苷ADS-5 非极性 500~600 20~25 分离天然产物中的苷类、生物碱、黄酮等ADS-7 强极性 含氨基 200 提取分离糖苷,对甜菊苷、人参皂苷、绞股蓝皂苷等具高选择性,去除色素ADS-8 中极性 450~550 25.0 分离生物碱,如喜树碱、苦参碱ADS-17 中极性 124 高选择分离银杏黄酮苷和银杏内酯表1-2 国外HP 、SP 系类大孔树脂的型号和主要特性【2】树脂极性结构粒径范围 (mm)比表面积 (m 2/g) 平均孔径 (nm)用途HP-20 非极性 聚苯乙烯 0.2~0.6 600 46 皂苷、黄酮、萜类、天然色素、蛋白质 (相对分子质量〉1000)HP-207 非极性 聚苯乙烯 0.2~0.6 630 10.5 HP2M G 中极性甲基丙烯酸酯 0.2~0.647017 SP825 非极性 聚苯乙烯 0.2~0.6 1000 5.7 生物碱、黄酮、内酯、酚性苷(相对分子质量〉1000)SP850 非极性 聚苯乙烯 0.2~0.6 1000 3.8 SP70非极性 聚苯乙烯0.2~0.68007.0SP700 非极性聚苯乙烯0.2~0.6 1200 9.3XAD-1 非极性苯乙烯100 20 分离甘草类黄酮、甘草酸、叶绿素XAD-2 非极性苯乙烯330 9 人参皂苷提取,去除色素XAD-4 非极性苯乙烯750 5 麻黄碱提取,除去小分子非极性物XAD-6 中极性丙烯酸酯498 6.3 分离麻黄碱XAD-9 极性亚砜250 8 挥发性香料成分分离XAD-11强极性氧化氮类170 21 提取分离合欢皂苷XAD-1 600 0.40 800 0.15 提取小分子抗生素和植物有效成分XAD-1 180 0.53 700 0.40 提取大分子抗生素、维生素、多肽XAD-7 HP 0.56 500 0.45 提取多肽和植物色素、多酚类物质1.1大孔吸附树脂的分类1.1.1按极性大小分类1. 非极性大孔吸附树脂如苯乙烯、二乙烯苯聚合物,也称为芳香族吸附剂。
大孔树脂吸附法
大孔树脂吸附法是一种广泛应用于环境保护和化学工艺中的吸附技术。
大孔树脂是一种具有较大孔径和良好孔隙结构的高分子材料,可以在一定程度上选择性地吸附目标物质。
大孔树脂吸附法的原理是利用大孔树脂对目标物质的亲和性进行吸附,将目标物质从复杂的混合物中分离出来。
在实际应用中,通常将需要分离的混合物均质化后与大孔树脂接触,通过调节温度、pH 值、流速等条件来实现目标物质与大孔树脂的相互作用。
大孔树脂吸附法具有操作简单、选择性强、适用范围广等优点,可以用于处理废水、空气、固体废物等环境污染物的去除和化学品的纯化和分离。
同时,大孔树脂还可以与其他材料结合使用,例如与纳米材料、活性炭等材料相结合,提高吸附效率和选择性。
总之,大孔树脂吸附法是一种十分有前途的环保技术,具有广泛的应用前景和发展空间。
大孔吸附树脂色谱分离原理是
大孔吸附树脂色谱分离是一种基于吸附作用的分离技术,其原理如下:
1. 吸附作用:大孔吸附树脂具有丰富的微孔和大孔结构,能够吸附目标物质。
在色谱分离过程中,待分离混合物通过树脂柱时,目标物质会与树脂表面的活性位点相互作用而被吸附。
2. 选择性:大孔吸附树脂对不同物质具有不同的吸附能力,这取决于物质的化学性质、分子量、极性等因素。
通过选择合适的树脂和洗脱条件,可以实现对混合物中不同成分的选择性分离。
3. 洗脱过程:当混合物通过树脂柱后,使用适当的洗脱剂(通常是有机溶剂或水溶液)进行洗脱。
洗脱剂会与被吸附的物质竞争活性位点,从而将目标物质从树脂上解吸下来。
4. 分离效果:由于不同物质在树脂上的吸附能力不同,洗脱过程中它们会以不同的速度从树脂上解吸下来,从而实现分离。
通过控制洗脱条件(如洗脱剂的种类、浓度、流速等),可以优化分离效果。
大孔吸附树脂色谱分离具有操作简便、分离效率高、选择性好等优点,广泛应用于生物大分子、天然产物、药物等领域的分离和纯化。
大孔树脂吸附原理
大孔树脂是一种常用的吸附材料,其吸附原理主要包括物理吸附和化学吸附两种。
物理吸附是指吸附剂与被吸附物之间的作用力主要是范德华力,这种吸附是可逆的,随着温度的升高或压力的降低,吸附量会减少。
而化学吸附是指吸附剂与被吸附物之间发生了化学键的形成,这种吸附是不可逆的,需要通过化学手段才能解吸。
大孔树脂的吸附原理主要是通过其大孔结构来实现的。
大孔结构可以提供更大的表面积和更多的吸附位点,从而增加吸附物与吸附剂之间的接触面积,提高吸附效率。
此外,大孔结构还可以减小质传阻力,使得吸附物能够更快速地扩散到吸附位点上,从而加快吸附速率。
在大孔树脂中,吸附作用是通过吸附位点上的化学官能团来实现的。
这些化学官能团可以与被吸附物发生化学反应,形成化学键,实现化学吸附。
同时,这些化学官能团也可以通过范德华力与被吸附物进行物理吸附。
因此,大孔树脂既具有物理吸附的特点,又具有化学吸附的特点,具有较高的吸附能力和选择性。
除了大孔结构和化学官能团,大孔树脂的吸附原理还与吸附物的性质有关。
一般来说,大孔树脂对分子量较大、极性较强的物质具有较好的吸附能力。
这是因为这些物质在大孔树脂中更容易找到合适的吸附位点,并且与化学官能团发生化学反应的可能性更大。
总的来说,大孔树脂的吸附原理是通过其大孔结构和化学官能团实现的。
大孔结构提供了更大的表面积和更多的吸附位点,化学官能团可以与吸附物发生化学反应或物理吸附,从而实现高效的吸附。
了解大孔树脂的吸附原理有助于我们更好地选择和应用大孔树脂,提高吸附效率,满足不同的工业需求。
大孔树脂吸附原理及应用大孔树脂是一种具有高吸附性能的材料,它的吸附原理以及应用广泛。
本文将从大孔树脂的基本特点出发,详细介绍大孔树脂的吸附原理及其应用。
大孔树脂主要特点:1.喉道直径较大:大孔树脂的喉道直径通常在1-100纳米之间,相比于微孔树脂的喉道直径通常在2纳米以下,大孔树脂的孔径更大,具有更高的吸附性能。
2.孔容量较大:由于大孔树脂拥有更多的孔隙结构,使得其孔容量较大,能够吸附更多的目标物质。
3.吸附速度快:由于大孔树脂的孔径较大,使得目标物质能够更快地进入树脂的内部,从而提高了吸附速度。
大孔树脂的吸附原理:大孔树脂的吸附原理主要包括静电吸附、化学吸附以及物理吸附。
静电吸附是大孔树脂的主要吸附形式,它是由于树脂中的电荷与目标物质的电荷之间的相互作用而产生的。
当目标物质通过树脂孔隙时,树脂表面带有电荷的官能团与目标物质之间发生静电吸附。
化学吸附是指大孔树脂与目标物质之间发生化学反应,从而形成化学键而实现吸附。
物理吸附是指大孔树脂与目标物质之间的范德华力作用,从而实现吸附。
这三种吸附形式可能同时存在,各有各的特点。
大孔树脂的应用:1.分离纯化:大孔树脂可以用于分离纯化目标物质,例如生物制药领域中的蛋白质纯化,通过大孔树脂的吸附作用,可以有效地分离目标蛋白质。
2.废水处理:大孔树脂可以用于废水处理中的吸附去除,例如吸附去除有机物、重金属离子等。
它具有较高的吸附容量和吸附速度,可以有效地去除废水中的污染物。
3.气体吸附:大孔树脂可以用于气体的吸附,例如二氧化碳的吸附分离和储存。
由于大孔树脂具有较大的孔径和孔容量,可以有效地吸附二氧化碳,并实现其分离和储存。
4.药物传递系统:大孔树脂可以用于制备药物传递系统,例如制备药物缓释控制器,通过药物在大孔树脂中的吸附和释放,实现药物的缓慢释放和控制释放。
5.萃取分离:大孔树脂可以用于分离和富集目标物质,例如在环境监测中,用大孔树脂吸附土壤或水中的污染物,然后进行分析检测。
大孔树脂吸附原理大孔树脂是一种常用的吸附材料,其吸附原理主要包括物理吸附和化学吸附两种。
物理吸附是指吸附剂与被吸附物之间由于范德华力、静电力等引起的吸附作用,而化学吸附则是指吸附剂与被吸附物之间发生化学反应而形成的吸附作用。
大孔树脂的吸附原理在工业生产和实验室研究中都有着广泛的应用,下面将详细介绍大孔树脂的吸附原理及其应用。
首先,大孔树脂的物理吸附原理是基于吸附剂表面的孔隙结构和化学成分。
大孔树脂具有较大的孔径和孔体积,这使得被吸附物分子可以在吸附剂表面形成多种吸附状态,从而实现对各种分子的吸附。
此外,大孔树脂的化学成分也会对吸附行为产生影响,例如含有亲水性基团的大孔树脂对极性物质有较好的吸附性能,而含有疏水性基团的大孔树脂则对非极性物质有较好的吸附性能。
其次,大孔树脂的化学吸附原理是基于吸附剂表面的化学活性基团与被吸附物分子之间的化学作用。
大孔树脂表面通常含有各种官能团,例如羧基、氨基、羟基等,这些官能团能够与被吸附物分子发生化学反应,形成化学键或离子键,从而实现对被吸附物的选择性吸附。
化学吸附通常具有较高的吸附能力和选择性,因此在一些特定的分离和纯化过程中得到了广泛的应用。
大孔树脂的吸附原理不仅在工业生产中有着重要的应用,同时也在实验室研究中发挥着重要作用。
在工业生产中,大孔树脂常用于分离、纯化、浓缩和固定化等工艺,例如在制药、食品、化工等行业中,大孔树脂被广泛应用于蛋白质纯化、药物分离、色素固定化等过程中。
在实验室研究中,大孔树脂也常用于柱层析、批式吸附和固定化酶等实验操作中,为科研人员提供了便利的实验手段。
总之,大孔树脂的吸附原理包括物理吸附和化学吸附两种,其应用涵盖了工业生产和实验室研究的多个领域。
通过对大孔树脂吸附原理的深入了解,可以更好地指导其在实际应用中的选择和操作,从而实现更高效、更经济的生产和研究目的。
希望本文的介绍能够对大孔树脂的应用和研究提供一定的参考和帮助。
大孔树脂吸附技术
大孔树脂吸附技术是一种利用大孔树脂材料进行物质吸附的技术。
大孔树脂是一种具有较大孔径(一般在50-1000Å)的吸附树脂材料,具有较高的比表面积和孔容量。
大孔树脂吸附技术一般采用固定床或流动床的方式进行操作。
在吸附过程中,待吸附物质通过溶液或气体的方式进入大孔树脂颗粒的孔道内,与树脂表面上的活性位点发生作用,将目标物质吸附到树脂中。
吸附后,通过改变条件(如温度、pH值等),可以实现目标物质的脱附,使树脂得以重复使用。
大孔树脂吸附技术在许多领域都得到了广泛应用。
例如,它可以用于水处理领域,用于去除水中的重金属离子、有机物等污染物质;在制药工业中,可以用于纯化和分离生物分子;在化工工艺中,可以用于分离混合物中的成分等。
大孔树脂吸附技术的优点包括操作简单、选择性强、吸附能力高、再生性好等。
同时,由于大孔树脂具有大孔径特征,能够更容易地吸附大分子物质,因此在大分子分离方面具有较大的优势。
总的来说,大孔树脂吸附技术是一种高效的分离、纯化和去除污染物质的技术,具有广泛应用前景。