传递过程原理--课后习题解答
- 格式:doc
- 大小:2.14 MB
- 文档页数:34
传输原理课后习题答案)(196034Pa P P -==)(7644)(g 4545Pa h h P P =--=ρ2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg/m 3,h =0.1m ,a =0.1m 。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:ghg 42油水ρρ-=-P h P b)a g 2++=(水ρP P Agb 4水ρ+=P P B Paga P P P P P B A 1.107942=+-=-=∆水ρ 2-8一水压机如图2.26所示。
已知大活塞直径D =11.785cm ,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =7.5cm ,活塞高度差h =1m 。
当施力F1=98N 时,求大活塞所能克服的载荷F2。
22232D F 2d F ⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛πρπgh解:由杠杆原理知小活塞上受的力为F 3:a F b F *=*3由流体静力学公式知:2223)2/()2/(D F gh d F πρπ=+∴F 2=1195.82N2-10水池的侧壁上,装有一根直径d=0.6m 的圆管,圆管内口切成a =45°的倾角,并在这切口上装了一块可以绕上端铰链旋转的盖板,h=2m ,如图2.28所示。
如果不计盖板自重以及盖板与铰链间的摩擦力,问开起盖板的力T 为若干?(椭圆形面积的J C =πa 3b/4)解:建立如图所示坐标系oxy ,o 点在自由液面上,y 轴沿着盖板壁面斜向下,盖板面为椭圆面,在面上取微元面dA,纵坐标为y ,淹深为h=y * sin θ,微元面受力为A gy A gh F d sin d d θρρ==板受到的总压力为A h A y g A g F c c AA γθρθρ====⎰⎰sin yd sin d F盖板中心在液面下的高度为h c =d/2+h 0=2.3m,y c =a+h 0/sin45°盖板受的静止液体压力为F=γh c A=9810*2.3*πab压力中心距铰链轴的距离为 :X=d=0.6m,由理论力学平衡理论知,当闸门刚刚转动时,力F 和T 对铰链的力矩代数和为零,即:0=-=∑Tx l F M故T=6609.5N2-14有如图2.32所示的曲管AOB 。
1-1-8 50kg密度为1600 kg•m-3的溶液与50kg 25℃的水混合,问混合后溶液的密度为多少?(设混合前后溶液的体积不变)。
解:25°C时水的密度为996kg·m-3。
由得,解得,即混合后溶液的密度为。
1-1-9 如图所示为一平板在油面上作水平运动,已知运动速度u为0.8m•s-1,平板与固定板之间的距离,油的粘度为1.253Pa•s,由平板所带动的油运动速度呈现直线分布,问作用在平板单位面积上的粘性力为多少?解:单位面积上的粘性力即为τ,则即平板单位面积上的粘性力为1002.4 N 。
1-1-10 25℃水在内径为50mm的管内流动,流速为2m•s-1,试求其雷诺准数为若干?解:25°C时水的密度为996kg·m-3,粘度系数μ为89.5×10-5Pa·s。
则1-1-11 运动粘度为4.4cm2•s-1的油在内径为50mm的管道内流动,问:(1)油的流速为0.015m•s-1时,其流动型态如何?解:﹤2300所以其流动型态为层流。
(2)若油的流速增加5倍,其流动型态是否发生变化?解:若油的流速增加5倍,则Re*=5Re=8.5﹤2300所以其流动型态没有发生变化。
1-1-12 某输水管路,水温为20℃,管内径为200mm,试求:(1)管中流量达到多大时,可使水由层流开始向湍流过渡?解:20°C时水的密度为998.2kg·m-3,粘度系数μ为100.42×10-5Pa·s。
水由层流开始向湍流过渡时,Re=2300,则解得v=0.01157m·s-1所以管中流量达到时,可使水由层流开始向湍流过渡。
(2)若管内改送运动粘度为0.14cm2•s-1的某种液体,且保持层流流动,管中最大平均流速为多少?解:所以保持层流流动,管中最大平均流速为。
1-2-3 某地区大气压力为750mmHg。
第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解: 流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d =0.1m ,质量M =50kg .在外力F =520N 的作用下压进容器中,当h=0.5m 时达到平衡状态。
求测压管中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ( 代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg /m 3,h =0.1m ,a =0.1m 。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:2-8一水压机如图2.26所示。
已知大活塞直径D =11.785cm ,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =7.5cm ,活塞高度差h =1m 。
【1-1】试说明传递现象所遵循的基本原理和基本研究方法。
答:传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的梯度成正比,传递的方向为该物理量下降的方向。
传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。
【1-2】列表说明分子传递现象的数学模型及其通量表达式。
【1-3】阐述普朗特准数、施米特准数和刘易斯准数的物理意义。
答:普朗特准数的物理意义为动量传递的难易程度与热量传递的难易程度之比;施米特准数的物理意义为动量传递的难易程度与质量传递的难易程度之比;刘易斯准数的物理意义为热量传递的难易程度与质量传递的难易程度之比。
【2-1】试写出质量浓度ρ对时间的全导数和随体导数,并由此说明全导数和随体导数的物理意义。
解:质量浓度的全导数的表达式为:d dx dy dzdt t x dt y dt z dt ρρρρρ∂∂∂∂=+++∂∂∂∂,式中t 表示时间 质量浓度的随体导数的表达式为x y z D u u u Dt t x y zρρρρρ∂∂∂∂=+++∂∂∂∂ 全导数的物理意义为,当时间和空间位置都发生变化时,某个物理量的变化速率。
随体导数的物理意义为,当观测点随着流体一起运动时,某个物理量随时间和观测点位置变化而改变的速率。
【2-2】对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
⑴ 在矩形截面管道内,可压缩流体作稳态一维流动; ⑵ 在平板壁面上不可压缩流体作稳态二维流动; ⑶ 在平板壁面上可压缩流体作稳态二维流动;⑷ 不可压缩流体在圆管中作轴对称的轴向稳态流动; ⑸ 不可压缩流体作球心对称的径向稳态流动。
解:⑴ 对于矩形管道,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0t ρ∂=∂,对于一维流动,假设只沿x 方向进行,则0y z u u == 于是,上述方程可简化为()0x u xρ∂=∂ ⑵ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为 0y x zu u u x y z∂∂∂++∂∂∂= 由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,上式还可以进一步简化为0yx u u x y∂∂+∂∂= ⑶ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t xy z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦ 由于流动是稳态的,所以0tρ∂=∂,由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,则上式可以简化为()()0y x u u x yρρ∂∂+∂∂= ⑷ 由于流动是在圆管中进行的,故选用柱坐标系比较方便,柱标系下连续性方程的一般形式为()()()110z r u u ru t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为()()()110r z u ru u r r r zθθ∂∂∂++=∂∂∂由于仅有轴向流动,所以0, 0r z u u u θ==≠,上式可简化为0zu z∂=∂ ⑸ 由于流体是做球心对称的流动,故选用球坐标系比较方便,柱球系下连续性方程的一般形式为22111()(sin )()0sin sin r r u u u t r r r r θϕρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为22111()(sin )()0sin sin r r u u u rr r r θϕθθθθϕ∂∂∂++=∂∂∂ 由于流动是球心对称的,所以0, 0r u u u ϕθ==≠,上式可简化为221()0r r u rr ∂=∂ 整理得:20r ru u r r∂+=∂ 【2-3】加速度向量可表示为DuD θ,试写出直角坐标系中加速度分量的表达式,并指出何者为局部加速度的项,何者为对流加速度的项。
2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解:流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:乙E z2豆或P P0gh P0h同一静止液体中单位重量液体的比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d= 0.1m,质量M = 50kg .在外力F= 520N的作用下压进容器中,当h=0.5m时达到平衡状态。
求测压管中水柱高度H = ?解:由平衡状态可知:(F一mg2)g(H h)(d/2)代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl = 0.9m,1.33m。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
P 0(Pa)P2 P gg h2) 4900(Pa)BP g(h3 hj 1960(Pa)F4 P3 1960(Pa)F5 P4 g(h5 h4)7644(Pa)J:u~ i 二=■ ■_- i— 1—用 1.21h2= 0.4m, h3= 1.1m, h4= 0.75m, h5 =2-6两个容器A 、B 充满水,高度差为a o 为测量它们之间的压强差, 用顶部充满油的倒 U 形 管将两容器相连,如图 2.24所示。
已知油的密度p 油=900kg /m 3, h = 0.1m , a = 0.1m 。
求两 容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为 h , B 球中心与油面高度差为 b ;由流体静 力学公式知:水ghP 4 油gh F 3厂F 22gh2d D P A P 2 水g (ab)22F BF 4 水gbPP AP B P 2P 4水ga 1079.1Pa2-8一水压机如图2.26所示。
《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。
2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。
《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。
又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。
已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。
试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。
传递过程原理课后答案1. 详细解释了传递过程原理。
传递过程原理是指信息、物质或能量通过不同媒介传递的过程。
在这个过程中,媒介扮演着重要的角色,可以是固体、液体或气体。
媒介的特性决定了传递的效率和速度。
传递过程原理可以应用于各个领域,如工程、医学和环境科学等。
2. 传递过程原理的应用领域。
传递过程原理在工程领域有广泛的应用。
例如,随着科技的发展,人们越来越依赖电信技术进行信息传递。
传递过程原理能够解释电信技术中的信号传输原理,从而提高通信的效率和可靠性。
此外,传递过程原理还可以应用于医学领域。
例如,在药物输送系统中,药物需要通过合适的媒介传递到病变部位,以实现治疗效果。
了解传递过程原理可以帮助医生选择最佳的药物输送系统,提高治疗的效果。
另外,环境科学也是传递过程原理的应用领域之一。
例如,在大气污染控制方面,了解污染物在大气中的传递过程可以帮助科学家设计有效的污染控制策略,减少污染对环境和人类健康的影响。
3. 传递过程原理的关键因素。
在传递过程中,影响传递效果的关键因素主要包括媒介的性质、传递距离和辐射条件等。
首先,媒介的性质是影响传递效果的重要因素。
不同的媒介具有不同的传递特性,如光的折射和反射、声音的传播速度和衰减等。
通过了解媒介的性质,我们可以选择合适的媒介来实现特定的传递效果。
其次,传递距离也是影响传递效果的重要因素。
一般来说,随着传递距离的增加,信息、物质或能量的传递效果会逐渐减弱。
因此,在设计传递过程中,需要合理规划传递距离,以确保传递效果达到预期。
最后,辐射条件也是影响传递效果的关键因素之一。
例如,在太阳能发电系统中,太阳辐射的强弱直接影响能量传递的效果。
了解辐射条件可以帮助科学家和工程师设计出更高效的能源传递系统。
4. 传递过程原理的局限性。
传递过程原理虽然在各个领域有广泛的应用,但也存在一些局限性。
首先,传递过程原理是基于已知的物理、化学和生物学规律建立的,因此在处理未知规律或复杂系统时可能存在一定的局限性。
第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何? 解: 流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d =0.1m ,质量M =50kg .在外力F =520N 的作用下压进容器中,当h=0.5m 时达到平衡状态。
求测压管中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ(代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
)(01Pa P =)(4900)(g 2112Pa h h P P =-+=ρ)(1960)(g 1313Pa h h P P -=--=ρ )(196034Pa P P -==)(7644)(g 4545Pa h h P P =--=ρ2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg /m 3,h =0.1m ,a =0.1m 。
习题1.拟用一泵将碱液由敞口碱液槽打入位差为10m高的塔中,塔顶压强为5.88×104Pa(表压),流量20m3/h。
全部输送管均为φ57×3.5mm无缝钢管,管长50m(包括局部阻力的当量长度)。
碱液的密度ρ=1500kg/m3,粘度μ=2×10-3Pa·s。
管壁粗糙度为0.3mm。
试求:(1)输送单位重量液体所需提供的外功。
(2)需向液体提供的功率。
2.在图2-11所示的4B20型离心泵特性曲线图上,任选一个流量,读出其相应的压头和功习题1 附图率,核算其效率是否与图中所示一致。
3.用水对某离心泵作实验,得到下列实验数据:Q/(L·min-1)0 100 200 300 400 500H/m 37.2 38 37 34.5 31.8 28.5 若通过φ76×4mm、长355m(包括局部阻力的当量长度)的导管,用该泵输送液体。
已知吸入与排出的空间均为常压设备,两液面间的垂直距离为4.8m,摩擦系数λ为0.03,试求该泵在运转时的流量。
若排出空间为密闭容器,其内压强为1.29×105Pa(表压),再求此时泵的流量。
被输送液体的性质与水相近。
4.某离心泵在作性能试验时以恒定转速打水。
当流量为71m3/h时,泵吸入口处真空表读数2.993×104Pa,泵压出口处压强计读数3.14×105Pa。
两测压点的位差不计,泵进、出口的管径相同。
测得此时泵的轴功率为10.4kW,试求泵的扬程及效率。
5.用泵从江中取水送入一贮水池内。
池中水面高出江面30m。
管路长度(包括局部阻力的当量长度在内)为94m。
要求水的流量为20~40m3/h。
若水温为20℃,ε/d=0.001,(1)选择适当的管径(2)今有一离心泵,流量为45 m3/h,扬程为42m,效率60%,轴功率7kW。
问该泵能否使用。
6.用一离心泵将贮水池中的冷却水经换热器送到高位槽。
《化工传递过程原理(Ⅱ)》作业题1. 粘性流体在圆管内作一维稳态流动。
设r 表示径向距离,y 表示自管壁算起的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩散系数)×(动量浓度梯度)表示的现象方程。
1.(1-1) 解:()d u dyρτν= (y Z ,u Z ,dudy > 0)()d u dr ρτν=- (r Z ,u ], dudr< 0) 2. 试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。
2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出: AA ABd j D dyρ=- (1-3) ()d u dy ρτν=- (1-4) ()/p d c t q A dyρα=- (1-6)1. 它们可以共同表示为:通量 = -(扩散系数)×(浓度梯度);2. 扩散系数 ν、α、AB D 具有相同的因次,单位为 2/m s ;3. 传递方向与该量的梯度方向相反。
3. 试写出温度t 对时间θ的全导数和随体导数,并说明温度对时间的偏导数、全导数和随体导数的物理意义。
3.(3-1) 解:全导数:dt t t dx t dy t dzd x d y d z d θθθθθ∂∂∂∂=+++∂∂∂∂ 随体导数:x y z Dt t t t t u u u D x y zθθ∂∂∂∂=+++∂∂∂∂ 物理意义:tθ∂∂——表示空间某固定点处温度随时间的变化率;dt d θ——表示测量流体温度时,测量点以任意速度dx d θ、dy d θ、dz d θ运动所测得的温度随时间的变化率DtD θ——表示测量点随流体一起运动且速度x u dx d θ=、y u dy d θ=、z u dz d θ=时,测得的温度随时间的变化率。
4. 有下列三种流场的速度向量表达式,试判断哪种流场为不可压缩流体的流动。
(1)xy x z y x )2()2(),,(2θθ--+= (2)k y x j z x i x z y x u )22()(2),,(++++-= (3)xz yz xy y x 222),(++=4.(3-3) 解:不可压缩流体流动的连续性方程为:0u ∇=r(判据)1. 220u x x ∇=-=r,不可压缩流体流动;2. 2002u ∇=-++=-r,不是不可压缩流体流动;3. 002222()u y z x x y z =⎧⎨≠⎩∇=++=++=r ,不可压缩,不是不可压缩5. 某流场可由下述速度向量式表达:k z j y i xyz z y xyz z y x ρρρθθθ33),,,(-+=-+= 试求点(2,1,2,1)的加速度向量。
完整word版,传输原理课后习题答案第⼆章流体静⼒学(吉泽升版)2-1作⽤在流体上的⼒有哪两类,各有什么特点? 解:作⽤在流体上的⼒分为质量⼒和表⾯⼒两种。
质量⼒是作⽤在流体内部任何质点上的⼒,⼤⼩与质量成正⽐,由加速度产⽣,与质点外的流体⽆关。
⽽表⾯⼒是指作⽤在流体表⾯上的⼒,⼤⼩与⾯积成正⽐,由与流体接触的相邻流体或固体的作⽤⽽产⽣。
2-2什么是流体的静压强,静⽌流体中压强的分布规律如何? 解:流体静压强指单位⾯积上流体的静压⼒。
静⽌流体中任意⼀点的静压强值只由该店坐标位置决定,即作⽤于⼀点的各个⽅向的静压强是等值的。
2-3写出流体静⼒学基本⽅程式,并说明其能量意义和⼏何意义。
解:流体静⼒学基本⽅程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同⼀静⽌液体中单位重量液体的⽐位能可以不等,⽐压强也可以不等,但⽐位能和⽐压强可以互换,⽐势能总是相等的。
2-4如图2-22所⽰,⼀圆柱体d =0.1m ,质量M =50kg .在外⼒F =520N 的作⽤下压进容器中,当h=0.5m 时达到平衡状态。
求测压管中⽔柱⾼度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ(代⼊数据得H=12.62m2.5盛⽔容器形状如图2.23所⽰。
已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。
求各点的表压强。
解:表压强是指:实际压强与⼤⽓压强的差值。
)(01Pa P =)(4900)(g 2112Pa h h P P =-+=ρ )(1960)(g 1313Pa h h P P -=--=ρ )(196034Pa P P -==)(7644)(g 4545Pa h h P P =--=ρ2-6两个容器A 、B 充满⽔,⾼度差为a 0为测量它们之间的压强差,⽤顶部充满油的倒U 形管将两容器相连,如图2.24所⽰。
《传递过程原理》习题(部分)解答2014-12-19第一篇 动量传递与物料输送3、流体动力学基本方程P67. 1-3-12. 测量流速的pitot tube 如附图所示,设被测流体密度为ρ,测压管内液体的密度为ρ1,测压管中液面高度差为h 。
证明所测管中的流速为:v =√2gh(ρ1ρ−1)解:设点1和2的压强分别为P 1和P 2,则P 1+ρgh= P 2+ρ1gh ,即P 1- P 2=(ρ1-ρ)gh ①在点1和点2所在的与流体运动方向垂直的两个面1-1面和2-2面之间列Bernoulli equation:P 1ρ=P 2ρ+v 22, 即 P 1−P 2ρ=v 22 ② ( for turbulent flow)将式①代入式②并整理得:v =√2gh(ρ1ρ−1)1-3-15. 用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定。
各部分相对位置如附图所示。
管路直径均为φ76×2.5mm,在操作条件下,泵入口处真空表读数为24.66×103Pa;水流经吸入管和排出管(不包括喷头)的能量损失分别按∑h f,1=2υ2和∑h f,2=10υ2计,由于管径不变,故式中υ为吸入管和排出管的流速(m/s)。
排水管与喷头连接处的压力为9.807×104Pa(表压)。
试求泵的有效功率。
解:查表得,20℃时水的密度为998.2kg/m3;设贮槽液面为1-1面,泵入口处所在的与流体运动方向垂直的面为2-2面,排水管与喷头连接处的内侧面为3-3面,以贮槽液面为水平基准面,则(1) 在1-1面和2-2面之间列Bernoulli方程,有0=1.5g+−P真空ρ+v22+2v2( for turbulent flow)将已知数据带入:0=1.5×9.81-24660/998.2+2.5υ2得到υ2=3.996 (即υ=2 m/s)(2) 在1-1面和3-3面之间列Bernoulli方程:即W e=14g+Pρ+v22+∑ℎf,1+∑ℎf,2( for turbulent flow)代入已知数据得:W e=14×9.81+98070/998.2+12.5×3.996=285.54 J/kg(3) 根据泵的有效功率N e=ρQ v W e=ρ×υA×W e=998.2×2×(3.14×0.0712/4) ×285.54=2255.80 J/sRe=duρ/μ=0.071×2×998.2/(100.42×10-5)=1.41×105湍流假设成立!1-3-16. 用压缩空气将密度为1100kg/m3的腐蚀性液体自低位槽送到高位槽,设两槽的液面维持恒定。
【1-1】试说明传递现象所遵循的基本原理和基本研究方法。
答:传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的梯度成正比,传递的方向为该物理量下降的方向。
传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。
【1-2】列表说明分子传递现象的数学模型及其通量表达式。
【1-3】阐述普朗特准数、施米特准数和刘易斯准数的物理意义。
答:普朗特准数的物理意义为动量传递的难易程度与热量传递的难易程度之比;施米特准数的物理意义为动量传递的难易程度与质量传递的难易程度之比;刘易斯准数的物理意义为热量传递的难易程度与质量传递的难易程度之比。
【2-1】试写出质量浓度ρ对时间的全导数和随体导数,并由此说明全导数和随体导数的物理意义。
解:质量浓度的全导数的表达式为:d dx dy dzdt t x dt y dt z dt ρρρρρ∂∂∂∂=+++∂∂∂∂,式中t 表示时间 质量浓度的随体导数的表达式为x y z D u u u Dt t x y zρρρρρ∂∂∂∂=+++∂∂∂∂ 全导数的物理意义为,当时间和空间位置都发生变化时,某个物理量的变化速率。
随体导数的物理意义为,当观测点随着流体一起运动时,某个物理量随时间和观测点位置变化而改变的速率。
【2-2】对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
⑴ 在矩形截面管道内,可压缩流体作稳态一维流动; ⑵ 在平板壁面上不可压缩流体作稳态二维流动; ⑶ 在平板壁面上可压缩流体作稳态二维流动;⑷ 不可压缩流体在圆管中作轴对称的轴向稳态流动; ⑸ 不可压缩流体作球心对称的径向稳态流动。
解:⑴ 对于矩形管道,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0t ρ∂=∂,对于一维流动,假设只沿x 方向进行,则0y z u u == 于是,上述方程可简化为()0x u xρ∂=∂ ⑵ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为 0y x zu u u x y z∂∂∂++∂∂∂= 由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,上式还可以进一步简化为0yx u u x y∂∂+∂∂= ⑶ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t xy z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦ 由于流动是稳态的,所以0tρ∂=∂,由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,则上式可以简化为()()0y x u u x yρρ∂∂+∂∂= ⑷ 由于流动是在圆管中进行的,故选用柱坐标系比较方便,柱标系下连续性方程的一般形式为()()()110z r u u ru t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为()()()110r z u ru u r r r zθθ∂∂∂++=∂∂∂由于仅有轴向流动,所以0, 0r z u u u θ==≠,上式可简化为0zu z∂=∂ ⑸ 由于流体是做球心对称的流动,故选用球坐标系比较方便,柱球系下连续性方程的一般形式为22111()(sin )()0sin sin r r u u u t r r r r θϕρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ 由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为22111()(sin )()0sin sin r r u u u rr r r θϕθθθθϕ∂∂∂++=∂∂∂ 由于流动是球心对称的,所以0, 0r u u u ϕθ==≠,上式可简化为221()0r r u rr ∂=∂ 整理得:20r ru u r r∂+=∂ 【2-3】加速度向量可表示为DuD θ,试写出直角坐标系中加速度分量的表达式,并指出何者为局部加速度的项,何者为对流加速度的项。
解:直角坐标系下,速度u 有三个分量,,,x y z u u u ,因此加速度也有三个分量,其表达式分别为x x x x x x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++∂∂∂∂y y y y y xyzDu u u u u u u u Dttxyz∂∂∂∂=+++∂∂∂∂z z z z z x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++∂∂∂∂ 表达式中对时间的偏导数为局部加速度项,即分别为x u t ∂∂、y u t ∂∂和zu t∂∂;对流加速度项为后面的含速度分量的三项之和,即分别为x x x xy z u u uu u u x y z∂∂∂++∂∂∂、y y y xy z u u u u u u x y z ∂∂∂++∂∂∂和z z z xy z u u uu u u x y z∂∂∂++∂∂∂。
【2-4】某一流场的速度向量可以下式表述(,)54x y x y =-u i j试写出该流场随体加速度向量DuD θ的表达式。
解:由速度向量的表达式得:5, 4, 0x y z u x u y u ==-=5, 0, 0x x x u u ux y z ∂∂∂===∂∂∂ 0,4,0y y y u u u xyz ∂∂∂==-=∂∂∂0, 0, 0z z z u u ux y z∂∂∂===∂∂∂ 所以25x x x x x x x y z Du u u u u uu u u x Dt t x y z t ∂∂∂∂∂=+++=+∂∂∂∂∂ 16y y y y y y xyzDu u u u u u u u u y Dtt x y z t ∂∂∂∂∂=+++=+∂∂∂∂∂0z z z z z x y z Du u u u uu u u Dt t x y z∂∂∂∂=+++=∂∂∂∂ 【2-5】试参照以应力分量形式表示的x 方向的运动方程(2-55a)yx x xx zx Du X Dtxyzτττρρ∂∂∂=+++∂∂∂的推导过程,导出y 方向和z 方向的运动方程(2-55b)和(2-55c),即y xy yy zy Du Y Dtxyzτττρρ∂∂∂=+++∂∂∂yz xz zzz Du Z Dt x y zτττρρ∂∂∂=+++∂∂∂ 解:以y 方向上的运动方程为例进行推导,推导过程中采用拉各朗日观点,在流场中选取一长、宽、高分别为d x ,d y ,d z 的流体微元,固定该流体微元的质量,让此流体微元作随波逐流的运动,该流体微元的体积和位置随时间而变,若该流体微元的密度为ρ,则其质量为d d d d m x y z =,根据牛顿第二定律,该流体微元所受的合外力等于流体微元的质量与运动加速度之积,即d d d d d DuF m a x y z Dt ρ=⋅=⋅⋅在y 方向上流体微元所收到的合外力为d d d d d y y Du F m a x y z Dtρ=⋅=⋅⋅接下来分析一下y 方向上微元体的受力情况,微元体上受到的力有体积力和表面力两种,分别用F b和F s 来表示。
体积力又称质量力,它是在物体内部任意一点都起作用的力,如重力、静电力、电磁力等,其在本质上是一种非接触力。
这里用Y 来表示单位质量的流体在y 方向上受到的质量力。
因此,流体微元受到的y 方向上的质量力为,d d d d b y F Y x y z ρ=⋅下面再来看一下微元体受到的表面力。
表面力是流体微元与周围流体或壁面之间产生的相互作用力,本质上是一种接触力。
单位面积上受到的表面力称为表面应力,在y 方向上流体微元受到的,,, x y y yττ独立的表面应力有三个,它们分别为,和,z y τ,其中第一个下标表示与应力作用面相垂直的坐标轴,第二个下标为应力的作用方向。
当两个下标相同时表面应力为压应力,当两个下标不同时表面应力为剪应力。
下面分别对微元体六个面上受到的y 方向上的表面力进行分析。
如右图所示,在下表面上微元体受到的表面应力为剪应力,x y τ,力的作用面积为d y d z ,方向为y 轴的负方向。
因此在下表面上微元体受到的y方向上的表面力为:,d d x y y z τ-;在上表面上微元体受到的表面应力为d ,x x y τ+,其大小与,x y τ有关,可由,x y τ在x +d x 处对x 一阶泰勒展开得到,即,,,d x y x dx y x y x xτττ+∂=+∂,力的作用面积仍为d y d z ,方向为y 轴的正方向,因此在上表面上微元体受到的y 方向上的表面力为:,,d d d x y x y x y z x ττ∂⎡⎤+⎢⎥∂⎣⎦。
于是,这两个面上的力使微元体受到的合外力为,d d d x y x y z xτ∂∂。
再来看左右两个表面上流体微元的受力状况。
在左侧表面上流体微元受到的压应力,y y τ,力的作用面积为d x d z ,方向为y 轴的负方向。
因此在左侧表面上微元体受到的y 方向上的表面力为:,d d y y x z τ-;在右侧表面上微元体受到的表面应力为d ,y y y τ+,其大小与,y y τ有关,可由,y y τ在y +d y处对y 一阶泰勒展开得到,即,d ,,d y y y y y y y y yτττ+∂=+∂,力的作用面积仍为d x d z ,方向为y 轴的正方向,因此在右侧表面上微元体受到的y 方向上的表面力为:,,d d d y y y y y x z y ττ∂⎡⎤+⎢⎥∂⎣⎦。
于是,这两个面上的力使微元体受到的合外力为,d d d y y x y z yτ∂∂。
最后再来看一下前后两个表面上流体微元的受力状况。
在后表面上流体微元受到的应力,z y τ,力的作用面积为d x d y ,方向为y 轴的负方向。
因此在后表面上微元体受到的y 方向上的表面力为:y(/)yy yy y dyττ+∂∂dxdydz/)xy xy x dxττ∂∂(上)(右)(/z)zy zy dzττ+∂∂(前),d d z y x y τ-;在前表面上微元体受到的表面应力为d ,z z y τ+,其大小与,z y τ有关,可由,z y τ在z +d z 处对z 一阶泰勒展开得到,即,d ,,d z y z z y z y z zτττ+∂=+∂,力的作用面积仍为d x d y ,方向为y 轴的正方向,因此在右侧表面上微元体受到的y 方向上的表面力为:,,dz d dy z y z y x z ττ∂⎡⎤+⎢⎥∂⎣⎦。