五年级下数学长方体与正方体表面积
- 格式:doc
- 大小:88.50 KB
- 文档页数:7
关于长方体正方体的几个小问题1.长方体最多只能有4个面是正方形。
同样的最多只能有8条棱相等。
2.正方体的棱长扩大2倍,表面积会扩大4倍,体积会扩大8倍。
表面积=棱长×棱长×6体积=棱长×棱长×棱长3.长方体的高扩大2倍,表面积不会成倍增加,体积会增加2倍。
表面积=长×宽×2 + 宽×高×2 + 长×高×2体积=长×宽×高4.棱长为6的正方体表面和体积不能比较。
单位不同,没有比较的意义。
就类似1千米和1千克不能比较。
5.体积和容积的计算方式相同。
但是体积和容积不是一样的意义。
体积是占用的空间大小,容积是容纳的空间大小。
简单的说是体积是从物体的外面测量,容积是从物体的内部测量。
在有些计算题目中,体积可以等于容积。
判断易错点1、两个正方体的体积相等,表面积也一定相等。
2、两个长方体的体积相等,表面积也一定相等。
3、a3=3a(a不为0)1、关于棱长的几个考点2、长方体正方体的表面积问题(基础)关于做成一个无盖纸盒子的问题3、长、正方体切割、拼合引起的表面积体积问题4、容器里面加石块引起的问题关于棱长的问题用棱长1厘米的正方体木块摆成一个长5厘米,宽4厘米,高3厘米的长方体,共需要用多少块木块?5×4×3=60(cm3) 1×1×1=1(cm3)60÷1=60(个)一个长方体的12条棱长总和是68厘米,侧面是一个周长为18厘米的长方形,它的长是多少?(68-18×2)÷4=8 cm一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是3厘米、2厘米、1厘米,那么正方体的棱长是多少?(3+2+1)×4=24cm 24÷12=2cm一个长方体的棱长之和是60厘米,从一个顶点引出的三条棱长的和是多少?60÷4=15cm把一个正方形棱长扩大三倍,体积会扩大多少倍?表面积呢?表面积 6a2 6(3a)2=6×9a2体积 a3 (3a)3=27a32、长方体正方体的表面积问题(基础)正方体:表面积=棱长×棱长×6体积=棱长×棱长×棱长3体积棱长=长方体:表面积=(长×宽 + 长×高 + 宽×高)×2体积=长×宽×高= 底面积×高高=体积÷底面积=体积÷长÷高什么是求表面积?比如说需要贴瓷砖、贴红纸、粉刷墙面、看单位为平方。
上课解决方案教案设计教学目标知识与技能1.理解表面积的意义,初步掌握长方体和正方体表面积的计算方法。
2.能运用长方体、正方体表面积的计算方法解决生活中的实际问题。
过程与方法经历长方体、正方体表面积计算方法的探究过程,培养学生的分析能力和空间想象能力。
情感、态度与价值观在探究过程中,获得积极的情感体验,感受数学与生活的密切联系,培养学生应用数学的意识。
重点难点重点:理解长方体、正方体表面积的意义,掌握长方体、正方体表面积的计算方法。
难点:运用长方体、正方体表面积的计算方法解决实际问题。
课前准备教师准备PPT课件学生准备长方体、正方体纸盒剪刀教学过程板块一趣味成语,引入新课e师:同学们,老师这里有一则有趣的成语故事画面,你能找到这则成语,并解释吗?预设生1:金玉其外,败絮其中。
生2:外表像金、像玉,里面却是破棉絮。
比喻外表很华丽,而里面一团糟。
师:我们要做一个有内涵、有真才实学的人,不要外表看着一表人才,实则不学无术。
任何事物都有自己的外表,像我们学过的长方体或正方体也有外表,就是表面,长方体或正方体外表的面积的大小,我们就叫作长方体或正方体的表面积。
(板书课题:长方体和正方体的表面积)学生拿出自己的长方体或正方体纸盒,触摸外表,体会表面积。
师:看一看,长方体或正方体的表面是由几个面组成的?生:长方体和正方体的表面都是由6个面组成的。
师:什么叫作长方体或正方体的表面积?生:长方体或正方体6个面的总面积,叫作它的表面积。
操作指导先通过猜成语,在游戏中让学生初步体会什么是外表,引起学生的兴趣,再通过触摸长方体或正方体纸盒,建立长方体或正方体表面积的概念,引起学生研究长方体或正方体表面积的想法,同时引发学生的讨论,使学生主动思考,寻求解决问题的方法。
板块二演示操作,形成表象活动1小组合作,引发思考手工操作,尝试总结求表面积的方法。
出示合作提纲:(1)在长方体纸盒棱的边缘标上长、宽、高。
(2)把准备好的长方体纸盒沿一些棱剪开并展开,分别用“上、下、前、后、左、右”标明6个面,观察并思考以下问题:长方体哪些面的面积相等?长方体每个面的长和宽与长方体的长、宽、高有什么关系?(3)长方体每个面的面积怎么求?小组合作标长、宽、高,剪开长方体纸盒并展开,找到每个面的长和宽。
《长方体和正方体的表面积》说课稿尊敬的各位评委、老师:大家好!在这秋高气爽、景色宜人的季节里,有机会和各位同仁一起探讨数学的教学教法,心中特别开心。
《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。
因此,让每一个学生愉快地、自信地走进我的数学课堂,从中感受快乐、体验成功是我孜孜以求的目标。
今天,我说课的内容是九年制义务教育人教版小学数学五年级下册第三单元33-34页的《长方体和正方体的表面积》。
我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教具准备、教学过程、作业设计以及板书设计几方面来展开我的说课。
一、说教材分析本节课是在学生认识并掌握了长方体和正方体的基本特征的基础上进行教学的。
通过学习,有助于学生解决生活中的实际问题,切身感受数学的价值。
同时,还可以使学生形成初步的空间观念,是进一步学习其他立体几何图形的基础。
二、说学情分析五年级学生已经掌握了长方形、正方形面积的计算方法,表面积对于他们来说,是一个全新的概念,显得有点抽象。
虽然五年级学生的抽象思维有了一定的发展,但仍以形象思维为主,分析、归纳、概括的能力有待进一步加强。
为此,我在教学中加强了学生的动手操作,并利用多媒体课件辅助教学,突破难点。
三、说教学目标遵照“新课标”的基本理念,结合本课的教材内容和学生实际情况,我确立了如下教学目标:1.使学生理解长方体表面积的意义,掌握长方体表面积的计算方法。
2.提高学生运用新知灵活解题的能力,发展学生的思维,培养学生分析、归纳、推理的能力。
3.培养学生互助、合作的精神,促进学生在态度、情感等方面的健康发展。
四、教学重点、难点根据这节课的教学内容,我把建立表面积的概念以及理解并掌握长方体表面积的计算方法作为本节课的重点,由于学生刚刚深入学习空间立体图形,空间想象能力较弱,因此我把根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,作为本节课的难点。
《长方体和正方体的表面积》教学设计关于《长方体和正方体的表面积》教学设计(精选5篇)作为一位杰出的教职工,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。
那要怎么写好教学设计呢?下面是小编为大家收集的关于《长方体和正方体的表面积》教学设计(精选5篇),仅供参考,希望能够帮助到大家。
《长方体和正方体的表面积》教学设计篇1教学内容:义务教育教科书人教版教材五年级下册第三单元第三课时。
教学目标:1、认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。
2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。
3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。
教学重点:认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。
教学难点:应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。
教学资源:长方体、正方体的纸盒,长方体和正方体的展开图。
教学过程:一、创设情境,导入新课1、课件出示长方体和正方体。
这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)2、长方体或正方体6个面的总面积,叫做它们的表面积。
这节课我们就来研究长方体和正方体的表面积。
板书课题:长方体和正方体的表面积。
二、自主探索,合作交流1、认识长方体和正方体的展开图。
(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。
(2)把长方体和正方体纸盒剪开,长方体和正方体的6个面的展开图是这样的,(课件出法展开图),和你想的一们吗?(3)请同学们用上、下、左、右、前、后,分别标出6个面。
五年级数学下册长方体和正方体的表面积练习题(人教版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(五年级数学下册长方体和正方体的表面积练习题(人教版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为五年级数学下册长方体和正方体的表面积练习题(人教版)的全部内容。
长方体和正方体表面积练习题一、填空。
1、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。
2、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。
高是()厘米。
3、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
4、一个长方体的长、宽、高都扩大2倍,它的表面积就( ).二、应用题。
1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?长方体和正方体表面积练习题1、填空。
(3)一个长方体的长是6分米,宽1。
5分米,高3分米,它的表面积是( )平方分米.(4)一个正方体的棱长是0.5分米,它的表面积是()平方分米。
长方体、正方体的表面积教材分析本节课是学习了《长方体和正方体表面积》的一次练习课,是长方体的重要基础知识之一,在生活和生产中有着广泛的应用。
在本节课的教学中学生通过蓄水池问题、米箱问题、橡皮泥问题三个活动进一步理解长、正方体表面积的含义并能够灵活的运用所学知识解决实际问题,发展空间观念。
学情分析我所执教班级的学生,家庭教育水平不高,学生的基础薄弱,学生见识较少,但学习数学兴趣浓厚。
通过上节课的学习,大部分学生能掌握长方体和正方体表面积计算公式,但针对一些生活中的实际问题,个别学生会出现看不准面的问题,因此在本节练习课的设计中,以蓄水池为背景,提出了求数量不同的几个面的面积,并扩充了生活实际中的一些求表面积的问题,已达到丰富学生知识面的目的。
针对学生解决问题方法单一的问题,在米箱问题中渗透利用展开图求表面积的方法,力争拓展学生的解题方法,发展学生的思维。
教学目标1、使学生进一步理解长、正方体表面积的含义并能灵活运用所学知识解决实际问题,发展空间观念,从而拓展学生的解题思路,提高学生分析问题和解决问题的能力。
2、培养学生良好的审题习惯。
在独立思考、合作学习、讨论交流等活动中学会有条理地表达自己的见解。
3、让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神。
教学重难点灵活运用知识解决实际问题。
教学准备教具:课件学具:长方体纸盒教学过程一、复习旧知,引入新课1、上节课,我们学习了长方体和正方体的表面积,回想下长方体和正方体表面积计算公式是什么?2、我们重点来进行长方体和正方体的表面积实际问题的练习。
(板书主课题:长方体和正方体的表面积)【设计意图:从回忆长方体和正方体表面积的相关知识引入新课,明晰本节课的教学任务。
】二、基本练习,应用旧知这个正方体和长方体的表面积吗?请同学们在练习本中只列算式不用计算并想一想列式依据。
(1)为什么×2?(2)“15×8+15×10+10×8×2”这种方法行不行?为什么?修改算式。
【知识点1】长方体和正方体的特征:
长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4
正方体的棱长总和=棱长×12。
练一练1:
1.一个长方体长、宽、高分别是10cm、7 cm、4 cm ,这个长方体的棱长和是多少厘米
2.一个长方体的棱长和是160dm,其中,长是20dm,宽是8dm,它的高是多少从一个顶点引出的三条棱的长度总和是多少
3.将一根铁丝长720厘米做成正方体,则正方体的棱长是多少厘米
4、长方体的棱长和是60厘米,宽5厘米,高4厘米。
长是多少
5、两根同样长的铁丝焊长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,正方体的棱长是多少厘米
6、小卖部要做一个长2.2 米,宽0.4米,高米的玻璃柜台各边都安上角铁,这个柜台需要
多少米角铁
【知识点2】长方体和正方体的表面积
定义:长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)
无底或无盖长方体的表面积(有五个面)=长×宽+长×高×2+宽×高×2
=长×宽+(长×高+宽×高)×2
无底又无盖长方体的表面积(有四个面)=长×高×2+宽×高×2
=(长×高+宽×高×2
正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)
1平方米=100平方分米 1平方分米=100平方厘米
练一练2:
1.一个正方体纸箱,棱长8dm,做100个这样的纸箱至少需要多少平方米纸板
2.一只无盖的长方形鱼缸,长米,宽米,深米,做这只鱼缸至少要用玻璃多少
平方米
3.一个游泳池,长25米,宽10米,深米,在游泳池的四周和池底砌瓷砖,如果瓷砖的
边长是2分米的正方形,那么至少需要这种瓷砖多少块
4.一间教室的长是10米,宽是8米,高是4米,现在要粉刷教室的屋顶和四壁,除去门窗面积25平方米,粉刷面积是多少
5.一个长方体长8厘米,宽4厘米,高4厘米,把它锯成3段,表面积至少增加多少
6、2米长的长方体木料(如图),平均锯成3段,表面积比原来增加了平方分米,原来这根木料的体积是多少立方分米
【课后作业】
一、填空题。
1、一个长方体的长、宽、高分别是7厘米、6厘米和5厘米,它的棱长总和是( )厘米。
做这样一个无盖的长方体盒子,需要( )平方厘米材料。
2、在括号里填上适当的数.
9002平方分米=( )平方厘米平方米=( )平方厘米
12分米=( )厘米 7300平方厘米=( )平方分米
14平方米=( )平方分米 1800厘米=( )米
3、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )平方分米。
4、一段方钢长4分米,横截面是25平方厘米的正方形,这方钢的体积是( )立方厘米。
5、正方体的棱长扩大3倍,棱长和扩大( )倍,表面积扩大( )倍,体积扩大( )倍。
6、用一根长48厘米的铁丝围成一个长方体,这个长方体长5厘米,宽4厘米,它的高是( )厘米。
二、巧思妙断,判断对错。
1、把两个一样的正方体拼成一个长方体后,体积和表面积都不变。
( )
2、长方体的相邻两个面不可能都是正方形。
( )
3、棱长是6厘米的正方体,表面积与体积相等。
( )
4、把一块正方体橡皮泥捏成一个长方体后,虽然它的形状变了,但是它所占有的空间大小不变。
( )
5、正方体和长方体的体积都可以用底面积乘高来进行计算。
( )
6、至少要用4个体积是1立方厘米的正方体,才能拼成一个大正方体。
( )
三、反复比较,精心选择。
1、用一根长( )铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。
A.28厘米 B.126平方厘米C.56厘米D.90立方厘米
2、一个长方体水池,长20米,宽10米,深2米,这个水池占地( )平方米。
A.200 B.400 C.520
3、下面的图形
中,能按虚线折成
正方体的是
( )。
4、两个棱长都是5厘米的正方体拼成一个长方体,长方体的表面积比两个正方体表面积的和少( )平方厘米。
A.25 B.50 C.75 D.100
5、一个长6厘米,宽4厘米,高8厘米的长方体木块,能切成( )块棱长为2厘米的小立方体木块。
A.272 B.18 C.24 D.48
四、运用知识,灵活解题。
1、一个棱长8dm的正方体框架是用一根铁丝围成的,如果用这根铁丝围成一个长13dm、高7dm 的长方体框架,这长方体的高是多少分米表面积是多少平方分米
2、一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米
3、一盒饼干盒长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米
4、做一个长方体的浴缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃如果每平方分米玻璃4元钱,至少需要多少钱买玻璃
5、一根方木长20分米,把它锯成两段后,表面积增加了5平方分米,这根方木的体积是多少立方分米
6、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米
7、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米。