cDNA-aflp技术在茉莉酸甲酯诱导下的植物基因表达研究(外)
- 格式:pdf
- 大小:502.63 KB
- 文档页数:17
茉莉酸甲酯诱导的小麦白粉病抗性和9个抗病相关基因表达间的关系的开题报告开题报告:题目:茉莉酸甲酯诱导的小麦白粉病抗性和9个抗病相关基因表达间的关系一、研究背景及意义小麦白粉病是一种重要的小麦病害,影响着小麦的产量和品质。
目前,常规的治疗方法主要是化学药物和农业生物技术。
但是,使用化学药物容易产生残留物和对环境造成污染。
因此,研究利用天然抗病物质来控制白粉病的方法愈发受到重视。
茉莉酸甲酯(Methyl jasmonate, MeJA)是植物内源激素,能够增强植物的抗性和逆境适应能力。
近年来有研究表明,用MeJA处理小麦可以增强其抗白粉病的能力。
同时,一些参与抗病反应的基因也受到了MeJA的调控。
因此,本研究旨在探究MeJA对小麦白粉病抗性和相关基因表达的影响,以期能够提供新的防治途径。
二、研究内容及方法2.1 研究内容本研究旨在探究MeJA对小麦白粉病的抗性以及与之相关的9个抗病基因表达的关系。
具体内容如下:(1)通过野外调查和实验室试验,收集得到感染不同程度的小麦白粉病植株;(2)使用MeJA处理感染不同程度的小麦植株,测定其处理后的白粉病的病情,以及测定其生长状况;(3)提取处理后的小麦叶片样品中的RNA,进行qRT-PCR 实验,在不同时间点上检测9个与抗病反应有关的基因在不同样品中的表达情况;(4)分析MeJA处理对提高小麦白粉病的抗性和相关基因表达的影响;(5)从分析数据中找出关键基因(若有)并对其进行更深入的分析。
2.2 研究方法(1)样品处理:收集不同程度的小麦白粉病植株,分别用MeJA处理和不处理,并分别测定其生长状况和白粉病病情;(2)RNA提取和qRT-PCR 实验:分别在 MeJA 处理和对照组中,采用Trizol 方法提取总 RNA,通过 NanoDrop 测定 RNA 的浓度和纯度,再用 PrimeScript™ RT reagent Kit 加工合成 cDNA,最后使用 SYBR®Green PCR Master Mix 体系检测 9 个与抗病反应有关的基因表达情况;(3)数据分析:使用 SPSS 或 R 软件对实验数据进行单因素方差分析和两样本 T 检验。
运用cDNA-AFLP技术初步鉴定两种方法合成的cDNA的指纹图谱史胜青;张守攻;李春秀;汪阳东;齐力旺【期刊名称】《分子植物育种》【年(卷),期】2006(4)1【摘要】在植物基因克隆以及构建cDNA文库时,都需要合成高质量的双链cDNA,并要达到一定的数量。
然而研究者经常受到试验样品量的限制。
特别是比较稀少的植物材料,例如植物的根尖、茎尖或花的雌、雄蕊等,难以获得足够的RNA,以致影响cDNA的合成量,无法开展下游的实验。
以PCR为基础合成第二链cD-NA的Smart技术(LD-PCR),能够以50ng的总RNA为反转录模板合成高质量的双链cDNA。
但研究者对第二链采用PCR方法是否有些基因信息丢失或丰度上发生很大的变化存有疑虑。
针对以上存在的问题,通过置换合成和长距离PCR(LD-PCR)两种方法合成3个月的梭梭幼苗茎尖双链cDNA,EcoRI和MseI限制性内切酶双酶切后,用16对选择性扩增引物对两种cDNA进行cDNA-AFLP的指纹图谱分析。
结果表明,置换合成和LD-PCR两种方法合成的cDNA指纹图谱中,分别有条带约495条和470条。
其中,相同的条带共计433条,不同的条带分别有62条和37条,分别为各自合成方法总指纹数的12.5%和7.87%,相同的指纹信息达87%以上。
这说明两种方法合成的cDNA存在着较大的差异,合成方法对cDNA合成质量的影响较大,为研究人员选用何种cDNA合成方法提供了借鉴。
【总页数】4页(P79-82)【关键词】梭梭(Haloxylon;Ammodendron);置换合成法;LD-PCR法;cDNA-AFLP【作者】史胜青;张守攻;李春秀;汪阳东;齐力旺【作者单位】中国林业科学研究院林研所细胞生物学实验室【正文语种】中文【中图分类】S513;S565.4【相关文献】1.利用cDNA-AFLP技术鉴定菊花品种‘紫荷’的抗白锈病相关基因 [J], 黄河;王顺利;戴思兰2.用cDNA-AFLP技术构建白菜转录图谱 [J], 范淑英;乐建刚;成广杰;吴才君3.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列 [J], 娄平;王晓武;Guusje.Bonnema;方智远4.用cDNA-AFLP技术构建基因组转录图谱 [J], 付凤玲;李晚忱5.cDNA-AFLP技术在植物耐盐基因鉴定上的应用 [J], 胡淑英;张春红;王小敏;黄涛;吴文龙;李维林因版权原因,仅展示原文概要,查看原文内容请购买。
AFLP分子标记及其在植物遗传学研究中的应用
陈惠云;孙志栋;凌建刚
【期刊名称】《绿色科技》
【年(卷),期】2007(000)007
【摘要】@@ 本文简述了AFLP(Amplified Fragment Length Polymoplvism)分子标记技术的原理和技术流程,并对其在植物遗传作图与基因定位、种质资源鉴定、植物分类、进化及遗传多样性等方面的应用作了概述.
【总页数】3页(P52-54)
【作者】陈惠云;孙志栋;凌建刚
【作者单位】宁波市农业科学研究院,315040;宁波市农业科学研究院,315040;宁波市农业科学研究院,315040
【正文语种】中文
【中图分类】Q94
【相关文献】
1.AFLP分子标记在园艺植物研究中的应用进展 [J], 孟秋峰;汪炳良;皇甫伟国;王毓洪;顿兰凤
2.AFLP分子标记技术的新进展及其在法医植物学中的应用 [J], 李成涛;李莉
3.AFLP分子标记技术在观赏植物中的应用 [J], 蒋细旺;张启翔
4.AFLP分子标记技术及其在药用植物研究中的应用 [J], 王婷;李爱贤;鞠建峰;周凤琴
5.扩增片段长度多态性(AFLP)分子标记技术在鱼类遗传学研究中的应用 [J], 天塔
因版权原因,仅展示原文概要,查看原文内容请购买。
茉莉酸甲酯诱导的小麦白粉病抗性与9个抗病相关基因表达间的关系牛吉山;刘靖;马文斌;李巧云;王正阳;贺德先【期刊名称】《农业科学与技术(英文版)》【年(卷),期】2011(012)004【摘要】[目的]进行研究以确定茉莉酸(JA)对小麦粉末状抗性抗性的诱导效果,对植物疾病抵抗相关基因表达的活化作用,并研究抗性与抗性关系基因表达模式。
[方法]采用了三种粉状霉菌敏感品种“中国春天”,“Pumai 9”和“周麦18”通常代表该领域不同表型的粉状,霉菌WES通过分离的叶形测定评估,真实时间定量RT-PCR用于确定PR1(PR1.1),PF2(β,1 - 3葡聚糖酶),PR3(Chitinase),Pr4(Wheatwin1),PR5(硫胺 - )的9例抗病相关基因的表达模式如蛋白质),pr9(tapero,过氧化物酶),pr10,taglp2a(种样状)和三种品种叶片中的ta-ja2(jasmonate诱导的蛋白)。
[结果] Meja应用增强了“中国春天的粉末状霉菌抗性“,”Pumai 9“A ND“周米18”。
诱导的粉末状霉菌抗性可在MEJA治疗后从12小时到96小时检测,峰值在24小时内。
虽然三种品种之间存在差异,但MEJA显着影响了对表达的影响8除TaglP2a外的8个疾病性相关基因,峰值在治疗后12小时,24小时或48小时。
PR9和PR1在PR9和PR1上最强的激活,其表达可以达到未经治疗的样本的100多次.Meja强烈活化的PF2,PR4,PR5,PR3,PR10和TA-JA2,它们的表达可以达到10至70次,并且几乎没有对TaglP2A的激活效应。
诱导的粉末状霉菌性与8疾病的诱导表达呈正相关相关基因。
[结论]与疾病相关基因的诱导表达呈致染色的粉状霉菌性呈呈呈正相关。
纳哌酸甲酸信号传导对Blumeria Graminis F.Sp.Sp.Titici.andFut的作用起着作用这种途径的操作可以改善小麦的粉末状霉菌抗性。
茉莉酸及其同系物在植物诱导防御中的作用作者:王彦阳何燕娴来源:《农家科技下旬刊》2017年第11期摘要:茉莉酸(JA)及其同系物广泛地存在于植物体中,用茉莉酸类化合物处理植物可系统诱导蛋白酶抑制剂(PI)、多酚氧化酶(PPO)、过氧化物酶(POD)等防御相关蛋白,外源应用能够激发防御植物基因的表达而诱导植物的化学防御,从而产生与机械损伤和昆虫取食相似的效果。
关键词:茉莉酸;植物;诱导防御茉莉酸是一种植物激素。
大量研究表明,茉莉酸在植物应对自然界中遭受的机械损伤,植食性动物的攻击时,都发挥着重要作用,因此茉莉酸作为一种新兴的植物内源生长物质,引起了越来越多国内外植物学家的兴趣。
茉莉酸及其同系物普遍存在于植物体中,作用于与生长发育相关的生理过程,如萌发、衰老、果实的成熟、根的生长、孕育花粉和球茎的形成、卷须的缠绕等,同时它也是植物抗性诱导剂,茉莉酸的抗虫效果不是直接的而是通过诱导植物产生了化学物质起到毒杀作用。
一、诱导防御蛋白的产生植食性动物危害植物能够导致内源茉莉酸水平增加,应用外源茉莉酸于植物体通过激发植物体内脂氧合酶(LOX)的活性,积累内源茉莉酸产生了与植食动物危害相似的诱导模式,能够诱导多酚氧化酶(PPO)、蛋白酶抑制剂(PI)、和过氧化物酶(POD)等防御相关蛋白。
1.系统诱导植物多酚氧化酶和蛋白酶抑制剂的产生多酚氧化酶是主要的抗营养蛋白,该酶氧化酚类化合物,生成活性分子醌,可与多种生物分子相互作用。
在昆虫取食过程中,多酚氧化酶与酚类底物混合在一起,导致醌将食物蛋白中的必需氨基酸烷基化,使昆虫不能利用其他营养。
而蛋白酶抑制剂能使昆虫产生厌食反应。
大量研究发现,由于应用外源茉莉酸明显增加了多酚氧化酶和蛋白酶抑制剂的水平,从而抑制了昆虫的生长。
茉莉酸诱导几种防御蛋白的系统性,但在植株不同部位诱导量存在差异性,表现为临近诱导效应,处理的叶片以及其临近的未处理的叶片多酚氧化酶活性最强,下部叶片多酚氧化酶活性较弱,上部叶片最弱。
第5卷 第2期 山东商业职业技术学院学报 V ol.5 N o.2 2005年6月 Jour nal of Shandong Institute of Commerce and T echnolog y Jun.2005AFLP 技术在植物研究上的应用高志勇(渭南师范学院化学化工系,陕西渭南 714000)摘 要: A FL P 技术是一项新发展的分子标记方法,能找出DNA 分子的多态性。
本文综述了A FL P 技术在植物研究上的多方面的应用,并对其原理、存在的问题及对策进行了总结。
关键词: A FL P;植物;应用中图分类号: Q78 文献标识码: A 文章编号: 1671-4385(2005)02-0088-03AFLP Technique and Its Applications in Plant ResearchGAO Zhi-yong(Department of Chemistry and Chemical Engineeri ng,Wei nan T each ers College,Weinan 714000,China )Abstract: Amplified frag ment length polymorphism (AFLP)technique,a newly developed molecular marker method,can detect DNA polymorphism.Its applications in plant research are review ed in many aspects in the article.And its principle ,existing problems and proposals are also sum marized.Keywords: AFLP;plant;application 收稿日期: 2004-11-10作者简介: 高志勇(1966-),男,山东济宁人,渭南师范学院化学化工系讲师,硕士,研究方向为植物分子遗传学。
茉莉酸甲酯:一种重要的植物信号转导分子
薛仁镐;金圣爱
【期刊名称】《生物技术通讯》
【年(卷),期】2006(17)6
【摘要】作为一种信号转导分子,茉莉酸甲酯在植物生长发育、代谢调节、抗病、耐逆、防御相关基因的诱导表达等方面均起着重要的作用.由于茉莉酸甲酯所具有的上述多效性,其作用与机制受到人们的广泛关注.本文简要介绍了植物中茉莉酸甲酯信号转导作用的相关研究进展.
【总页数】4页(P985-988)
【作者】薛仁镐;金圣爱
【作者单位】莱阳农学院,山东,青岛,266109;莱阳农学院,山东,青岛,266109
【正文语种】中文
【中图分类】Q943
【相关文献】
1.茉莉酸甲酯(MJ)对植物抗性信号转导的诱导 [J], 高薪
2.外源茉莉酸和茉莉酸甲酯诱导植物抗虫作用及其机理 [J], 桂连友;刘树生;陈宗懋
3.茉莉酸甲酯对广藿香JA信号转导途径及倍半萜合成途径关键基因表达的影响[J], 邓文静;张宏意;欧晓华;卢昌华;黄伟展;严寒静
4.Ca^(2+)在茉莉酸甲酯诱导拟南芥气孔关闭中的信号转导作用 [J], 董发才;崔香环;安国勇;王棚涛;宋纯鹏
5.拟南芥保卫细胞中茉莉酸甲酯诱导的H_2O_2产生与MAPK信号转导体系的可能关系 [J], 薄惠;王棚涛;董发才;宋纯鹏
因版权原因,仅展示原文概要,查看原文内容请购买。
茉莉酸甲酯生物活性研究进展张知晓;泽桑梓;户连荣;刘凌;季梅【期刊名称】《河南农业科学》【年(卷),期】2018(047)011【摘要】茉莉酸甲酯是一种环戊酮衍生物类信号物质,为深入发掘其相关机制及应用,综述了茉莉酸甲酯对植物、动物及微生物的活性功能.茉莉酸甲酯对植物具有促进种子萌发、开花开颖,降低果蔬储藏期氧化作用,改善产品香味品质和提高植物病虫抗逆性等活性;对动物表现出乳腺癌、胃癌、肝癌、前列腺癌、淋巴癌等肿瘤细胞的抗肿瘤活性;在微生物发酵生产中能诱导灵芝酸、麦角甾醇和萜类物质产生.因此,茉莉酸甲酯在植物、动物和微生物的新陈代谢过程中扮演重要角色,在农业、医学和发酵工程领域具有应用潜力.【总页数】7页(P1-7)【作者】张知晓;泽桑梓;户连荣;刘凌;季梅【作者单位】云南省林业科学院,云南昆明650201;云南省林业有害生物防治检疫局,云南昆明650051;云南省林业科学院,云南昆明650201;云南省林业科学院,云南昆明650201;云南省林业科学院,云南昆明650201【正文语种】中文【中图分类】S476【相关文献】1.茉莉酸甲酯对药用植物石斛生物活性成分的影响 [J], 应奇才;马秀燕;姜青华;王慧中;徐祥彬2.茉莉酸甲酯调控果蔬采后品质的机制及应用研究进展 [J], 崔席席;李富军;张新华;郭衍银;李晓安3.茉莉酸甲酯对果蔬抗性、抗氧化活性及品质影响的研究进展 [J], 赵曼如; 胡文忠; 于皎雪; 管玉格; 高红豆; 龙娅4.含茉莉酸甲酯的生物活性膜对蓝莓采后保鲜效果的研究 [J], 于悦;徐莹;汪东风;张丹丹;于金芝5.采前喷施茉莉酸甲酯对日本李果实成熟、果实品质和生物活性物质含量起重要作用 [J], 周洲因版权原因,仅展示原文概要,查看原文内容请购买。
AFLP技术及其在植物基因组研究中的应用
陶文静;刘大钧
【期刊名称】《世界农业》
【年(卷),期】1998(000)012
【摘要】DNA指纹技术是1985年在人体遗传研究中发展起来的一种先进的遗传标记方法,它很快地在动物、植物、微生物上得到广泛的应用。
随着DNA指纹技术的广泛采用,许多新的DNA指纹技术不断涌现。
然而,这些技术基本上是在两个不同的基础上发展起来的,其一是基于经典...
【总页数】4页(P16-19)
【作者】陶文静;刘大钧
【作者单位】南京农业大学细胞遗传研究所;南京农业大学细胞遗传研究所
【正文语种】中文
【中图分类】Q943
【相关文献】
1.植物荧光原位杂交技术的发展及其在植物基因组分析中的应用 [J], 佘朝文;宋运淳
2.基因组原位杂交技术及其在园艺植物基因组研究中的应用 [J], 王燕;陈清;陈涛;张静;汤浩茹;王小蓉
3.激光捕获显微切割技术在植物基因组研究中的应用 [J], 蔡民华;胡英考;李雅轩;晏月明
4.Fiber-FISH技术及其在植物基因组研究中的应用 [J], 李宗芸;宋运淳;李立家
5.SRAP分子技术在植物基因组学研究中的应用 [J], 李彦锦;唐婷婷;刘本文;江磊;张磊;李刚;覃瑞;刘虹;;;;;;;;
因版权原因,仅展示原文概要,查看原文内容请购买。
C hapter 23 c DNA-AFLP-Based Transcript Pro fil ing for Genome-Wide Expression Analysis of Jasmonate-Treated Plantsand Plant CulturesJ anine C olling,J acob P ollier,N okwanda P.M akunga,and A lain G oossensA bstractc DNA-AFLP is a commonly used, robust, and reproducible tool for genome-wide expression analysis in any species, without requirement of prior sequence knowledge. Quantitative expression data are generated by gel-based visualization of cDNA-AFLP fin gerprints obtained by selective PCR ampli fic ation of subsets of restriction fragments from a double-stranded cDNA template. Differences in gene expression levels across the samples are re fle cted in different band intensities on the high-resolution polyacrylamide gels. The dif-ferentially expressed genes can be identi fie d by direct sequencing of re-ampli fie d cDNA-AFLP tags puri fie d from the gels. The cDNA-AFLP technique is especially useful for pro fil ing of transcriptional responses of jasmonate-treated plants or plant (tissue) cultures and the discovery of jasmonate-responsive genes.K ey words c DNA-AFLP ,T ranscript pro fil ing ,J asmonate ,G ene expression ,T ranscriptome ,E licitation 1I ntroductionA mpli fie d fragment length polymorphism (AFLP) is a robust andreliable DNA- fin gerprinting technique based on the polymerasechain reaction (PCR) ampli fic ation of restriction fragments ofgenomic DNA [1, 2]. Practically, the AFLP protocol can be dividedinto three distinct steps: (1) digestion of the DNA template withtwo restriction enzymes, followed by ligation of speci fic oligonucle-otide adapters to the sticky ends of the digested DNA; (2) selectivePCR ampli fic ation of a subset of the restriction fragments by meansof AFLP primers with a few extra selective nucleotides besides theadapter and restriction site-speci fic sequences; and (3) visualizationof the ampli fie d DNA fragments on high-resolution polyacrylam-ide gels [1].T he cDNA-AFLP technique is derived from the AFLP proto-col and has become a widely used, robust, and reproducible tool Alain Goossens and Laurens Pauwels (eds.), Jasmonate Signaling: Methods and Protocols, Methods in Molecular Biology,vol. 1011, DOI 10.1007/978-1-62703-414-2_23, © Springer Science+Business Media, LLC 2013287288Janine Colling et al.for genome-wide expression analysis in any organism, without theneed for prior sequence knowledge [ 3–5 ] . Similar to AFLP, the original cDNA-AFLP method [ 6] starts with a DNA template (double-stranded cDNA) that is digested with two restrictionenzymes. After ligation of adapters to the restriction fragments, asubset of the restriction fragments is ampli fi e d by selective PCR.Finally, the ampli fi e d fragments are visualized on high-resolutionpolyacrylamide gels, with fragment intensities re fl e cting the rela-tive abundance (copy number) of the corresponding genes acrossthe samples [ 6 ] . To identify the differentially expressed genes, thecorresponding cDNA-AFLP tags are puri fi e d from the polyacryl-amide gel, re-ampli fi e d, and sequenced.S ince its development, several modi fi c ations of the originalcDNA-AFLP protocol have been published [ 3,5, 7, 8 ] . Here, we focus on the one-gene–one-tag variant of the original cDNA-AFLPmethod [ 3,5, 8 ] . In contrast to the original method, in which multiple sequence tags can be obtained for a single gene (one-gene–multiple-tag), the one-gene–one-tag method includes theselection of the 3 ¢ end restriction fragments of the transcripts priorto the selective PCR ampli fi c ation, leading to a single diagnosticsequence tag per transcript [ 5] . This signi fi c antly reduces the total number of tags to be screened and, hence, the workload, but mightlead to reduced transcriptome coverage or in sequence tags that donot cover the coding sequence, thereby hindering the functionalannotation of the fragments [ 3,5 ] . In addition, the one-gene–one-tag variant makes use of the B st Y I/ M se I restriction enzyme combi-nation, instead of a combination of two tetracutters in the originalcDNA-AFLP protocol. This results in a higher average fragmentlength that facilitates the functional annotation of the transcriptsand the full-length cDNA cloning [5 ] ( s ee Fig. 1 ). This method has proven successful for transcriptome analysis of several jasmonate-elicited medicinal plant species [ 4,9, 10 ] . It is also useful to carry out pilot studies in model species, such as A rabidopsis thaliana , toscreen large sample sets (e.g., time series) for the most relevantsamples for full-transcriptome analysis by other methods, such asmicroarray analysis or RNA-sequencing [11 ] .1. M agnetic stirrer.2. M icrowave oven.3. A utoclave.4.D ynabeads M-2800 Streptavidin (Invitrogen, Carlsbad, CA, USA). 2M aterials 2.1E quipment289AAAAAAAAAA(1) cDNA synthesisBst-CaAAAAAAAAAATTTTTTTTTTTb(2) Bst YI digestionAAAAAAAAAATTTTTTTTTTT(3) 3’-end capturingAAAAAAAAAATTTTTTTTTTT(4) Mse I digestionAAAAAAAAAATTTTTTTTTTT(5) Adapter ligation(6) Pre-amplificationcBst-TMse MseBst-CN(7) Selective amplificationBst-TNNN-Mse NN-Mse(8) Gel electrophoresisd(9) Re-amplification1 kbp1 kbp1 kbp1 kbpF ig.1O verview of the cDNA-AFLP procedure. The l eft panel shows the different steps in the procedure that include (1) synthesis of double-stranded cDNA from an RNA template with a biotinylated oligo-dT primer;(2) digestion of the cDNA with the restriction enzyme B st Y I; (3) 3 ¢end capturing of the digested cDNA by bind-ing of the biotin to streptavidin-coated beads to isolate a single-sequence tag per transcript; (4) digestion of the captured cDNA fragments with the restriction enzyme M se I; (5) ligation of speci fic B st Y I and M se I adapters to the sticky ends of the digested DNA; (6) preampli fic ation with the B st Y I + C or B st Y I + T primer in combina-tion with the M se I primer to reduce the complexity of the template mixture; (7) selective ampli fic ation of a subset of the transcript fragments by using B st Y I and M se I primers with a few extra selective nucleotides; (8) visualization of the ampli fie d DNA fragments on high-resolution polyacrylamide gels; and (9) puri fic ation, re-ampli fic ation, and sequencing of DNA fragments for identi fic ation of the differentially expressed genes. The r ight panel gives examples of good-quality RNA ( a), cDNA ( b),preamplific ations(c), and re-ampli fic ation of 16 cDNA-AFLP tags ( d)290Janine Colling et al.5. M agnetic stands for isolation of Dynabeads (Invitrogen).6. P ower supply (PowerPac 3000; Bio-Rad Laboratories, Hercules, CA, USA).7. V acuum gel drier GD-1 (Heto-Holten Lab Equipments, Allerød, Denmark).8. P hosphoImager scanning instrument and imaging plates (GE-Healthcare, Little Chalfont, UK).9. K odak BioMax MR fi l m, 35 × 43 cm (Sigma-Aldrich, St. Louis, MO, USA). 10. W ater repellent (Rain-X; Shell Car Care International Ltd., Manchester, UK). 11. S equi-Gen GT electrophoresis system (38 × 50 cm) (Bio-Rad Laboratories). 12. W hatman pure cellulose blotting paper (3MM Chr, 35 × 43 cm) (GE-Healthcare). 13. A dhesive PCR foil seals (ABgene Ltd., Epsom, UK). 14. N anodrop. U se ultrapure water (resistivity of 18 M W cm at 25 °C) and analyti-cal grade reagents to prepare all solutions. Prepare and store all reagents at room temperature, unless stated otherwise. Products and buffers may be used for multiple steps in the protocol, but will only be described the fi r st time they are needed.1. D iethylpyrocarbonate (DEPC)-treated water: Add 100 m L ofDEPC to 100 mL of water and incubate for at least 1 h at 37 °C. Autoclave for at least 15 min to decompose the remain-ing traces of DEPC.2. S uperScript™ II Reverse Transcriptase, supplied with 5× fi r st-strand buffer and 100 mM dithiothreitol (DTT) (Invitrogen).3. 10 mM dNTP mix.4. B iotin-labeled oligo-dT25 primer ( s ee N ote 1 ).5. E scherichia coli DNA ligase, supplied with 10× E . coli DNAligase reaction buffer.6. D NA polymerase I.7. R ibonuclease H (RNase H).8. c DNA puri fi c ation kit.9. 0.5 M ethylenediaminetetraacetic acid (EDTA) (pH 8.0): Add18.61 g of EDTA to 80 mL of water and mix with a magnetic stirrer. Add NaOH pellets to adjust the pH to 8.0. Make up with water to 100 mL and autoclave ( s ee N ote 2 ).2.2B uffers,Media,Solutions, andReagents2.2.1D ouble-StrandedcDNA Synthesis291cDNA-AFLP-Based Transcript Profi ling 10. 10× TAE buffer: Dissolve 48.4 g of tris(hydroxymethyl)amin-omethane (Tris) in 500 mL of water. Add 11.44 mL of acetic acid (glacial) and 20 mL of 0.5 M EDTA (pH 8.0). Make up to 1 L with water. 11. 1.2 % (w/v) agarose gel: Add 3.6 g of agarose to 300 mL of 0.5× TAE buffer ( s ee N ote 3 ). Heat the solution to boiling in a microwave to dissolve the agarose. Cool the solution to approximately 60 °C and add a nucleic acid stain to allow visu-alization of the DNA after electrophoresis. Pour the gel solu-tion in a casting tray containing a sample comb and allow the gel to harden at room temperature. The remaining gel solu-tion can be stored for up to 1 month at 60 °C. 1. 1 M Tris-acetic acid (Tris–HAc) (pH 7.5): Dissolve 12.1 g of Tris in approximately 80 mL of water. Mix well and adjust thepH to 7.5 with acetic acid. Make up to 100 mL with water and autoclave.2. 1 M magnesium acetate (MgAc): Dissolve 2.145 g of MgActetrahydrate in water. Make up to 10 mL with water and fi l ter sterilize.3. 4 M potassium acetate (KAc): Dissolve 3.926 g of KAc inwater. Make up to 10 mL with water and fi l ter sterilize. Store at −20 °C.4. 1 M Tris–HCl (pH 8.0): Dissolve 12.1 g of Tris in approxi-mately 80 mL of water. Mix well and adjust the pH to 8.0 with hydrochloric acid. Make up to 100 mL with water and autoclave.5. 5 M sodium chloride (NaCl): Dissolve 29.22 g of NaCl inapproximately 80 mL of water. Make up to 100 mL with water and autoclave.6. 10× RL buffer: Mix 1 mL of 1 M Tris–HAc, pH7.5 with1 mL of 1 M MgAc, 1.25 mL of 4 M KAc, and 10 m L of 50 mg/mL bovine serum albumin. Add 0.077 g of DTT and make up to 10 mL with water. Store in 1-mL aliquots at −20 °C ( s ee N ote 4 ).7. 2× STEX buffer: Mix 40 mL of 5 M NaCl with 2 mL of Tris–HCl (pH 8.0), 400 m L of 0.5 M EDTA (pH 8.0), and 2 mL of Triton X-100. Make up to 100 mL with water.8. T 10 E 0.1buffer: Add 1 mL of 1 M Tris–HCl (pH 8.0) and 20 m Lof 0.5 M EDTA (pH 8.0) to 80 mL of water. Make up to 100 mL with water and autoclave.9. 10 mM ATP solution.10. T 4 DNA Ligase (Invitrogen).2.2.2P CR TemplatePreparation292Janine Colling et al.1. A mpliTaq DNA polymerase, supplied with 10× PCR buffer and 25 mM MgCl 2 solution (Applied Biosystems, Foster City, CA, USA).2. S ilverStar™ DNA polymerase, supplied with 10× PCR buffer and 50 mM MgCl 2 solution (Eurogentec, Seraing, Belgium). 1. 1 M Tris–HCl (pH 7.5): Dissolve 12.1 g of Tris in approxi-mately 80 mL of water. Mix well and adjust the pH to 7.5 with hydrochloric acid. Make up to 100 mL with water and autoclave. 2. 1 M MgCl 2 : Dissolve 2.033 g of magnesium chloride hexahy-drate in water. Make up to 10 mL with water.3. 10× T4 buffer: Mix 2.5 mL of 1 M Tris–HCl, pH 7.5 with 1 mL of 1 M MgCl 2 . Add 0.077 g of DTT and 0.013 g of spermidine trihydrochloride. Make up to 10 mL with water. Store in 1-mL aliquots at −20 °C ( s ee N ote 4 ).4. T 4 Polynucleotide Kinase (New England BioLabs, Ipswich, MA, USA).5. A TP, [ g - 33 P ] 3,000 Ci/mmol (Perkin Elmer, Waltham, MA, USA).6. A mpliTaq Gold DNA polymerase, supplied with 10× PCR buffer and 25 mM MgCl 2 solution (Applied Biosystems).7. F ormamide loading dye: In a 50-mL Falcon tube, mix 49 mL of formamide with 1 mL of 0.5 M EDTA (pH8.0) and add 0.03 g of bromophenol blue and 0.03 g of xylene cyanol. Store this solution at 4 °C. 1. S equaMark™ DNA template (Research Genetics, Huntsville, AL, USA). 2. P CR cleanup kit. 3. V ent R ™ (exo-) DNA polymerase, supplied with 10× ThermoPol reaction buffer (New England Biolabs). 4. d NTP/ddTTP mix: Mix 0.6 m L of 10 mM dATP, 2 m L of 10 mM dCTP, 2 m L of 10 mM dGTP, 0.66 m L of 10 mM dTTP, and 14.4 m L of 10 mM ddTTP . Make up to 200 m L with water. 1. 10× Maxam buffer: Dissolve 121 g of Tris and 61.8 g of boric acid in water and make up to 1 L with water.2. 4.5 % (w/v) denaturing polyacrylamide gel solution: Add450 g of urea and 112.5 mL of acrylamide/bis-acrylamide (19:1, 40 % stock solution) to a 2-L beaker. Add water to2.2.3P reampli fic ationand Re-ampli fic ation2.2.4S electiveAmpli fic ation2.2.5S equaMark™10Base Ladder2.2.6G el Electrophoresisand Detection293cDNA-AFLP-Based Transcript Profi ling 700 mL and stir for 1 h while heating at 60 °C. When the urea is dissolved, add 100 mL of 10× Maxam buffer and 4 mL of 0.5 M EDTA (pH 8.0). Filter the resulting solution through a 0.45- m m fi l ter with a vacuum pump, and make up to 1 L with water. Store the gel solution at 4 °C in the dark for up to 1 month. 3. 10 % ammonium persulfate (APS): Dissolve 1 g of APS in water and add up to 10 mL with water. Store this solution at 4 °C in the dark for up to 1 month. 4. N , N , N ¢ , N ¢ -Tetramethylethylenediamine (TEMED). Store this product at 4 °C in the dark. 5. S odium acetate (NaAc). 1. B st Y I restriction enzyme (New England BioLabs). 2. M se I restriction enzyme (New England Biolabs). 3. O ligonucleotide M se I -Forward: 5 ¢ -GACGATGAGTCCTGAG-3 ¢ . 4. O ligonucleotide M se I -Reverse: 5 ¢ -TACTCAGGACTCAT-3 ¢ . 5. O ligonucleotide B st Y I-Forward: 5 ¢ -CTCGTAGACTG-CGTAGT-3 ¢ . 6. O ligonucleotide B st Y I-Reverse: 5 ¢ -GATCACTACGCAG-TCTAC-3 ¢ . 7. B st Y I adapter (5 m M ): Add 5 m L B st Y I-Forward (100 m M ) and 5 m L B st Y I-Reverse (100 m M ) to 90 m L of water. 8. M se I adapter (50 m M ): Mix 50 m L M se I -Forward (100 m M ) and 50 m L M se I -Reverse (100 m M ). 1. P reampli fi c ation primers: B st Y I-T + 0 or B st Y I-C + 0 primer (5 ¢ -GACTGCGTAGTGATC(C/T)-3 ¢ ) and M se I + 0 primer (5 ¢ -GATGAGTCCTGAGTAA-3 ¢ ). 2. S elective ampli fi c ation primers: B st Y I-T/C + N primers (5 ¢ -GACTGCGTAGTGATC(C/T)N-3 ¢ ) and M se I + NN prim-ers (5 ¢ -GATGAGTCCTGAGTAANN-3 ¢ ). N represents the selective nucleotides.3. S equaMark™ primers: Forward: 5 ¢ -ACCAGAAGCTGGA-CGCAG-3 ¢ ; reverse: 5 ¢ -ACACAGGAAACAGCTAT-GACCA-3 ¢ .4. R e-ampli fi c ation primers: Forward 1: 5 ¢ -AAAAAGCA-GGCTGACTGCGTAGTG-3 ¢ ; reverse 1: 5 ¢ -AGAAAGCT-GGGTGATGAGTCCTGA-3 ¢ ; forward 2: 5 ¢ -GGGGACAAG-TTTGTACAAAAAAGCAGGCT-3 ¢ ; reverse 2: 5 ¢ -GGGGACC-ACTTTGTACAAGAAAGCTGGGT-3 ¢ .2.3R estrictionEnzymes and Primers2.3.1P CR TemplatePreparation2.3.2P reampli fic ation,Selective Ampli fic ation,SequaMark™ 10 BaseLadder, andRe-ampli fic ation294Janine Colling et al.1. F or each sample, dilute 2 m g of total RNA into a total volume of 20 m L using DEPC-treated water ( s ee N ote 5 ).2. F or the fi r st-strand cDNA synthesis mix, combine 8 m L of 5× fi r st-strand buffer, 4 m L of DEPC-treated water, 4 m L of 100 mM DTT, 2 m L of 10 mM dNTP mix, 1 m L of biotin-labeled oligo-dT25 primer (700 ng/ m L ), and 1 m L of SuperScript™ II Reverse Transcriptase (200 U/ m L ) for each sample.3. A dd 20 m L of the fi r st-strand cDNA synthesis mix to each sample.4. M ix well and incubate for 2 h at 42 °C.5. F or the second-strand cDNA synthesis mix, combine 87.4 m L of water, 16 m L of 10× E . coli DNA ligase reaction buffer, 6 m L of 100 mM DTT, 3 m L of 10 mM dNTP mix, 5.0 m L of DNA polymerase I (10 U/ m L ), 1.5 m L of E . coli DNA ligase (10 U/ m L ), and 1.1 m L RNase H (1.5 U/ m L ) for each sample.6. A dd 120 m L of the second-strand cDNA synthesis mix to the 40 m L of the fi r st-strand reaction cocktail.7. M ix well and incubate for 1 h at 12 °C, followed by 1 h at 22 °C.8. P urify the double-stranded cDNA with a cDNA puri fi c ation kit according to the manufacturer’s instructions. Elute the cDNA in 30 m L of elution buffer.9. R un 8 m L of each cDNA sample on a 1.2 % agarose gel in 0.5× TAE running buffer at 100 V for 15–20 min ( s ee N ote 6 and Fig. 1b ). T his subheading describes the fi r st digestion, 3 ¢ -end capturing, second digestion, and adapter ligation.1. P repare the fi r st digestion mix by mixing 15 m L of water, 4 m Lof 10× RL buffer, and 1 m L of B st Y I restriction enzyme (10 U/ m L ) for each sample.2. A dd 20 m L of the fi r st digestion mix to 20 m L of each cDNAsample.3. I ncubate for 2 h at 60 °C ( s ee N ote 7 ).4. F or each sample, wash 10 m L Dynabeads with 100 m L 2×STEX. Resuspend the Dynabeads in a fi n al volume of 40 m L 2× STEX per sample ( s ee N ote 8 ).5. M ix 40 m L of the resuspended Dynabeads with each digestedcDNA sample to give a fi n al volume of 80 m L .3M ethods3.1D ouble-StrandedcDNA Synthesis3.2P CR TemplatePreparation295cDNA-AFLP-Based Transcript Profi ling 6. I ncubate the samples for 30 min at room temperature, with gentle agitation (1,000 RPM) to ensure that the beads remain suspended. 7. C ollect the beads with the magnet and remove the supernatants. 8. R emove the tubes from the magnet. 9. A dd 100 m L 1× STEX and resuspend the beads ( s ee N ote 9 ). 10. T ransfer the resuspended beads to a fresh tube. 11. R epeat s teps 7 – 10 four additional times. 12. C ollect the beads with the magnet and remove the supernatants. 13. R emove the tubes from the magnet. 14. A dd 30 m L of T 10 E 0.1 buffer and resuspend the beads. 15. T ransfer the resuspended beads to a fresh tube. 16. P repare the second digestion mix by mixing 5 m L of water, 4 m L of 10× RL buffer, and 1 m L of M se I restriction enzyme (10 U/ m L ) for each sample. 17. A dd 10 m L of the second digestion mix to the 30 m L of resus-pended beads. 18. I ncubate for 2 h at 37 °C with gentle agitation (1,000 RPM) to ensure that the beads remain suspended. 19. C ollect the beads with the magnet. 20. T ransfer the supernatant containing the released fragments to a new tube. 21. P repare the adapter ligation mix by mixing 4 m L of water, 1 m L of B st Y I adapter (5 m M ), 1 m L of M se I adapter (50 m M ), 1 m L of 10 mM ATP, 1 m L of 10× RL buffer, 1 m L of T4 DNA ligase (1 U/ m L ), and 1 m L of B st Y I restriction enzyme (10 U/ m L ) for each sample. 22. A dd 10 m L of the adapter ligation mix to the 40 m L of supernatant. 23. I ncubate for 3 h at 37 °C ( s ee N ote 10 ). 24. A fter adapter ligation, dilute the samples twofold by adding 50 m L of T 10 E 0.1 buffer to each sample ( s ee N ote 11 ). 1. P repare the preampli fi c ation mix by mixing 30.8 m L of water,5.0 m L of 10× PCR buffer, 5.0 m L of 25 mM MgCl 2 , 1.5 m L ofB st Y I-T/C + 0 primer (50 ng/ m L ), 1.5 m L of M se I + 0 primer (50 ng/ m L ), 1.0 m L of 10 mM dNTP mix, and 0.2 m L of AmpliTaq DNA polymerase (5 U/ m L ) for each sample ( s ee N ote 12 ).2. A dd 45 m L of the preampli fi c ation mix to 5 m L of the PCRtemplate.3.3P reampli fic ation296Janine Colling et al.3. S ubject the samples to the following PCR program: Initial denaturation for 1 min at 94 °C, followed by 25 cycles of dena-turation at 94 °C for 30 s, annealing at 56 °C for 1 min and elongation at 72 °C for 1 min.4. A nalyze 10 m L of the PCR reaction on a 1.2 % agarose gel in 0.5× TAE running buffer at 100 V for 15–20 min ( s ee N ote 13 and Fig. 1c ).5. D ilute the preampli fi c ation mix 600-fold with T 10 E 0.1 buffer ( s ee N ote 14 ). 1. P repare the primer radiolabeling mix by mixing 0.23 m L of water, 0.10 m L of B st Y I-T/C + N primer (50 ng/ m L ), 0.10 m L of g - 33 P -ATP (3,000 Ci/mmol), 0.05 m L of 10× T4 buffer, and 0.02 m L of T4 polynucleotide kinase (10 U/ m L ) for each sample. 2. I ncubate the reaction mixture at 37 °C for 45 min. 3. S top the reaction by incubating the mixture for 10 min at 80 °C. 4. P repare the selective ampli fi c ation mix by mixing6.0 m L of M se I + NN primer (5 ng/ m L ), 3.9 m L of water, 2.0 m L of 10× PCR buffer, 2.0 m L of 25 mM MgCl 2 , 0.5 m L of g - 33 P -labeled B st Y I-T/C + N primer, 0.4 m L of 10 mM dNTP mix, and 0.2 m L of AmpliTaq Gold DNA polymerase (5 U/ m L ) for each sample. 5. A dd 15 m L of the selective ampli fi c ation mix to 5 m L of the diluted preampli fi c ation mixture. 6. S ubject the samples to the following PCR program: Initial denaturation for 10 min at 94 °C, followed by 13 cycles touch-down (denaturation at 94 °C for 30 s, annealing for 30 s at an initial temperature of 65 °C, reduced with 0.7 °C per PCR cycle, elongation at 72 °C for 1 min) and 23 additional cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, and elongation at 72 °C for 1 min.7. A dd 20 m L of formamide loading dye to each sample.8. I ncubate the samples overnight at −20 °C ( s ee N ote 15 ). 1. P repare the SequaMark™ PCR mix by mixing 33.8 m L of water, 5 m L of 10× PCR buffer, 3 m L of 25 mM MgCl 2, 2.5 m L of 10 m M forward primer, 2.5 m L of 10 m M reverse primer, 2 m L of SequaMark™ DNA template, 1 m L of 10 mM dNTP mix, and 0.2 m L of AmpliTaq DNA polymerase (5 U/ m L ). 2. S ubject the PCR mix to the following PCR program: 30 cyclesof denaturation at 95 °C for 30 s, annealing at 56 °C for 30 s, and elongation at 72 °C for 1 min. 3.4S electiveAmpli fic ation3.5P reparation ofthe SequaMark™10 Base Ladder297cDNA-AFLP-Based Transcript Profi ling 3. C lean the PCR reaction with a PCR cleanup kit according to the manufacturer’s instructions. 4. Q uantify the product on a nanodrop ( s ee N ote 16 ). 5. P repare the SequaMark™ primer radiolabeling mix by mixing 0.23 m L of water, 0.1 m L of 10 m M forward primer, 0.1 m L of g - 33 P -ATP (3,000 Ci/mmol), 0.05 m L of 10× T4 buffer, and 0.02 m L of T4 polynucleotide kinase (10 U/ m L ). 6. I ncubate the reaction mixture at 37 °C for 45 min. 7. S top the reaction by incubating the mixture for 10 min at 80 °C. 8. P repare the radioactive SequaMark™ PCR mix by mixing 24 m L of dNTP/ddTTP mix, 14.5 m L of water, 5 m L of 10× ThermoPol reaction buffer, 2.5 m L of labeled forward primer, 2.5 m L Vent R ™ (exo-) DNA polymerase (2 U/ m L ), and 1.5 m L (self-ampli fi e d) template. 9. S ubject the samples to the following PCR program: Initial denaturation for 5 min at 94 °C, 25 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, and elongation at 72 °C for 1 min, followed by a fi n al elongation step at 72 °C for 7 min. 10. A dd 50 m L of formamide loading dye to the PCR reaction. 11. M ix carefully and close the tubes. 12. K eep the mixture overnight at −20 °C ( s ee N ote 15 ). 1. C lean the glass plate and buffer tank with water and soap ( s ee N ote 17 ). 2. C lean the surface of the glass plate twice with ethanol and oncewith acetone.3. T reat the surface of the buffer tank with Rain-X ( s ee N ote 18 ).4. A ssemble the gel system.5. P repare the gel solution by adding 500 m L of 10 % APS and100 m L of TEMED to 100 mL of 4.5 % (w/v) denaturingpolyacrylamide gel solution. Mix gently.6. I mmediately cast the gel by injecting the gel solution into thegel system and insert the sharktooth comb between the twoglass plates with the teeth upwards. Align the holes in thecomb with the edge of the glass plate of the buffer tank, andfi x the comb with clamps. During this process, carefully avoidintroducing air bubbles, because they will damage the frontand disturb the gel image.7. A llow the gel to polymerize for at least 1 h before use( s ee N ote 19 ).3.6G elElectrophoresisand Detection298Janine Colling et al.8. P repare the running buffer by diluting 200 mL of 10× Maxambuffer to 2 L with water.9. A dd 8 mL of 0.5 M EDTA (pH 8.0) to the 2 L of 1× Maxambuffer.10. D issolve 8.8 g of NaAc in 400 mL of the prepared buffer andpour the resulting solution in the lower buffer tank( s ee N ote 20).11. W arm the remaining 1,600 mL of buffer to 50–55 °C (6–7 minat 1,000 W in the microwave oven).12. F ill the upper buffer tank with the warm buffer.13. P rerun the gel for 15 min at 100 W to heat up the gel toapproximately 50–55 °C.14. D uring the prerun, denature the samples and the SequaMark™10 base ladder at 95 °C for 5 min.15. A fter the prerun, remove the comb and clean the front with a50-mL syringe containing the running buffer to remove all gelpieces and bubbles from the well.16. I nsert the sharktooth comb into the well with the teeth approx-imately 0.5 mm into the gel ( s ee N ote 21).17. L oad 3 m L of the PCR product (or ladder) per well for a combof 72 teeth ( s ee N ote 22).18. O nce all samples are loaded, perform the electrophoresis at aconstant power of 100 W for approximately 2 h 45 min oruntil the dye front reaches the bottom of the gel.19. A fter electrophoresis, discard the running buffer and disas-semble the gel system.20. C arefully lift the buffer tank and transfer the gel to a blottingpaper.21. C over the gel with Saran wrap and dry at 75 °C on a vacuumdrier for at least 1 h.22. T o visualize the results, place the dried gel on a phosphor-Imager screen for 12–16 h or on an X-ray fil m for 2–3 days( s ee N ote 23).1. P lace the developed X-ray fil m back on the gel and align cor-rectly ( s ee N ote 23).2. C ut the fragments of interest from the gel with a razor bladeand transfer the gel pieces to Eppendorf tubes.3. A dd 100 m L of T10E0.1buffer to the gel pieces and crush thepieces to a fin e pulp ( s ee N ote 24).4. I ncubate the samples for 1 h at room temperature to allowcomplete resuspension of the DNA.3.7 R e-ampli fic ations299cDNA-AFLP-Based Transcript Profi ling 5. C entrifuge for 5 min at 11,000 × g to separate the blottingpaper from the DNA solution. Use the resulting supernatant astemplate for the re-ampli fi c ation PCR.6. P repare the PCR 1 master mix by mixing 34.8 m L of water,5.0 m L of 10× PCR buffer, 2.0 m L of 50 mM MgCl 2 , 1.0 m L of forward 1 primer (10 m M ), 1.0 m L of reverse 1 primer (10 m M ),1.0 m L of 10 mM dNTP mix, and 0.2 m L of Silverstar TaqDNA polymerase (5 U/ m L ) for each sample.7. T ransfer 45 m L of the reaction mixture to 5 m L of the resus-pended DNA templates.8.S ubject the samples to the following PCR program: Initial denaturation for 1 min at 95 °C, followed by ten cycles ofdenaturation at 95 °C for 30 s, annealing at 54 °C for 30 s, andelongation at 72 °C for 1 min. Perform a fi n al elongation at72 °C for 2 min.9. P repare the PCR 2 master mix solution by mixing 28.7 m L ofwater, 4.0 m L of 10× PCR buffer, 2.0 m L of 50 mM MgCl 2 , 2.4 m L of forward 2 primer (10 m M ), 1.7 m L of reverse 2 primer(10 m M ), 1.0 m L of 10 mM dNTP mix, and 0.2 m L of SilverstarTaq DNA polymerase (5 U/ m L ) for each sample.10. T ransfer 40 m L of the mix to 10 m L of the fi r st PCR reactionand mix well.11.S ubject the samples to the following PCR program: Initial denaturation for 1 min at 95 °C, followed by fi v e cycles ofdenaturation at 95 °C for 30 s, annealing at 45 °C for 30 s, andelongation at 72 °C for 1 min. This is followed by 20 cycles ofdenaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, andelongation at 72 °C for 1 min and a fi n al elongation step at72 °C for 2 min.12. A nalyze 5 m L of the PCR 2 reaction on a 1.2 % agarose gel in0.5× TAE running buffer at 100 V for 20–25 min ( s ee N ote 25and Fig.1d ). 13. U se the obtained re-ampli fi e d fragments for sequencing, eitherby direct sequencing of the PCR products or after cloning ofthe fragments into a plasmid vector ( s ee N ote 26 ).1.T he biotin-labeled oligo-dT25 primer is an oligo-dT primer consisting of a string of 25 deoxythymidine nucleotides. Theprimer is labeled at its 5 ¢ end with biotin. Use DEPC-treatedwater to dissolve the lyophilized primer, and store the resuspendedprimer at −20 °C.2.E DTA will not go into solution until the pH approaches 8.0. Addition of NaOH pellets will allow the EDTA to dissolve.4N otes。