(完整版)圆的一般方程练习题
- 格式:doc
- 大小:156.01 KB
- 文档页数:6
圆方程测试题及答案一、选择题1. 已知圆的一般方程为 \( x^2 + y^2 + 2gx + 2fy + c = 0 \),其中 \( g \)、\( f \) 和 \( c \) 是常数。
若圆心坐标为 \( (-g, -f) \),那么 \( c \) 的值应该是:A. \( g^2 + f^2 \)B. \( -g^2 - f^2 \)C. \( 1 \)D. \( 0 \)答案:A2. 圆 \( (x-1)^2 + (y-2)^2 = 25 \) 的半径是多少?A. 3B. 5C. 10D. 20答案:B二、填空题1. 圆的标准方程为 \( (x-a)^2 + (y-b)^2 = r^2 \),其中 \( (a,b) \) 是圆心坐标,\( r \) 是半径。
如果圆心坐标为 \( (3, 4) \),半径为 5,则该圆的方程为________________。
答案:\( (x-3)^2 + (y-4)^2 = 25 \)2. 圆 \( x^2 + y^2 = 9 \) 与直线 \( y = x \) 相切,求切点坐标。
答案:切点坐标为 \( (±\sqrt{2}, ±\sqrt{2}) \)。
三、解答题1. 已知圆 \( C \) 的圆心在 \( (1, 1) \),半径为 2,求圆 \( C \) 的方程。
解答:根据圆的标准方程,圆 \( C \) 的方程为 \( (x-1)^2 + (y-1)^2 = 4 \)。
2. 已知圆 \( x^2 + y^2 + 2x - 4y + 1 = 0 \) 与直线 \( 2x + y- 3 = 0 \) 相切,求圆心到直线的距离。
解答:首先,将圆的方程化为标准形式,得到 \( (x+1)^2 + (y-2)^2 = 4 \)。
圆心坐标为 \( (-1, 2) \)。
利用点到直线距离公式\( \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \),将圆心坐标代入直线方程,得到距离 \( d = \frac{|2(-1) + 1(2) - 3|}{\sqrt{2^2 + 1^2}} = \frac{3}{\sqrt{5}} \)。
考点四十 圆的方程知识梳理1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 5. 解决与圆有关的最值问题的常用方法(1) 形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;(2) 形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3) 形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.典例剖析题型一 求圆的方程例1 若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 . 答案 (x -2)2+(y ±3)2=4解析 因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(1-2)2+b 2=4,b 2=3,b =±3.变式训练 (1)圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是 .(2) 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 答案 (1) x 2+y 2-10y =0 (2) (x -2)2+y 2=10解析 (1)设圆心为(0,b ),半径为r ,则r =|b |,∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得:b =5. ∴圆的方程为x 2+y 2-10y =0.(2) 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2, 解得a =2,∴圆心为(2,0),半径为10, ∴圆C 的方程为(x -2)2+y 2=10.解题要点 求圆的方程一般用待定系数法,根据题意,可以选择标准方程或一般方程求解. 题型二 点与圆的位置关系例2 已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 . 答案 在圆内解析 因为(3-2)2+(2-3)2=2<4,故点P (3,2)在圆内.变式训练 点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________. 答案 在圆C 外部解析 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0, ∴点P 在圆C 外部.题型三 二次方程表示圆的条件例3 方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件的是 . 答案 m <14或m >1解析 由(4m )2+4-4×5m >0,得m <14或m >1.变式训练 方程2x 2+2y 2-4x +8y +10=0表示的图形是 . 答案 一个点解析 方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0, 即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).解题要点 1.方程x 2+y 2+Dx +Ey +F =0表示圆的条件是D 2+E 2-4F >0. 2.二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:⎩⎪⎨⎪⎧B =0,A =C ≠0,D 2+E 2-4AF >0.,即方程中不含xy 项, x 2,y 2前系数相同,且D 2+E 2-4AF >0. 题型四 与圆有关的最值问题例4 已知实数x 、y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解析 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx=k ,即y =kx , 则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3,∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,截距b 取最小值,由点到直线的距离公式,得|2-0+b |2=3,即b =-2±6,故(y -x )min =-2- 6.(3)x 2+y 2是圆上点与原点的距离的平方,故连接OC ,与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =|OC ′|2=(2+3)2=7+43, (x 2+y 2)min =|OB |2=(2-3)2=7-4 3.解题要点 (1)与圆相关的最值,若几何意义明显时,可充分利用几何性质,借助几何直观求解.否则可转化为函数求最值.(2)①形如u =y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.当堂练习1.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为.答案(x-2)2+(y-1)2=2解析所求圆与x轴交于A(1,0),B(3,0)两点,故线段AB的垂直平分线x=2过所求圆的圆心,又所求圆的圆心在直线2x-3y-1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为,所以圆的标准方程为(x-2)2+(y -1)2=2.2.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为.答案(x-2)2+(y+2)2=1解析圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1.3. 圆的圆心和半径分别.答案解析将圆配方得:,故知圆心为(2,-1),半径为.4.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是.答案-解析∵原点O在圆(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,得2m2<4,解得-<m<,即实数m的取值范围为:-<m<.5.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是.答案m<解析∵方程x2+y2-x+y+m=0即表示一个圆,∴-m>0,解得m<.课后作业一、填空题1.以点A(-5,4)为圆心且与x轴相切的圆的标准方程是.答案(x+5)2+(y-4)2=16解析∵所求的圆以点A(-5,4)为圆心,且与x轴相切,∴所求圆的半径R=4,∴圆的标准方程为(x+5)2+(y-4)2=16.2.若一圆的标准方程为,则此圆的的圆心和半径分别为.答案解析圆的标准方程为,表示圆心为,半径为的圆.3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.4.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是.答案-<a<1解析由题意,4a2+(a-1)2-2(a-1)-4<0,即5a2-4a-1<0,解之得:-<a<1.5.圆的圆心坐标是.答案(2,-3)解析将方程化为圆的标准方程得,所以圆心是(2,-3).6.圆x2+y2=16上的点到直线x-y=3的距离的最大值为.答案4+解析圆心即原点到直线的距离,所以直线与圆相交,则圆上的点到直线的最大距离为.7.若方程x2+y2-x-2y+c=0(c∈R)是一个圆的一般方程,则c的范围是.答案c<解析化为标准方程为:,由题意得,,∴.8.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析由已知设所求圆的圆心坐标为:C(a,b)(a>0且b>0),由已知有:,所以所求圆的方程为:(x-2)2+(y-1)2=1.9.圆的方程过点和原点,则圆的方程为.答案解析设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.10.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.答案(3,0),3解析(x-3)2+y2=9,圆心坐标为(3,0),半径为3.11.从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为答案解析把圆的方程化为标准式后,找出圆心坐标和圆的半径,利用图形可知,当圆心A与直线x-y+3=0垂直时,过垂足作圆的切线,切线长最短,连接AB,根据圆的切线垂直于过切点的直径可得三角形ABC为直角三角形,利用点到直线的距离公式求出圆心到直线x -y+3=0的距离即为|AC|的长,然后根据半径和|AC|的长,利用勾股定理即可求出此时的切线长.由于圆心(2,2),半径为1,那么可知圆心到直线的距离为,那么利用勾股定理可知切线长的最小值为二、解答题12.求下列各圆的标准方程:(1)圆心在y=-x上且过两点(2,0),(0,-4)(2)圆心在直线2x+y=0上,且与直线x+y-1=0切于点(2,-1)解析(1)设圆心坐标为(),则所求圆的方程为,∵圆心在上,∴,①又∵圆过(2,0),(0,-4)∴,②,③由①②③联立方程组,可得.∴所求圆的方程为.(2)∵圆与直线相切,并切于点M(2,-1),则圆心必在过点M(2,-1)且垂直于的直线:上,,即圆心为C(1,-2),r=,∴所求圆的方程为:13.求经过三点A(-1,-1),B(-8,0),C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.解析设所求圆的方程为点A(-1,-1),B(-8,0),C(0,6)的坐标满足上述方程,分别代入方程,可得解得:D=8,E=-6,F=0 .于是得所求圆的方程为:,圆的半径r=,圆心坐标是.。
圆练习题及答案圆是平面上所有与给定点(圆心)距离相等的点的集合。
这个给定点称为圆心,这个距离称为半径。
圆的方程通常表示为 (x - h)² + (y - k)² = r²,其中 (h, k) 是圆心的坐标,r 是半径。
以下是一些关于圆的练习题及答案:1. 练习题:已知圆的半径为5,圆心坐标为(3, 4),求圆的方程。
答案:根据圆的标准方程,我们可以得到圆的方程为 (x - 3)² + (y - 4)² = 5²,即 (x - 3)² + (y - 4)² = 25。
2. 练习题:如果一个圆的圆心在点(-2, -3),且与x轴相切,求这个圆的半径。
答案:由于圆与x轴相切,圆心到x轴的距离就是圆的半径。
圆心的y坐标为-3,因此半径为3。
3. 练习题:圆x² + y² = 16与直线y = 4x的交点坐标是什么?答案:将直线方程y = 4x代入圆的方程,得到x² + (4x)² = 16,即x² + 16x² = 16,解得x² = 1,所以x = ±1。
将x值代入直线方程,得到y = ±4。
因此,交点坐标为(1, 4)和(-1, -4)。
4. 练习题:求圆心在原点,半径为7的圆与圆心在(1, 2),半径为3的圆的公共点。
答案:设两圆的公共点为(x, y)。
根据圆的方程,我们有以下两个方程:- x² + y² = 49(半径为7的圆)- (x - 1)² + (y - 2)² = 9(半径为3的圆)解这两个方程组,我们可以得到公共点的坐标。
5. 练习题:一个圆的半径为8,圆心在(1, 1),求这个圆上任意一点P(x, y)到圆心的距离。
答案:根据两点间的距离公式,点P(x, y)到圆心(1, 1)的距离为√[(x - 1)² + (y - 1)²]。
4.1.2 圆的一般方程练习一一、 选择题1、x 2+y 2-4x+6y=0和x 2+y 2-6x=0的连心线方程是( )A 、x+y+3=0B 、2x-y-5=0C 、3x-y-9=0D 、4x-3y+7=02、已知圆的方程是x 2+y 2-2x+6y+8=0,那么经过圆心的一条直线方程为( )A .2x -y+1=0 B.2x+y+1=0C.2x -y -1=0D.2x+y -1=03、以(1,1)和(2,-2)为一条直径的两个端点的圆的方程为( )A 、 x2+y2+3x-y=0B 、x2+y2-3x+y=0C 、x2+y2-3x+y-25=0D 、x2+y2-3x-y-25=04、方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是( )A 、 a<-2或a>32B 、-32<a<2C 、-2<a<0D 、-2<a<325、圆x 2+y 2+4x+26y+b 2=0与某坐标相切,那么b 可以取得值是( )A 、±2或±13B 、1和2C 、-1和-2D 、-1和16、如果方程22220(40)x y Dx Ey f D E F ++++=+->所表示的曲线关于y=x 对称,则必有() A 、D=E B 、D=F C 、E=F D 、D=E=F7、如果直线l 将圆22240x y x y +--=平分,且不通过第四象限, 那么l 的斜率的取值范围是() A 、[0,2] B 、[0,1] C 、1[0]2, D 、1[0]3,二、填空题8、已知方程x 2+y 2+4kx-2y+5k=0,当k ∈ 时,它表示圆;当k 时,它表示点;当k ∈ 时,它的轨迹不存在。
9、圆x 2+y 2-4x+2y -5=0,与直线x+2y -5=0相交于P 1,P 2两点,则12PP =____。
10、若方程x 2+y 2+Dx+Ey+F=0,表示以(2,-4)为圆心,4为半径的圆,则F=_____11、圆的方程为22680x y x y +--=,过坐标原点作长度为6的弦,则弦所在的直线方程为 。
(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。
2.4.2圆的一般方程一、选择题1.经过点A(1,2),且以B(-1,1)为圆心的圆的一般方程为( )A.x2+y2-2x+2y-3=0B.x2+y2+2x-2y-3=0C.x2+y2+2x-2y-7=0D.x2+y2-2x+2y-7=02.经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程是( )A.x2+y2-7x-3y+2=0B.x2+y2+7x-3y+2=0C.x2+y2+7x+3y+2=0D.x2+y2-7x+3y+2=03.[2024·山东临沂高二期中] 已知圆C:x2+y2-2x+4y-6=0的半径为r,则( )A.C(1,-2),r=2√11B.C(-1,2),r=√11C.C(1,-2),r=√11D.C(-1,2),r=2√114.[2024·广东东莞高二期中] 若方程x2+y2+ax-2ay+2a2+3a=0表示的是半径为r(r>0)的圆,则该圆的圆心位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.若圆C的方程为x2+y2+mx+2my+(m-2)=0,则圆C的最小周长为( )A.36π5B.18√5π5C.12√5π5D.6√5π56.[2024·北京大兴区高二期中] 已知点M1(-3,0)和点M2(3,0),动点M(x,y)满足|MM1|=2|MM2|,则点M的轨迹方程为( )A.x2+y2+18x+9=0B.x2+y2+6x+9=0C.x2+y2+6x-9=0D.x2+y2-10x+9=07.[2024·天津一中高二期中] 若圆x 2+y 2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则1a +3b 的最小值是( )A .2√3B .203C .4D .163 8.(多选题)[2024·重庆江津二中高二期中] 已知圆M 的一般方程为x 2+y 2-8x+6y=0,则下列说法正确的是( )A .圆M 的圆心为(4,-3)B .x 轴被圆M 截得的弦长为10C .圆M 的半径为5D .y 轴被圆M 截得的弦长为89.(多选题)已知x ,y 满足x 2+y 2-6x+2y+1=0,则 ( )A .x 2+y 2的最小值为√10-3B .y x+1的最大值为6√2-47C .x+2y 的最小值为1-3√5D .√(x -3)2+(y +1)2+√x 2+(y -3)2的最小值为5二、填空题10.[2024·合肥一中高二期中] 若点P (1,1)在圆C :x 2+y 2-x-2y-k=0外,则实数k 的取值范围为 .11.若方程x 2+y 2-kx+2y+k 2-2=0表示圆,则实数k 的取值范围为 .12.已知直线l :x+3y-4=0和圆M :x 2+y 2+4y=0,则圆M 关于直线l 对称的圆的方程为 .三、解答题13.已知方程x 2+y 2-2(t+3)x+2(1-4t 2)y+16t 4+9=0表示圆.(1)求t 的取值范围;(2)求圆的圆心和半径;(3)求圆的半径的最大值及此时圆的标准方程.14.在平面直角坐标系中,A (-1,1),B (3,3),C (2,0).(1)求△ABC 的面积;(2)若O 为坐标原点,判断O ,A ,B ,C 四点是否在同一个圆上,并说明理由.15.已知实数x 1,x 2,y 1,y 2满足x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则11√2+22√2的最大值为 .16.已知方程x 2+y 2+2kx+(4k+10)y+6k 2+21k+19=0表示一个圆,其圆心为C.(1)求圆C 的半径r 的取值范围;(2)求圆心C 的轨迹方程;(3)若k=-2,线段AB 的端点A 的坐标为(0,4),端点B 在圆C 上运动,求线段AB 的中点M 的轨迹方程.。
圆的一般式方程1、方程052422=+-++m y x y x 表示圆的条件是( ).1.;41.;1.;141.<<><<m D m C m B m A 2、()0,3M 是圆0102822=+--+y x y x 内一点,过M 点最长的弦所在的直线方程是( )03.=-+y x A 03.=--y x B062.=--y x C 3、已知圆()(),100122222<<=-+--+a a y ax y x 则原点O 在( )A 、圆内B 、圆外C 、圆上D 、圆上或圆外4、当a 为任意实数时,直线()011=++--a y x a 恒过定点,C 以C 为圆心,半径为5的圆的方程是( )042.22=+-+y x y x A 042.22=+++y x y x B 042.22=-++y x y x C 042.22=--+y x y x D5、若圆M 在x 轴和y 轴上截得的弦长总相等,则圆心M的轨迹方程是( )0.=-y x A 0.=+y x B 0.22=+y x C 0.22=-y x D6、若实数y x ,满足,042422=--++y x y x 则22y x +的最大值是( )35.+A 1456.+B 35.+-C 1456.+-D 7、圆02422=++-+F y x y x 与y 轴交于B A ,两点,圆心为,C 若,2π=∠ACB 则=F ( )22.-A 22.B 3.C 3.-D8、已知两定点()(),0,1,0,2B A -如果动点P 满足条=PAPB 2,则点P 轨迹所包围的图形的面积等于( ) π.A π4.B π8.C π9.D9、当圆0222=++++k ky x y x 的面积最大时,圆心坐标为( )()1,0.-A ()0,1.-B ()1,1.-C ()1,1.-D10、圆0104422=---+y x y x 上的点到直线14-+y x0=的最大距离于最小距离的差是11、已知圆:C 03222=-+++ay x y x (a 为实数)上任意一点关于直线02:=+-y x l 的对称点都在圆C 上,则=a12、 求一个动点P 在圆122=+y x 上移动时,它与定点()0,3A 连线的中点M 的轨迹方程。
教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
第四章4.14.1.1A 级基础巩固一、选择题1.圆心是 (4,- 1),且过点 (5,2)的圆的标准方程是()A .(x- 4)2+( y+1) 2= 10B.( x+ 4)2+ (y-1)2= 10C. (x-4) 2+ (y+1) 2= 100D.( x- 4)2+ (y+1)2= 102.已知圆的方程是 (x- 2)2+ (y- 3)2=4,则点 P(3,2) 满足 ()A .是圆心B.在圆上C.在圆内 D .在圆外3.圆 (x+ 1)2+ (y- 2)2= 4 的圆心坐标和半径分别为()A .(- 1,2), 2B. (1,- 2),2C. (-1,2), 4 D . (1,- 2), 44. (2016 锦·州高一检测 )若圆 C 与圆 (x+ 2)2+ (y- 1)2= 1关于原点对称,则圆 C 的方程是 ()A .(x- 2)2+( y+1) 2= 1B. (x- 2) 2+ (y- 1)2= 1C. (x-1) 2+ (y+2) 2= 1D. (x+ 1)2+ (y+2) 2= 15. (2016 全·国卷Ⅱ )圆 x2+ y2- 2x-8y+ 13=0 的圆心到直线ax+y- 1= 0 的距离为1,则 a= () 43A .-3B.-4C. 3 D . 26.若 P(2,- 1)为圆 (x- 1)2+ y2= 25 的弦 AB 的中点,则直线AB 的方程是 ( A)A . x- y- 3= 0B. 2x+ y- 3= 0C. x+ y-1= 0D. 2x- y- 5= 0二、填空题7.以点 (2,- 1)为圆心且与直线x+ y= 6 相切的圆的方程是.8.圆心既在直线x- y= 0 上,又在直线x+ y- 4= 0 上,且经过原点的圆的方程是三、解答题9.圆过点A(1,- 2)、 B(- 1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x- y- 4= 0 上的圆的方程.10.已知圆 N的标准方程为 (x- 5)2+ (y- 6)2= a2(a>0).(1)若点 M(6,9)在圆上,求 a 的值;(2)已知点 P(3,3) 和点 Q(5,3),线段 PQ(不含端点 )与圆 N 有且只有一个公共点,求 a 的取值范围.B 级素养提升一、选择题1, 3与圆 x2+ y2=1的位置关系是()1. (2016 ~2017 ·宁波高一检测 )点222A .在圆上B.在圆内C.在圆外 D .不能确定2.若点 (2a, a- 1)在圆 x2+ (y+ 1)2=5的内部,则 a 的取值范围是 ()A .(-∞, 1]B. (- 1,1)C. (2,5) D . (1,+∞ )3.若点 P(1,1)为圆 (x- 3)2+ y2= 9 的弦 MN 的中点,则弦 MN 所在直线方程为()A .2x+ y- 3= 0B. x- 2y+ 1= 0C. x+ 2y- 3=0 D . 2x-y- 1= 04.点 M 在圆 (x- 5)2+ (y- 3)2= 9 上,则点M 到直线 3x+ 4y- 2= 0 的最短距离为()A .9B. 8C. 5 D . 2二、填空题5.已知圆 C 经过 A(5,1) 、B(1,3)两点,圆心在 x 轴上,则 C 的方程为 ____.6.以直线 2x+ y-4= 0 与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C 级能力拔高1.如图,矩形 ABCD 的两条对角线相交于点M(2,0), AB 边所在直线的方程为x- 3y- 6= 0,点 T(- 1,1)在 AD 边所在的直线上.求AD 边所在直线的方程 .2.求圆心在直线4x+y= 0 上,且与直线l :x+ y- 1= 0 切于点 P(3,- 2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆 x 2 +y 2-4x + 6y = 0 的圆心坐标是 ( )A .(2,3)B . (- 2,3)C . (-2,- 3)D . (2,- 3)2. (2016 ~2017 ·曲靖高一检测 )方程 x 2+ y 2+ 2ax - by + c = 0 表示圆心为 C(2,2),半径为 2 的圆,则 a , b , c 的值依次为 ()A .- 2,4,4B .- 2,- 4,4C . 2,- 4,4D . 2,- 4,- 43.(2016 ~2017 ·长沙高一检测)已知圆 C 过点 M(1,1) ,N(5,1) ,且圆心在直线 y = x - 2 上,则圆 C 的方程为( )A .x 2+ y 2 -6x - 2y + 6= 0B . x 2+ y 2+ 6x - 2y + 6= 0C . x 2+y 2 +6x + 2y + 6= 0D . x 2+ y 2 -2x - 6y + 6= 04. 设圆的方程是 x 2+ y 2+ 2ax + 2y +(a - 1)2=0,若 0<a<1,则原点与圆的位置关系是()A .在圆上B .在圆外C .在圆内D .不确定22x -y + a = 0 的距离为2)5. 若圆 x + y - 2x - 4y = 0 的圆心到直线 ,则 a 的值为 (2A .- 2 或 2B .1或3C . 2 或 0D .- 2 或 02 26. 圆 x 2 +y 2-2y - 1= 0 关于直线 y = x 对称的圆的方程是 ( )A .(x - 1)2+y 2=2B . (x + 1) 2+ y 2= 2C . (x -1) 2+ y 2=4D . (x + 1)2+ y 2=4二、填空题7.圆心是(- 3,4),经过点M(5,1)的圆的一般方程为____.8. 设圆 x 2+ y 2- 4x + 2y - 11=0 的圆心为 A ,点 P 在圆上,则 PA 的中点 M 的轨迹方程是 _ 三、解答题9.判断方程 x 2+ y 2- 4mx + 2my + 20m - 20= 0 能否表示圆,若能表示圆,求出圆心和半径.10.求过点 A(-1,0)、 B(3,0)和 C(0,1)的圆的方程 .B 级素养提升一、选择题1.若圆 x2+ y2- 2ax+ 3by= 0 的圆心位于第三象限,那么直线x+ ay+ b= 0 一定不经过()A .第一象限B.第二象限C.第三象限 D .第四象限2.在圆 x2+ y2-2x- 6y= 0 内,过点 E(0,1)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面只为() A .5 2B. 10 2C. 15 2 D . 20 23.若点 (2a, a- 1)在圆 x2+ y2- 2y- 5a2= 0 的内部,则 a 的取值范围是()444)3,+∞ ) D .3A .(-∞, ]B. (-,C. (-( ,+∞ )533444.若直线 l :ax+ by+ 1= 0 始终平分圆 M:x2+ y2+4x+ 2y+ 1=0的周长,则( a- 2)2+ (b- 2)2的最小值为()二、填空题5.已知圆 C: x2+ y2+ 2x+ ay- 3= 0(a 为实数 )上任意一点关于直线l: x- y+ 2= 0 的对称点都在圆 C 上,则 a6.若实数 x、 y 满足 x 2+ y2+ 4x- 2y-4= 0,则 x2+ y2的最大值是___.C 级能力拔高1.设圆的方程为x2+ y2=4,过点M(0,1)的直线 l 交圆于点 A、 B, O 是坐标原点,点P 为 AB 的中点,当 l 绕点 M 旋转时,求动点P 的轨迹方程 .2.已知方程x2+ y2- 2(m+ 3)x+ 2(1- 4m2)y+ 16m4+ 9= 0 表示一个圆 .(1)求实数 m 的取值范围;(2)求该圆的半径r 的取值范围;(3)求圆心 C 的轨迹方程.第四章 4.2 4.2.1A 级基础巩固一、选择题1.若直线 3x+ y+a= 0 平分圆 x2+ y2+ 2x- 4y=0,则 a 的值为 ()A .- 1B. 1C. 3 D .- 32. (2016 高·台高一检测 )已知直线 ax+ by+ c= 0(a、 b、 c 都是正数 )与圆 x2+ y2= 1 相切,则以a、 b、c 为三边长的三角形是 ()A .锐角三角形B.直角三角形C.钝角三角形 D .不存在3. (2016 北·京文 )圆 (x+ 1)2+ y2= 2 的圆心到直线 y= x+ 3的距离为 ()A .1B. 2C. 2 D . 2 2[4. (2016 铜·仁高一检测)直线 x+y=m 与圆 x2+ y2= m(m>0)相切,则m= ()1B.2C. 2 D . 2A .225.圆心坐标为 (2,- 1)的圆在直线x- y-1= 0 上截得的弦长为 22,那么这个圆的方程为()A .(x- 2)2+( y+1) 2= 4B. (x- 2) 2+ (y+ 1)2= 2C. (x-2) 2+ (y+1) 2= 8D. (x- 2)2+ (y+1) 2= 166.圆 (x- 3)2+ (y- 3)2= 9上到直线 3x+ 4y- 11= 0 的距离等于 1 的点有 ()A .1 个B. 2 个C. 3 个 D . 4 个二、填空题7. (2016 天·津文 )已知圆 C 的圆心在 x 轴的正半轴上,点 M(0,5)在圆 C 上,且圆心到直线2x- y=0 的距离为45,则圆 C 的方程为 ____.58.过点 (3,1)作圆 (x- 2)2+ (y- 2)2= 4 的弦,其中最短弦的长为 ____.三、解答题9.当 m 为何值时,直线x- y- m= 0 与圆 x2+ y2- 4x- 2y+ 1= 0 有两个公共点?有一个公共点?无公共点2210. (2016 ·坊高一检测潍 )已知圆 C: x + (y- 1) = 5,直线 l: mx-y+ 1- m= 0.(1)求证:对m∈R,直线 l 与圆 C 总有两个不同的交点;(2)若直线 l 与圆 C 交于 A、 B 两点,当 |AB |=17时,求 m 的值.B 级素养提升一、选择题1.过点 (2,1)的直线中,被圆x2+ y2- 2x+ 4y= 0 截得的弦最长的直线的方程是()A .3x- y- 5= 0B. 3x+ y- 7= 0C. 3x- y- 1=0 D . 3x+y- 5= 02. (2016 泰·安二中高一检测)已知 2a2+2b2= c2,则直线 ax+ by+ c= 0 与圆 x2+y2= 4 的位置关系是() A .相交但不过圆心B.相交且过圆心C.相切D.相离3.若过点A(4,0)的直线 l 与曲线 (x- 2)2+ y2= 1 有公共点,则直线l 的斜率的取值范围为 ()A .(- 3, 3)B. [- 3, 3]3, 3D . [ -3, 3 C. (-3 3)3 3]4.设圆 (x- 3)2+ (y+ 5)2= r2( r>0) 上有且仅有两个点到直线4x- 3y-2= 0 的距离等于1,则圆半径 r 的取值范围是 ()A .3<r<5B. 4<r <6C. r>4 D . r >5二、填空题5. (2016 ~2017 ·宜昌高一检测 )过点 P(1, 1)的直线 l 与圆 C: ( x- 1)2+y2= 4 交于 A, B 两点, C 为圆心,当∠2ACB 最小时,直线 l 的方程为 ____.6. (2016 ~2017 ·福州高一检测 )过点 ( -1,- 2)的直线 l 被圆 x2+ y2- 2x- 2y+ 1=0截得的弦长为2,则直线 l 的斜率为 ____.C 级能力拔高1.求满足下列条件的圆x2+y2= 4 的切线方程:(1)经过点 P( 3, 1);(2)斜率为- 1;(3)过点 Q(3,0) .2.设圆上的点A(2,3)关于直线x+ 2y= 0 的对称点仍在圆上,且与直线x- y+ 1= 0 相交的弦长为 2 2,求圆的方程 .第四章4.24.2.2A 级基础巩固一、选择题1.已知圆 C1: (x+1) 2+ (y- 3)2= 25,圆 C2与圆 C1关于点 (2,1)对称,则圆 C2的方程是 ()A .(x- 3)2+( y-5) 2= 25B. (x- 5) 2+ (y+ 1)2= 25C. (x-1) 2+ (y-4) 2= 25D. (x- 3)2+ (y+2) 2= 252.圆 x2+y2-2x- 5= 0 和圆 x2+ y2+ 2x- 4y- 4= 0 的交点为 A、 B,则线段 AB 的垂直平分线方程为 ()A .x+ y- 1=0B. 2x- y+ 1=0C. x- 2y+ 1=0D. x- y+ 1=03.若圆 (x-a) 2+( y-b)2=b2+ 1 始终平分圆 (x+ 1)2+ (y+ 1)2= 4 的周长,则a、b 应满足的关系式是()A .a2- 2a- 2b- 3= 0B. a2+ 2a+ 2b+5= 0C. a2+ 2b2+ 2a+ 2b+ 1= 0D. 3a2+ 2b2+ 2a+2b+ 1=04. (2016 ~2017 ·太原高一检测 )已知半径为 1 的动圆与圆 (x-5)2+( y+7) 2= 16 相外切,则动圆圆心的轨迹方程是 ()A .(x- 5)2+( y+7) 2= 25B. (x- 5) 2+ (y+ 7)2= 9C. (x-5) 2+ (y+7) 2= 15D. (x+ 5)2+ (y-7) 2= 255.两圆 x2+ y2= 16 与 (x- 4)2+ (y+ 3)2= r2(r>0) 在交点处的切线互相垂直,则r =A .5B. 4C. 3 D . 2 26.半径长为 6 的圆与 y 轴相切,且与圆 (x- 3)2+ y2= 1 内切,则此圆的方程为()A .(x- 6)2+( y-4) 2= 6B. (x- 6) 2+ (y±4)2= 6C. (x-6)2+ (y-4) 2= 36D. (x- 6)2+ (y±4) 2=36二、填空题7.圆 x2+y2+6x- 7= 0 和圆 x2+ y2+ 6y- 27= 0 的位置关系是 ____.8.若圆 x2+ y2= 4 与圆 x2+ y2+ 2ay- 6= 0(a>0) 的公共弦长为2 3,则 a= ____.三、解答题9.求以圆C1: x2+y2-12x- 2y- 13= 0 和圆C2: x2+ y2+ 12x+16y- 25= 0 的公共弦为直径的圆 C 的方程.10.判断下列两圆的位置关系.(1)C1: x2+ y2- 2x- 3= 0, C2: x2+y2- 4x+ 2y+ 3=0;(2)C1: x2+ y2- 2y= 0, C2: x2+ y2- 2 3x- 6=0;(3)C1: x2+ y2- 4x- 6y+ 9= 0,C2: x2+ y2+ 12x+6y- 19= 0;(4)C1: x2+ y2+ 2x- 2y- 2= 0,C2: x2+ y2- 4x- 6y- 3= 0.B 级素养提升一、选择题1.已知 M 是圆 C:(x- 1)2+ y2= 1 上的点, N 是圆 C′:(x- 4)2+ (y- 4)2= 82上的点,则|MN|的最小值为()A .4B. 4 2- 1C. 2 2-2 D . 22.过圆 x2+ y2= 4 外一点 M(4,- 1)引圆的两条切线,则经过两切点的直线方程为()A .4x- y- 4= 0B. 4x+ y- 4= 0C. 4x+ y+ 4=0 D . 4x-y+ 4= 03.已知两圆相交于两点A(1,3), B(m,- 1),两圆圆心都在直线x- y+ c= 0 上,则 m+ c 的值是 ()A .- 1B. 2C. 3 D . 04. (2016 山·东文 )已知圆 M: x2+ y2- 2ay=0(a>0)截直线 x+ y= 0 所得线段的长度是22,则圆 M 与圆 N: (x - 1)2+ (y-1) 2= 1 的位置关系是 ()A .内切B.相交C.外切 D .相离[二、填空题5.若点 A(a, b)在圆 x2+ y2= 4上,则圆 (x- a)2+ y2= 1 与圆 x2+ (y-b) 2=1 的位置关系是 ____.6.与直线 x+ y-2= 0 和圆 x2+y2-12x- 12y+54= 0 都相切的半径最小的圆的标准方程是____.C 级能力拔高1.已知圆 M: x2+ y2- 2mx-2ny+ m2-1= 0 与圆 N: x2+ y2+2x+ 2y- 2= 0 交于 A、 B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程 .2. (2016 ~2017 ·金华高一检测 )已知圆 O: x2+ y2= 1 和定点 A(2,1),由圆 O 外一点 P(a, b)向圆 O 引切线 PQ,切点为 Q, |PQ|= |PA|成立,如图 .(1)求 a, b 间的关系;(2)求 |PQ|的最小值.第四章4.24.2.3A 级基础巩固一、选择题1.一辆卡车宽 1.6 m,要经过一个半圆形隧道(半径为 3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A .1.4 m B. 3.5 m C. 3.6 m D . 2.0 m2.已知实数 x、y 满足 x2+ y2- 2x+4y- 20= 0,则 x2+ y2的最小值是 ()A .30- 10 5B. 5- 5C. 5 D . 253.方程 y=-4- x2对应的曲线是 ()4. y= |x|的图象和圆x2+ y2= 4 所围成的较小的面积是()πB.3πC.3πD .πA .442 5.方程 1- x2=x+ k 有惟一解,则实数k 的范围是 ()A .k=- 2B. k∈ (- 2,2)C. k∈ [- 1,1) D . k=2或- 1≤k<16.点 P 是直线 2x+ y+10= 0 上的动点,直线 PA、PB 分别与圆x2+ y2= 4 相切于 A、B 两点,则四边形PAOB(O 为坐标原点 )的面积的最小值等于 ()A .24B. 16C. 8 D . 4二、填空题7.已知实数 x、y 满足 x2+ y2= 1,则y+2的取值范围为 ____ x+ 18.已知 M= {( x,y)|y=9-x2,y≠ 0} ,N= {( x,y)|y= x+ b} ,若 M∩N≠ ?,则实数 b 的取值范围是 __]__.三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图 ),它的附近有一条公路,从基地中心O 处向东走 1 km 是储备基地的边界上的点A,接着向东再走 7 km 到达公路上的点 B;从基地中心 O 向正北走8 km 到达公路的另一点 C.现准备在储备基地的边界上选一点D,修建一条由 D 通往公路 BC 的专用线 DE,求 DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP是6 m,在建造时,每隔 3 m需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)1. (2016 葫·芦岛高一检测 )已知圆 C 的方程是2222的最大值为 () x + y + 4x-2y- 4= 0,则 x+ yA .9B. 14C. 14- 6 5 D . 14+ 6 52.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1: ax+ 3y+ 6= 0, l 2: 2x+ (a+ 1)y+ 6=0与圆 C: x2+y2+ 2x= b2- 1(b>0) 的位置关系是“平行相交”,则实数 b 的取值范围为()A .( 2,322)B. (0,322)C. (0, 2)3232,+∞ ) D. ( 2,2 )∪ ( 23.已知圆的方程为x2+ y2- 6x- 8y=0.设该圆过点 (3,5)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面积为 ()A .10 6B. 20 6C. 30 6 D . 40 64.在平面直角坐标系中,A,B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆 C 与直线 2x+ y- 4= 0 相切,则圆 C 面积的最小值为()4πB.3πC. (6- 2 5) π5πA .54 D .4二、填空题5.某公司有 A、 B 两个景点,位于一条小路(直道 )的同侧,分别距小路 2 km 和 2 2 km,且 A、 B 景点间相距 2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.6.设集合 A= {( x, y)|(x- 4)2+y2= 1} ,B= {( x, y)|(x- t) 2+ (y- at+ 2)2= 1} ,若存在实数t,使得 A∩ B≠ ?,则实数 a 的取值范围是 ___.C 级能力拔高1.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东 40 km 的 A 处出发,径直驶向位于海监船正北30 km 的 B 处岛屿,速度为 28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法 )。
圆的一般方程练习1.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围是( )A .m <12B .m <0C .m >12D .m ≤122.方程Ax 2+Cy 2+Dx +Ey +F =0表示的曲线为圆,则有( )A .A =C ≠0B .D 2+E 2-4AF >0C .A =C ≠0且D 2+E 2-4AF >0 D .A =C ≠0且D 2+E 2-4AF ≥03.圆x 2+y 2-2x +6y +8=0的周长等于( ) A.2π B .2π C .22π D .4π4.过点P (-8,-1),Q (5,12),R (17,4)三点的圆的圆心坐标是( )A .(5,1)B .(4,-1)C .(5,-1)D .(-5,-1)5.圆(x +2)2+y 2=5关于原点对称的圆的方程为( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=56.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 ( )A .36 B. 18 C. 26 D. 257.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 68.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)所表示的曲线关于y =x 对称,则必有( )A .D =EB .D =FC .F =ED .D =E =F9.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,半径为5的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =010.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( ) A. 5 B .5 C .2 5 D .1011.已知圆x 2-4x -4+y 2=0的圆心是P ,则点P 到直线x -y -1=0的距离是________.12.点A (1,0)在圆x 2+y 2-2ax +a 2+3a -3=0上,则a 的值为________.13.已知A ,B 是圆O :x 2+y 2=16上两点,且|AB |=6,若以AB 为直径的圆M 恰经过点C (1,-1),则圆心M 的轨迹方程是________.14.圆心在直线2x -y -7=0上的圆C 与y 轴交于A (0,-4),B (0,-2)两点,求圆C 的方程.15.已知点P在圆C:x2+y2-8x-6y+21=0上运动,求线段OP的中点M的轨迹方程.16.已知圆的方程是x2+y2+2(m-1)x-4my+5m2-2m-8=0.(1)求此圆的圆心与半径;(2)求证:不论m为何实数,它们表示圆心在同一条直线上的等圆.17.设有一个半径为3 km的圆形村落,甲、乙两人同时从村落中心出发,甲向东,而乙向北前进,甲出村后不久,改变前进方向.沿着相切于村落边界的方向前进,后来恰好与乙相遇,设甲、乙两人的速度都一定,其比为3:1,此二人在何处相遇?17.如图,直角△ABC的斜边长为定值2m,以斜边的中点O为圆心作半径为n的圆,直线BC交圆于P、Q两点,求证:|AP|2+|AQ|2+|PQ|2为定值.圆的一般方程练习答案ACCCA CBACB 11. 22;12. -2;13. (x -1)2+(y +1)2=9 14.解 设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝⎛⎭⎫-D 2,-E 2在直线2x -y -7=0上, ∴2⎝⎛⎭⎫-D 2-⎝⎛⎭⎫-E 2-7=0. 即D -E 2+7=0.① 又∵A (0,-4),B (0,-2)在圆上, ∴⎩⎪⎨⎪⎧ 16-4E +F =0,4-2E +F =0. ②③由①②③解得D =-4,E =6,F =8. ∴圆的方程为x 2+y 2-4x +6y +8=0. 15.解 设点M (x ,y ),点P (x 0,y 0),则⎩⎨⎧ x =x 02,y =y 02,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y .∵点P (x 0,y 0)在圆C 上, ∴x 20+y 20-8x 0-6y 0+21=0. ∴(2x )2+(2y )2-8·(2x )-6·(2y )+21=0. 即点M 的轨迹方程为x 2+y 2-4x -3y +214=0. 16.解 (1)x 2+y 2+2(m -1)x -4my +5m 2-2m -8=0可化为2+(y -2m )2=9,∴圆心为(1-m,2m ),半径r =3.(2)证明:由(1)知,圆的半径为定值3,且圆心(a ,b )满足方程组⎩⎪⎨⎪⎧a =1-m ,b =2m ,即2a +b =2. ∴不论m 为何实数,方程表示的圆的圆心都在直线2x +y -2=0上,且为等圆.17.如图,以村落中心为坐标原点,以东西方向为x 轴,南北方向为y 轴建立直角坐标系.设甲向东走到D 转向到C 恰好与乙相遇.设D ,C 两点的坐标分别为(a,0),(0,b ),其中a >3,b >3,则CD 方程为x a +yb=1.设乙的速度为v ,则甲的速度为3v .依题意,得⎩⎪⎨⎪⎧ ab a 2+b 2=3,a 2+b 2+a 3v =b v . 解得⎩⎪⎨⎪⎧ a =5,b =154.∴乙向北走3.75 km 时两人相遇.18.如上图,以O 为坐标原点,以直线BC 为x 轴,建立平面直角坐标系,于是有B (-m,0),C (m,0),P (-n,0),Q (n,0).设A (x ,y ),由已知,点A 在圆x 2+y 2=m 2上.|AP |2+|AQ |2+|PQ |2=(x +n )2+y 2+(x -n )2+y 2+4n 2=2x 2+2y 2+6n 2=2m 2+6n 2(定值).。
高二圆的方程练习题在高二数学中,圆是一个重要的几何形状。
了解圆的方程和性质是解决与圆相关问题的基础。
下面是一些高二圆的方程练习题,帮助你巩固和应用这方面的知识。
1. 已知圆C的半径为r,圆心坐标为(h, k)。
写出圆C的标准方程和一般方程。
解答:圆C的标准方程为:(x - h)² + (y - k)² = r²圆C的一般方程为:x² + y² - 2hx -2ky + h² + k² - r² = 02. 试写出过坐标原点的圆,半径为r的标准方程和一般方程。
解答:过坐标原点的圆的圆心坐标为(0, 0)。
标准方程为:x² + y² = r²一般方程为:x² + y² - r² = 03. 已知圆C过点A(2, 3)和B(4, 1),且圆心在y轴上。
写出圆C的方程。
解答:设圆C的圆心坐标为(0, k)。
由于圆心在y轴上,所以圆C的方程为x² + (y - k)² = r²。
将点A(2, 3)代入方程得:2² + (3 - k)² = r²。
将点B(4, 1)代入方程得:4² + (1 - k)² = r²。
由此可求得圆C的方程。
4. 已知圆C的直径的两个端点分别为A(3, 5)和B(-1, -2),写出圆C的方程。
解答:直径的中点坐标为[(3 + (-1))/2, (5 + (-2))/2] = (1, 1)。
由于直径的中点即为圆心,所以圆C的圆心坐标为(1, 1)。
圆C的半径为AB的一半,即√[(3 - (-1))² + (5 - (-2))²] / 2。
将圆心坐标和半径代入圆的标准方程可求得圆C的方程。
5. 已知圆C的方程为2x² + 2y² + 4x - 6y + 9 = 0,写出圆C的圆心坐标和半径。
圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。
圆的方程习题附答案方程y=1-x^2表示的曲线是圆x^2+y^2=1的上半圆。
以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是(x-1)^2+y^2=8.已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(x-2)^2+(y+2)^2=1.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x 上,则圆C的方程为(x-1)^2+(y+1)^2=2.在平面直角坐标系xOy中,已知A(-1,0),B(0,1),则满足|PA|^2-|PB|^2=4且在圆x^2+y^2=4上的点P的个数为2.6.已知动点M(x,y)到点O(0,0)与点A(6,0)的距离之比为2,则动点M的轨迹所围成的区域的面积是多少?解析:设点P为M到OA上的垂足,则有OP = 2AP。
根据勾股定理,可得到PM 的长度为 $\sqrt{5} \times 2$。
因此,M 的轨迹是以点 A 为圆心,以 $\sqrt{5} \times 2$ 为半径的圆。
其面积为 $S = \pi \times (\sqrt{5} \times 2)^2 = 20\pi$。
因此,答案为 $20\pi$。
7.当方程 $x^2 + y^2 + kx + 2y + k^2 = 0$ 所表示的圆的面积取最大值时,直线 $y = (k - 1)x + 2$ 的倾斜角 $\alpha$ 是多少?解析:将方程化简,可得到 $(x + \frac{k}{2})^2 + (y +1)^2 = (\frac{k}{2})^2 + 1$。
因此,圆的半径为 $r =\sqrt{(\frac{k}{2})^2 + 1} - \frac{k}{2}$。
为了使圆的面积最大,需要求出 $r$ 的最大值。
对 $r$ 求导,可得到 $\frac{dr}{dk} = \frac{-3k}{4\sqrt{(\frac{k}{2})^2 + 1}} + \frac{1}{2}$。
圆的方程经典题目题型一、圆的方程1.求满足下列条件的圆的方程(1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ∆的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:22=-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:22=+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围(2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 题型二、点与圆的位置关系:1. 已知圆2522=+y x , 求下列相应值(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程2. 已知圆 0622=+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值.3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:22=-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围.5、圆034222=-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况已知两圆01010:221=--+y x y x O 和04026:222=--++y x y x O(1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足0124622=+--+y x y x(1)求x y 的最小值 (2)求22y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:22=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()222342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使22AP BP +取得最小值时的点P 的坐标.4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 的面积的最小值为5、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________6、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________。
4.1.2圆的一般方程(练习)(建议用时:40分钟)一、选择题1.圆x2+y2+4x-6y-3=0的圆心和半径长分别为()A.(4,-6),16B.(2,-3),4C.(-2,3),4D.(2,-3),16【答案】C[由x2+y2+4x-6y-3=0,得(x+2)2+(y-3)2=16,故圆心为(-2,3),半径长为4.]2.方程2x2+2y2-4x+8y+10=0表示的图形是()A.一个点B.一个圆C.一条直线D.不存在【答案】A[方程2x2+2y2-4x+8y+10=0,可化为x2+y2-2x+4y+5=0,即(x-1)2+(y+2)2=0,故方程表示点(1,-2).]3.方程x2+y2+Dx+Ey+F=0表示的圆过原点且圆心在直线y=x上的条件是()A.D=E=0,F≠0B.D=F=0,E≠0C.D=E≠0,F≠0D.D=E≠0,F=0【答案】D[∵圆过原点,∴F=0,又圆心在y=x上,∴D=E≠0.]4.若直线3x+y+a=0经过圆x2+y2+2x-4y=0的圆心,则实数a的值为()A.-1B.1C.-3D.3【答案】B[将圆的一般方程x2+y2+2x-4y=0化为标准方程,得(x+1)2+(y-2)2=5,其圆心坐标为(-1,2).因为直线3x+y+a=0过圆心,所以3×(-1)+2+a=0,所以a=1.]5.在Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为() A.x2+y2=25(y≠0)B.x2+y2=25C.(x-2)2+y2=25(y≠0)D.(x-2)2+y2=25【答案】C[线段AB的中点为(2,0),因为△ABC为直角三角形,C为直角顶点,所以C到点(2,0)的距离为12|AB|=5,所以点C(x,y)满足(x-2)2+y2=5(y≠0),即(x-2)2+y2=25(y≠0).]二、填空题6.已知点E (1,0)在圆x 2+y 2-4x +2y +5k =0的外部,则k 的取值范围是________.[圆的方程化为标准方程为(x -2)2+(y +1)2=5-5k ,∴5-5k >0,即k <1,∵点E (1,0)在圆的外部,∴12+02-4+5k >0,∴k >35,综上可得35<k <1.]7.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =________.【答案】3[圆C :x 2+y 2-2x -4y +4=0--22,-(1,2),故圆心到直线3x +4y +4=0的距离d =|3×1+4×2+4|32+42=155=3.]8.已知A ,B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________.【答案】(x -1)2+(y +1)2=9[∵C (1,-1),在以AB 为直径的圆M 上,∴CM =12AB =3,从而点M 在以C 为圆心,以3为半径的圆上.故点M 的轨迹方程为(x -1)2+(y +1)2=9.]三、解答题9.一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.【答案】因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 截圆所得弦长为2,+(7)2=9b 2,解得b =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.10.点A (2,0)是圆x 2+y 2=4上的定点,点B (1,1)是圆内一点,P ,Q 为圆上的动点.(1)求线段AP 的中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 的中点的轨迹方程.【答案】(1)设线段AP 的中点为M (x ,y ),由中点公式得点P 坐标为P (2x -2,2y ).∵点P 在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4,故线段AP 的中点的轨迹方程为(x -1)2+y 2=1.(2)设线段PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ ,∴|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,∴x 2+y 2+(x -1)2+(y -1)2=4,故线段PQ 的中点的轨迹方程为x 2+y 2-x -y -1=0.1.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是()A .32πB .34πC .3πD .不存在【答案】B [=-(m +1)2+34,∴r 2max =34.此时m =-1,所以最大面积是34π.选B.]2.若a ∈{-2,0,1,3},则方程x 2+y 2+3ax +ay +52a 2+a -1=0表示的圆的个数为()A .0B .1C .2D .3【答案】C [由(3a )2+a 2-2+a -0,得a <1,满足条件的a 只有-2与0,所以方程x 2+y 2+3ax +ay +52a 2+a -1=0表示的圆的个数为2.]3.光线从点A (1,1)出发,经y 轴反射到圆C :(x -5)2+(y -7)2=4的最短路程等于________.【答案】62-2[∵A (1,1)关于y 轴对称点为A ′(-1,1),∴所求的最短路程为|A ′C |-2,∵|A ′C |=62+62=6 2.∴所求的最短路程为62-2.]4.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称图形,则a -b 的取值范围是________.【答案】(-∞,1)[由题意知,直线y =2x +b 过圆心,而圆心坐标为(-1,2),代入直线方程,得b =4,圆的方程化为标准方程为(x +1)2+(y -2)2=5-a ,所以a <5,由此,得a -b <1.]5.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.【答案】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP MN 的中点坐标为由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,0=x +3,0=y -4.又点N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.当点P 在直线OM 上时,有x =-95,y =125或x =-215,y =285.因此所求轨迹为圆(x +3)2+(y -4)2=4-95,-215,。
课时作业23 圆的一般方程
(限时:10分钟)
1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2
2,则a 的值为( )
A .-2或2 B.12或32
C .2或0
D .-2或0
解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到直线的距离|1-2+a |12+(-1)2=22,解得a =0或2. 答案:C
2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:圆心为⎝ ⎛⎭
⎪⎫a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限.
答案:D
3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为
( )
A .0
B .2
C .4
D .1
解析:由题意可知,直线y =2x +b 过圆心(-1,2),
∴2=2×(-1)+b ,b =4.
答案:C
4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________.
解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1),
k CM =1-0
4-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分别得到方程:y =x -3和y =-(x -3),即x -y -3=0和x +y -3=0.
答案:x -y -3=0 x +y -3=0
5.求经过两点A (4,7),B (-3,6),且圆心在直线2x +y -5=0上的圆的方程.
解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,其圆心为
⎝ ⎛⎭⎪⎫-D 2
,-E 2, 由题意得⎩⎪⎨⎪⎧ 42+72+4D +7E +F =0,(-3)2+62-3D +6E +F =0,2·⎝ ⎛⎭⎪⎫-D 2+⎝ ⎛⎭⎪⎫-E 2-5=0.
即⎩⎪⎨⎪⎧ 4D +7E +F =-65,3D -6E -F =45,
2D +E =-10,解得⎩⎪⎨⎪⎧ D =-2,E =-6,F =-15.
所以,所求的圆的方程为x 2+y 2-2x -6y -15=0.
(限时:30分钟)
1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为( )
A .(2,-3);16
B .(-2,3);4
C .(4,-6);16
D .(2,-3);4 解析:配方,得(x +2)2+(y -3)2=16,所以,圆心为(-2,3),半径为4.
答案:B
2.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )
A.14<m <1 B .m >1
C .m <14
D .m <1
解析:由42+(-2)2-4×5m >0解得m <1.。