ansys建立隧道三维模型
- 格式:doc
- 大小:30.00 KB
- 文档页数:6
隧道模型创建的方法
隧道模型是建筑、交通工程等领域中常用的一种模型。
它用来展现一个隧道的外形和内部构造,通常包括隧道的长度、宽度、高度、坡度等方面的信息。
下面介绍几种常见的隧道模型创建方法。
1. CAD软件建模法
CAD软件是一种常用的建筑设计软件,可以用来创建3D隧道模型。
首先需要准备好隧道设计图纸,然后使用CAD软件按照设计图纸绘制出隧道的外形和内部构造。
在建模的过程中,需要注意细节,例如隧道的坡度和变化处的转角等。
这种方法能够创建出高精度的隧道模型,但需要一定的CAD软件操作技巧。
2. 模型制作法
模型制作法是一种传统的隧道模型创建方法,需要使用各种材料手工制作出真实的模型。
制作过程包括设计、切割、拼接等步骤,需要一定的手工技巧和经验。
这种方法能够创建出真实感强、立体感强的隧道模型,适合展示和教学用途。
3. 三维打印法
三维打印技术是近年来兴起的一种快速制造技术,可以用来创建复杂的3D隧道模型。
首先需要将设计图纸转换为3D模型文件,然后使用3D打印机打印出模型。
这种方法制作速度快、成本低,适合小批量制作。
但是由于3D打印技术的限制,隧道模型的精度和细节可能存在一定的不足。
总之,隧道模型的创建方法多种多样,选择哪种方法主要取决于需求和制作条件。
无论哪种方法,都需要注重细节和精度,以确保模型的真实性和可用性。
隧道衬砌支护结构的ANSYS数值模拟摘要:为了确保隧道施工及运行的安全性,必须对其支护结构进行受力分析。
本文以城市长大隧道为例,基于ANSYS有限元分析软件平台建立隧道支护的荷载—结构模型,并从结构变形、弯矩、轴力和剪力等方面实现对隧道支护结构的数值模拟,从分析结论及安全性的角度出发,为隧道结构的优化设计和现场施工提供依据和指导。
关键词:隧道;支护结构;ANSYS;数值模拟目前,伴随岩土力学的发展和计算机的普遍使用及其性能的不断提高,有限元数值分析已成为隧道结构分析中发展最迅速的方法。
在参数选取合理的情况下,通过对隧道开挖过程进行仿真分析,可判定隧道围岩应力大小以及应力区和塑性区的范围,能够预测隧道施工中的险情,保证隧道施工安全和稳定性。
一、有限元数值模拟方法有限元法的基本思想是将连续的结构离散成有限个单元并设定节点,将连续体看作是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,在每一个单元中假设一近似差值函数以表示单元场中场函数的分布规律,利用力学中的某些变分原理去建立用以求解节点未知量的有限元方程,从而将一个连续域中的无限自由度问题化为离散域中的自由度问题,一经求解就可以利用解得的节点值和设定的插值函数确定单元上以至整个集合体上的场函数[1]。
在实际工程应用中,有限元法可以考虑岩土介质的非均匀性、各向异性、非连续性和几何非线性等,适用于各种边界条件,结合大型通用有限元软件ANSYS能较好实现隧道结构的数值计算。
基本建模流程包括选择分析模型类别、创建物理环境、建立模型和划分网格、施加约束和荷载、建立有限元模型、求解和后处理等。
当前,对隧道支护结构体系一般按照荷载—结构模型进行演算,分析过程中将围岩视为隧道结构上的荷载,且为结构本身的一部分,两者间的相互作用通过围岩的弹性支撑对结构施加约束来实现。
二、隧道结构受力分析实例2.1 设计概况目标隧道为双向六车道设计,含多种断面衬砌类型,围岩级别Ⅲ~Ⅵ级。
选取新建铁路宜昌(宜)-万州(万)铁路线上的别岩槽隧道某断面.该断面设计单位采用的支护结构如图3-3所示。
为保证结构的安全性.采用了荷载—结构模型.利用ANSYS 对其进行计算分析。
主要参数如下:●隧道腰部和顶部衬砌厚度是65cm.隧道仰拱衬砌厚度为85cm。
●采用C30钢筋混凝土为衬砌材料。
●隧道围岩是Ⅳ级,洞跨是5.36米.深埋隧道。
●隧道仰拱下承受水压.水压0.2MPa。
图 3-3 隧道支护结构断面图隧道围岩级别是Ⅳ级.其物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-3所示。
根据《铁路隧道设计规范》.可计算出深埋隧道围岩的垂直匀布力和水平匀布力。
对于竖向和水平的分布荷载.其等效节点力分别近似的取节点两相临单元水平或垂直投影长度的一般衬砌计算宽度这一面积范围内的分布荷载的总和。
自重荷载通过ANSYS程序直接添加密度施加。
隧道仰拱部受到的水压0.2MPa按照径向方向载置换为等效节点力,分解为水平竖直方向加载。
3.3.3 GUI操作方法3.3.3.1 创建物理环境1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】.得到“10.0ANSYS Product Launcher”对话框。
2)选中【File Management】.在“Working Directory”栏输入工作目录“D:\ansys\example301”.在“Job Name”栏输入文件名“Support”。
3)单击“RUN”按钮.进入ANSYS10.0的GUI操作界面。
4)过滤图形界面:Main Menu> Preferences.弹出“Preferences for GUI Filtering”对话框.选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。
5)定义工作标题:Utility Menu> File> Change Title.在弹出的对话框中输入“Tunnel Support Structural Analysis”.单击“OK”.如图3-4所示。
3.4 ANSYS隧道开挖模拟实例分析3.4.1 实例描述选取新建铁路宜昌(宜)-万州(万)铁路线上的某隧道,隧道为单洞双车道,隧道正下方存在一个溶洞,隧道支护结构为曲墙式带仰拱复合衬砌。
主要参数如下:◆隧道衬砌厚度为30cm。
◆采用C25钢筋混凝土为衬砌材料。
◆隧道围岩是Ⅳ级,隧道洞跨是13m,隧道埋深是80m。
◆溶洞近似圆型,溶洞半径是3.6m,溶洞与隧道距离12.8m。
◆围岩材料采用Drucker-Prager模型。
◆隧道拱腰到拱顶布置30根25Φ锚杆。
隧道围岩的物理力学指标及衬砌材料C30钢筋混凝土的物理力学指标见表3-7所示。
表3-7 物理力学指标名称容重γ(3/mkN)弹性抗力系数K(MPz/m)弹性模量E(GPa)泊松比v内摩擦角ϕ(。
)凝聚力C(MPa)Ⅳ级围岩22 300 3.60.32370.6C25钢筋混凝土25 - 29.50.15542.42锚杆79.6 - 1700.3-- 利用ANSYS提供的对计算单元进行“生死”处理的功能,来模拟隧道的分步开挖和支护过程,采用直接加载法,将岩体自重、外部恒载、列车荷载等在适当的时候加在隧道周围岩体上。
利用ANSYS后处理器来查看隧道施工完后隧道与溶洞之间塑性区贯通情况,来判断隧道底部存在溶洞情形时,实际所采用的设计和施工方案是否安全可行。
3.4.2 ANSYS模拟施工步骤ANSYS模拟计算范围确定原则:通常情况下,隧道周围大于3倍洞跨以外的围岩受到隧道施工的影响很小了,所以,一般情况下,计算范围一般取隧道洞跨3倍。
但因为本实例隧道下部存在溶洞,所以,垂直方向:隧道到底部边界取为洞跨的5倍,隧道顶部至模型上部边界为100米,然后根据隧道埋深情况将模型上部土体重量换算成均布荷载施加在模型上边界上;水平方向长度为洞跨的8倍。
模型约束情形:本实例模型左、右和下部边界均施加法向约束,上部为自由边界,除均布荷载外未受任何约束。
围岩采用四节点平面单元(PLANE42)加以模拟,初期支护的锚杆单元用LINK1单元来模拟,二次衬砌支护用BEAM3来模拟,计算时首先计算溶洞存在时岩体的自重应力场,然后再根据上述方法模拟开挖过程。
基于ANSYS的隧道施工过程的模拟实现摘要:伴随着岩土力学的发展和计算机性能的提高,有限元法成为发展最迅速的用于隧道结构分析的数值计算方法。
本文以工程实例为依托,研究了ansys有限元分析软件在隧道施工过程中的模拟实现,并着重介绍了起重单元生死的运用,为实际工程应用提供一定参考。
关键词:隧道施工;ansys;模拟;单元生死中图分类号:u45 文献标识码:a一、前言为达到各种不同的使用目的,在山体或地面下修建的建筑物统称为地下工程。
地下工程的设计理论和方法经历了一个相当长的发展过程。
早在19世纪初,地下工程多以砖石材料为衬砌,用木支撑的分部开挖方法进行施工,这种设计的衬砌结构厚度偏大。
20世纪50年代,在地下工程的修建中,喷射混凝土和锚杆作为初期支护得到了广泛的应用,这样的柔性支护使开挖后的洞室围岩有一定的变形,围岩内部的应力重新进行分布,但是围岩能够发挥其稳定性,这样可大大减小衬砌结构的设计厚度。
20世纪60年代,随着计算机技术的发展和岩土本构关系的建立,地下工程结构的设计分析进入了以有限元法为主的计算机数值模拟分析时期。
二、单元生死如果模型中加入(或删除)材料,模型中相应的单元就存在(或消亡)。
单元生死选项就用于在这种情况下杀死或重新激活选择的单元。
要激活“单元死”的效果,ansys并不是将“杀死”的单元从模型中删除,而是将其刚度(或传到,或其他分析特性)矩阵乘以一个很小的因子(estif)。
单元的“出生”并不是将其加到模型中,而是重新激活它们。
三、隧道施工工程模拟的ansys实现(一)初始地应力的考虑在ansys中有两种方法可以用来模拟初始地应力。
第一种是只考虑岩体的自重应力,在分析的第一步,首先计算岩体的自重应力场。
这种方法的不足之处在于计算出的应力场与实际应力场有偏差,而且岩体在自重作用下还产生了初始位移,在继续分析后续施工时,得到的位移结果是累加了初始位移的结果,而现实中初始位移早就结束,对隧洞的开挖没有影响,因此在后面的每个施工阶段分析位移场时,需要减去初始位移场。
Ansys建模实例引言Ansys是一种广泛使用的有限元分析软件,可以用来模拟和解决各种工程问题。
本文将介绍一些Ansys的建模实例,包括常见的建模技术和步骤。
通过这些实例,读者可以了解Ansys的基本操作和建模技巧。
实例一:三维实体建模在Ansys中进行三维实体建模是常见的任务之一。
以下是一个简单的三维实体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如圆柱体、球体或立方体,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了Ansys建模的基本步骤。
读者可以根据自己的需求和具体问题进行相应的调整和修改。
实例二:二维平面建模在某些情况下,我们只需要进行二维平面建模,比如平面结构的分析。
以下是一个二维平面建模的实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如直线、圆弧或多边形,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了在Ansys中进行二维平面建模的基本步骤。
在实际应用中,读者可以根据具体情况选择适当的元素和属性。
实例三:流体建模Ansys还可以用于流体建模和分析。
以下是一个流体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如管道、储罐或泵,并指定其尺寸和位置。
4.定义流体属性,如流体类型、流速和压力等。
5.调整模型的边界条件,如流入口和流出口的速度或压力。
6.运行流体分析以获得流体的流动情况和压力分布。
7.可以通过动画或图形展示来可视化流体的流动情况。
第十章/TITLE, 3D analysis on shield tunnel in Metro ! 拟定分析标题/NOPR !菜单过滤设立/PMETH, OFF, 0KEYW, PR_SET, 1KEYW, PR_STRUC, 1 !保存结构分析部分菜单/COM,/COM, Preferences for GUI filtering have been set to display: 1./COM, Structural2.材料、实常数和单元类型定义/clear !更新数据库/prep7 !进入前解决器et,1,solid45 !设立单元类型et,2,mesh200,6save !保持数据(2)定义模型中的材料参数。
!土体材料参数mp,ex,1,3.94e6 !地表层土弹性模量mp,prxy,1,0.35 !地表层土泊松比mp,dens,1,1828 !地表层土密度mp,ex,2,20.6e6 !盾构隧道所在地层参数mp,prxy,2,0.30mp,dens,2,2160mp,ex,3,500e6 !基岩地层参数mp,prxy,3,0.33mp,dens,3,2160!管片材料参数, 管片衬砌按各向同性计算mp,ex,4,27.6e9 !管片衬砌弹性模量mp,prxy,4,0.2 !管片衬砌泊松比mp,dens,4,2500 !管片衬砌密度!注浆层, 参数按水泥土取值mp,ex,5,1e9 !注浆层弹性模量mp,prxy,5,0.2 !注浆层泊松比mp,dens,5,2100 !注浆层密度save !保持数据3.建立平面内模型并划分单元(1)在隧道中心线定义局部坐标, 便于后来的实体选取。
local,11,0,0,0,0 !局部笛卡儿坐标local,12,1,0,0,0 !局部极坐标csys,11 !将当前坐标转换为局部坐标wpcsys,-1 !同时将工作平面转换到局坐标cyl4,,,,,2.7,90 !画部分圆半径为2.7cyl4,0,0,2.7,0,3,90 !画管片层部分圆cyl4,0,0,3,0,3.2,90 !画注浆层部分圆rectng,0,4.5,0,4.5 !画外边界矩形aovlap,all !做面递加nummrg,all !合并所有元素numcmp,all !压缩所有元素编号rectng,4.5,31.5,0,4.5 !画矩形面nummrg,all !合并所有元素numcmp,all !压缩所有元素编号save !保持数据(2)划分单元, 如图10-1所示。