走进数学 感悟数学之美.doc
- 格式:doc
- 大小:34.02 KB
- 文档页数:4
数学之美我的数学生涯的心得体会数学之美——我的数学生涯的心得体会在我人生的旅途中,数学是我最亲密的伙伴,陪伴我度过了许多人生的起伏。
数学不仅给予了我智力的锻炼,也让我逐渐领悟到了人生的真谛。
下面,我将分享我的数学生涯心得体会,希望能从中给读者带来一些启发和思考。
一、奥数启蒙——数学的魅力初体验我初中时,父亲给我报了一个奥数班,正是这个班让我初尝到了数学的乐趣。
在老师的引领下,我开始接触到更加深入的数学知识,如数列、排列组合等。
奥数班的学习方式独特,注重培养学生的逻辑思维和问题解决能力,让我意识到数学的美妙和智慧所在。
通过奥数的启蒙,我渐渐喜欢上了数学这门学科。
我发现数学不仅是一个冰冷的符号与公式的堆砌,更是一种思维方式,一种解决问题的艺术。
数学充满了无限的创造性,通过运用不同的方法和思路,我们可以解开问题的谜题,探求到隐藏在其中的规律。
二、数学的思维培养——从计算到思辨随着年级的逐渐升高,我逐渐接触到了更加抽象和深入的数学内容,如代数、几何等。
这些知识的学习,不仅仅是为了应付考试,更是在培养我逻辑思维和分析问题的能力。
在数学的世界里,往往有很多种解法可以达到同一个目标。
这让我明白,思考问题的过程比结果本身更加重要。
数学的思维培养了我的逻辑思维能力,使我学会了如何分析问题、如何从多个角度思考、如何提出合理的假设和证明。
我想起了学习几何时遇到的一道难题,我曾经花费了很长时间去寻找解法,从直观到逻辑一直都不能找到解决方案。
在经历了一次次折磨和挫折之后,我突然想到了用反证法,通过排除法找到了问题的真正答案。
这个过程虽然充满了困难,但我却从中体会到了思考问题的乐趣和成就感。
三、数学与实际生活——数学无处不在数学不仅是一门学科,更是贯穿于生活的一种智慧和工具。
它无处不在,深刻地影响着我们的日常生活和社会发展。
在日常生活中,数学帮助我们解决了很多实际问题。
我们时常需要计算花费、规划时间、分析数据等等,这些都离不开数学的运算和思维。
数学之美读后感数学,一门古老而神秘的学科,一直以来都被视为智慧的象征。
在我们的日常生活中,数学似乎无处不在,从简单的购物算账到复杂的科学研究,都离不开数学的身影。
然而,对于大多数人来说,数学往往被视为枯燥、乏味且难以理解的学科。
直到我读了《数学之美》这本书,才彻底改变了我对数学的看法,让我领略到了数学那独特而又迷人的魅力。
《数学之美》这本书并非是一本传统的数学教材,它没有复杂的公式推导和深奥的定理证明,而是以通俗易懂的语言和生动有趣的例子,向我们展示了数学在信息处理、人工智能、自然语言处理等领域的广泛应用和巨大价值。
作者吴军博士凭借其深厚的数学功底和丰富的实践经验,将看似高深莫测的数学知识讲解得深入浅出,让即使没有数学专业背景的读者也能轻松理解和接受。
书中给我留下深刻印象的一个例子是搜索引擎背后的数学原理。
在我们日常使用搜索引擎时,只需输入几个关键词,就能在瞬间获得大量相关的网页信息。
然而,这看似简单的操作背后,却蕴含着复杂的数学算法。
搜索引擎通过对网页内容进行分析和处理,建立起庞大的索引数据库。
当我们输入关键词时,搜索引擎会运用数学中的概率统计、向量空间模型等知识,对数据库中的网页进行相关性排序,从而为我们提供最相关、最有用的搜索结果。
这让我深刻地认识到,数学并非只是书本上的理论知识,而是能够实实在在地解决实际问题,为我们的生活带来便利。
另一个让我深受启发的是自然语言处理中的数学应用。
语言,作为人类交流的重要工具,其复杂性和多样性一直是计算机处理的难题。
然而,通过运用数学中的语法分析、词频统计、语义理解等方法,计算机能够在一定程度上理解和处理自然语言。
例如,机器翻译就是通过建立数学模型,将一种语言转化为另一种语言。
这让我不禁感叹数学的强大力量,它能够打破语言的障碍,促进不同文化之间的交流与融合。
在阅读的过程中,我还发现数学之美不仅体现在其实际应用中,更体现在其内在的逻辑和结构上。
数学中的定理和公式,往往是简洁而优美的,它们以一种简洁而精确的方式描述了自然界和人类社会中的各种现象和规律。
《数学之美》读后感(精选多篇)第一篇:《数学之美》读后感确切的来说,《数学之美》并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我。
这一系列文章的作者是google公司的科学家吴军。
他毕业于清华大学计算机系(本科)和电子工程系(硕士),并于1993-1996年在清华任讲师。
他于1996年起在美国约翰霍普金斯大学攻读博士,并于xx年获得计算机科学博士学位。
在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。
他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和xx年eurospeech的最佳论文奖。
吴军博士于xx年加入google公司,现任google研究院资深研究员。
到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。
xx年,他和两个同事共同成立了中日韩文搜索部门。
吴军博士是当前google中日韩文搜索算法的主要设计者。
在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克.施密特的高度评价。
吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。
他于xx年起,当选为约翰霍普金斯大学计算机系董事会董事。
正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容-数学之美。
看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。
东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。
于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。
但看完数学之美之后,顿感惊诧,原来如此深奥东西的解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。
大家好!今天,我演讲的题目是《领略数学之美》。
数学,是一门古老的学科,它源于人类对世界的认知和探索。
从远古时代数的产生、数的计量,到如今,数学已经发展成为一门科学,它所包含的知识体系越来越多元、内容越来越丰富、涵盖研究的领域也越来越宽广。
今天,我想和大家一起领略数学之美。
首先,数学之美在于它的简洁与严谨。
数学的公式、定理,简洁明了,逻辑严密,它们以最简洁的语言,揭示了世界的规律。
比如,勾股定理告诉我们,直角三角形的两条直角边的平方和等于斜边的平方,这个公式简洁明了,却蕴含着丰富的哲理。
数学的严谨性,让我们在探索世界的过程中,能够做到有理有据、有证有据。
其次,数学之美在于它的抽象与直观。
数学是一门抽象的学科,它通过符号、图形等方式,将抽象的数学概念具体化、直观化。
比如,几何图形的构成、函数的图像,都是数学抽象与直观的体现。
这种抽象与直观的结合,让我们在解决实际问题时,能够找到简洁有效的解决方案。
再次,数学之美在于它的逻辑与推理。
数学是一门逻辑严谨的学科,它通过严密的逻辑推理,揭示了事物之间的内在联系。
比如,数学归纳法、反证法等,都是数学逻辑推理的重要方法。
这种逻辑与推理,让我们在思考问题时,能够做到条理清晰、论证有力。
此外,数学之美还在于它的广泛应用。
数学不仅仅是一门理论学科,更是一门应用学科。
它广泛应用于自然科学、工程技术、社会科学等领域,为人类的发展做出了巨大贡献。
比如,计算机科学、建筑设计、经济管理等领域,都离不开数学的支持。
那么,如何领略数学之美呢?首先,我们要热爱数学。
只有热爱数学,我们才能在数学的世界里找到乐趣,才能感受到数学的魅力。
其次,我们要善于观察。
数学来源于生活,我们要善于从生活中发现数学问题,感受数学之美。
再次,我们要勤于思考。
数学是一门需要思考的学科,我们要勤于思考,善于发现数学规律,提高自己的数学素养。
最后,我们要勇于实践。
数学是一门实践性很强的学科,我们要勇于实践,将数学知识应用到实际生活中,解决实际问题。
数学之美发现数学的美妙之处数学之美:发现数学的美妙之处数学,作为一门学科,往往被普通人们视为难以理解和枯燥无味的。
然而,当我们深入探究数学,发现其内在美妙之处时,我们将被数学的智慧和优雅所折服。
本文将带您探索数学的美丽,探究数学在科学、艺术和日常生活中的应用,并展示数学对于人类文明的重要性。
第一章:数学与科学数学在科学领域中扮演着重要的角色。
无论是物理学、化学、生物学还是天文学,数学都为科学家们提供了模型建立、数据分析和问题解决的工具。
在物理学中,数学被广泛运用于描述运动、力学以及电磁学等领域。
经典力学方程式中的微积分和微分方程成为了研究物体运动的基础。
而在化学中,数学则为化学方程式的推导和反应速率的计算提供了支持。
此外,在生物学和生态学中,数学模型不仅可以解释生物种群的动态演变,还可以预测生物群落的增长和消亡。
数学的运用与发展推动了科学领域的进步,为人类对宇宙和生命的认知提供了坚实的基础。
第二章:数学与艺术数学与艺术之间的关联曾经令人惊讶。
然而,数学的几何学和对称性概念对于艺术创作有着深远的影响。
在绘画和建筑中,艺术家们使用黄金分割、对称结构以及透视法等数学原理,使作品更加美观和和谐。
从拱门到摄影的取景,数学在艺术中随处可见。
德国艺术家艾舍尔(M.C.Escher)通过他独特的图案设计,向我们展示了数学在艺术创作中的巧妙应用。
他的作品中常见的无限循环、立体投影等,将数学中的奇妙思想与艺术完美结合,令人叹为观止。
第三章:数学与日常生活数学作为一门实用的学科,贯穿于我们的日常生活中。
无论是购物打折算账、规划行程还是制定预算,数学都在背后默默地支撑着。
在金融领域,数学模型用于预测市场走势和风险评估。
而在交通运输中,数学为解决最短路径问题和交通流量优化提供了方法。
此外,数学还在医学影像处理、信息技术、通信网络等领域发挥重要作用。
数学在日常生活中的应用无所不在,我们时刻都在受益于数学的发展和应用,也进一步领悟到了数学的美丽与价值。
数学之美读后感(精选10篇)数学之美读后感1看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。
我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。
看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax 说得对,也许是出版社为了卖书取得名字不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:1.在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?2.搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词3.搜索引擎是如何工作的—网络爬虫是怎么回事儿4.PageRank是怎么回事?为了解决什么问题?5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下6.拼音输入法的数学模型7.、文本自动分类的模型……看完之后最大的感受就是:1.数学模型巨大作用,推动着新技术的发展2.攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。
读数学之美有感读数学之美有感读数学之美有感(一)大道至简文/王宝龙数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学不仅是人类最早开创的自然学科,同时也是我们每个人学习最早、历时最长的知识。
我们从牙牙学语时就开始学习数数,然后小学初中高中直到大学还在学习数学。
作为一个数学困难户,至今尤对大学数学的考试心有余悸,真可谓是“数学虐我千百遍,我待数学如初恋”。
前段时间网络上出现一个关于“高考取消数学”的调查,超过七成的网友投票赞成取消数学,大部分人认为除了数钱,平常根本用不到数学。
那么数学真的是阳春白雪,与我们的日常生活完全无关,只能用来数钱吗?读完《数学之美》,你一定会有更多的感触。
如果大家关注手机制造商,一定听说过罗永浩的锤子手机,锤子手机成立五年,虽然销量一般,但是每年的发布会都看点颇多,罗老师旁征博引妙语连珠也不失为一种乐趣。
去年的发布会上,老罗展示了一项合作伙伴的黑科技——科大讯飞的语音输入法。
老罗快速地说出一段话,话音刚落,讯飞输入法已将语音转化成了汉字显示在屏幕上,面对老罗的浓重东北口音,正确率100%,还有标点符号。
演示现场,观众掌声雷动,第二天,科大讯飞的股票应声大涨。
那么如此神奇的语音识别是如何实现的呢?《数学之美》为我们提供了寻找答案的思路。
首先对问题进行抽象,所谓语音识别,就是听话的人去猜测说话者要表达的意思,假设我们听到的声音是O1,O2,O3......,我们如何推测说话者说出的单词S1,S2,S3......呢?用概率论的语言描述,就是在已知O1,O2,O3......的情况下,找出最大概率的单词串组合S1,S2,S3......。
复杂的语音识别问题被抽象成了简单的概率问题,问题的答案也呼之欲出,随机数学中的隐含马尔可夫模型——马尔可夫链的升级版。
最后,为了提高识别率,科学家利用大量语料进行训练,最终达成了前文所述的成就。
精炼的问题抽象+数学模型定义+结果优化,科学家们解决问题的方式是如此优美。
感悟数学之美数学之美,一直以来便是引人入胜的话题。
虽然对于很多人而言,数学可能代表着一种难以逾越的障碍,但实际上,数学所蕴含的美丽和魅力是无可比拟的。
每一个数学问题都如同一座迷人的雕塑,每一条数学定理都如同一幅精美的画作,而每一次数学的推理都如同一场美妙的交响乐。
让我们一同深入探寻,感悟数学之美。
数学之美,首先体现在它无处不在且永恒不变。
从古至今,数学一直伴随着人类的发展,并且在各个领域发挥着重要的作用。
我们在自然界中无处不见数学的存在:从植物的花瓣排列到天体运行的规律,从水波的起伏到晶体的结构,无不透露着数学的足迹。
数学之美还在于它的普适性和永恒性。
数学并不随着时间的推移而改变,平行线永远不会相交,圆周率永远是一个无理数,这些数学的特性使得它成为了科学的基础,成为了人类思维和文明的基石。
数学之美还体现在它的精确和严谨。
数学是一门讲究逻辑推理的学科,它要求我们以精确的定义和准确的论证来表达和解释问题。
数学的每一个公理、定理都经过了严格的证明和推演,其中不容许半点的含糊和错误。
这种精确和严谨使得数学成为了一门最值得信赖的科学,也使得数学的美更加深刻和隽永。
而且,数学之美还在于它的丰富多彩和独特魅力。
在数学的海洋中,我们可以发现无穷的乐趣和惊喜。
从基础的算术运算到高深的微积分和群论,从简单的几何图形到抽象的拓扑学和代数学,每一个数学分支都有其吸引人的地方。
数学的美,正是由这些千变万化又相互联系的分支所组成,它们互相辉映,互相呼应,无不展示着数学的深厚内涵和无限魅力。
数学之美还在于它的解谜性和激发思考的能力。
数学并非只是一堆枯燥的公式和定理,它更像是一种解谜游戏,每一个数学问题都如同一个迷局,需要我们通过灵活的思维和独特的见解来攻克。
正是这种解谜性和激发思考的能力,让我们在数学之中汲取到了无尽的乐趣和智慧,也使得数学之美显得更为动人和引人入胜。
数学之美还在于它的应用和影响。
数学并不是一门孤立的学科,它深刻地影响着人类的生产、生活和文化。
关注丨聚焦辽宁教育丨2021年第3期(下半月)|管理了解数学文化体会数学之美金杰(大连市甘井子区春田小学)〇整合美育资源拓展育人途径数学与我们的生活紧密相关。
我们通过手机与 朋友进行视頻通话,利用GPS定位导航,通过微信进 行扫码付款,通过网络进行搜索和查询……这些都 需要数学知识作为支撑。
学习数学不能只是为了应 付考试,死记硬背掌握公式和解题方法,还应了解数 学文化,在数学中发现美、感受美。
一、数学知识之美数学是一门具有抽象性、逻辑性的学科,需要教 师引导学生深刻思考和缜密分析。
数学的美体现在 内在逻辑秩序和化繁为简上。
数学具有对称美,几何图形中的正方形、长方 形、圆、等边三角形等都有其对称性,对这些图形认 真观察、仔细分析、总结规律,不仅能习得知识也能 得到美的享受。
数学具有简洁美,每个数字、符号、概念、公式都 经过精简提炼,通过数学学习,能让学生懂得去繁存 简是一种美;生活中有很多复杂的看似无解的问题,如果将它们抽象成数学的符号、规律、公式,就会 迎刃而解,比如,数学家欧拉就曾把看似复杂的哥 尼斯堡七桥问题,抽象为简单的数学图形,分分钟完 成破解。
与学生一起在美中学会数学知识,在数学知识 之中发现美.点燃学生探索的欲望,激发学生学习的 内动力,让学生爱上数学是数学教师的重要任务。
二、数学思维之美学习数学知识有利于培养学生的思维能力。
学 生怎样观察世界、分析世界、认识世界集中反映了一 个人的思维水平如何。
在小学数学学习中,学生的 思维可以通过多种形式的表达来体现,具体包括以 下两种。
(一) 画出思维数学是抽象的,教师可以引导学生从生活实际 中抽象出数学模型;数学是形象的,教师也可以引导 学生通过图形将抽象的模型形象化。
画图是解决数 学问题的一种有效策略,也是一种思维表达形式。
学生把重点知识画下来,便于记忆;把单元知识画下 来,便于整体学习;把难以理解的知识画下来,便于 解决难题。
(二)说出思维语言表达是互动交往中的有效形式,缺少互动 交流的学习很难真正提升学生的思维能力,生生之 间、师生之间的语言交流是促进学生思维发展的重 要形式,能有条理地将所学内容表达出来也是一种 逻辑思维的美。
数学之美读书心得读完《数学之美》这本书,心里那叫一个痛快,简直像是发现了新世界的大门。
你知道吗,以前我觉得数学就是加减乘除,代数几何,枯燥无味,跟我的生活八竿子打不着。
可这本书,它硬生生地把数学的魅力展现得淋漓尽致,让我这个数学小白都忍不住直呼“哇塞”。
书里头说的那些数学原理,原本在我看来高深莫测,但作者一解释,嘿,立马变得接地气了。
比如说,那个“信息熵”的概念,刚开始听,我还以为是啥高大上的玩意儿,结果作者一比喻,就像是咱们平时说的“信息量”,简单明了。
这样一来,我就知道为啥有时候看一篇文章,明明字数不多,但看完之后心里头那个震撼啊,久久不能平息;而有些文章,洋洋洒洒几千字,看完却跟没看一样,心里头没啥波澜。
原来,这就是信息熵在起作用,真是让人恍然大悟。
再来说说那个“马尔科夫链”,听起来挺玄乎的,对吧?但作者却用咱们平时玩的“猜字游戏”来解释,比如说,“我今天吃了_____”,后面接啥词都有可能,但要是前面说的是“火锅”,那后面接“辣椒”或者“羊肉”的概率就大了。
这不就是马尔科夫链嘛,前一个状态决定后一个状态的概率,多么直观,多么易懂!还有啊,书里头还讲到了搜索引擎的奥秘,这让我这个天天上网冲浪的人更是兴奋不已。
以前,我总以为搜索引擎就是个大仓库,里面存着无数的网页,我们输入关键词,它就给我们找出来。
但看完这本书,我才知道,原来搜索引擎背后的数学原理那么复杂,什么“倒排索引”、“PageRank”算法,还有“分词技术”,一个个听得我耳朵都怀孕了。
尤其是那个PageRank,简直就是给网页打分,谁的分数高,谁就排在前面,这不就是咱们平时说的“网红效应”嘛,谁火谁就排在前面,让人不得不服。
最让我感动的是,这本书不仅仅是在讲数学原理,更是在讲述数学如何改变我们的生活,如何让我们的世界变得更加美好。
比如说,那个“谷歌翻译”,以前我觉得那就是个奇迹,能把一种语言翻译成另一种语言,而且翻译得还挺准。
但看完这本书,我才知道,原来这背后也是数学的功劳,什么“统计机器翻译”、“深度学习”,一个个听得我眼花缭乱,但心里头那个敬佩啊,简直无法用言语来形容。
走进数学感悟数学之美
法国雕塑家罗丹说:“美到处都有,对于我们的眼睛,不是缺少美,而是缺少发现。
”在数学的整个发展过程中,它的美学意义具有压倒一切的重要性,数学中的数、形、法则“是对自然界多种多样外形美的开发”数学作为对具有自然美的事物的结构和运动变化规律的最集中的刻画和反映,是具有独特的美学价值的。
许多数学家都认为数学里面有像诗画那样美的境界,沙利文说:“优美的公式就如但丁神曲中的诗句;黎曼的几何学与普兰克的钢琴合奏曲一样优美。
在小学数学教学中,孩子学到的数学知识还相对较少,应该如何让学生发现数学美、感受数学美、体验数学美、运用数学美呢?我们该如何寓美于教,激发学生的学习兴趣;以美启智,提高学生解决问题的能力呢?经过多年的教学研究、实践与探讨,希望带着孩子们一起走进数学,感悟数学之美。
一、发现数学的简约美,让数学“有味”。
孩子们学过长方体的认识之后,发现长方体和其他的多面体都有这样的规律:面数+棱数-顶点数=2,欧拉公式:v+f-e=2,堪称“简约美”的典范。
世间的多面体有多少?没有人能说清楚。
但它们的顶点数v、面数f、棱数e,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令学生惊叹不已?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
比如:圆的面积公式s=πr2,几何中完美的图形----圆,内含的面积与半径有着异常简洁和谐的关系,一个传奇的数“π”把它们紧紧相连。
勾股定理c2=a2+b2,这一简单而整齐的形式,表达了一切直角三角形边长之间的关系。
几何中各种求面积、体积的公式,简洁实用,万无一失,只要符合有关条件,计算不出错误,就可以得到正确的结果。
在教学中,通过对这些公式简约美的发现和讲解,相信学生能够把它们深深地印在脑海里,永不磨灭。
二、感受数学的图形美、对称美,让数学“有趣”。
数学的对称美分为两种:一种是数(式)的对称性美,主要体现在数(式)的结构上,例如,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,但有是可以变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,简洁明快,一目了然,代数式是的对称式,结构严谨、特殊,决定了解这类问题一定需要特殊的方法,从而显示了它的神秘感、奇妙感。
另一
种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系。
例如轴对称图形和中心对称图形等,这些图形匀称美观,所以在日常生活中用途非常广泛,许多建筑师和美术工作者常常采用一些对称图形,设计出美丽的装饰图案。
教学过程中我们可以通过多媒体手段,把数学美发挥到极致。
在几何教学中,运用powerpoint、flash、几何画板等多媒体手段,把图形美、对称美发挥到极致,使教学内容直观、易懂和优美,从而大大地提高了学生的学习兴趣。
如在教学“正多边形边数越多越趋近于圆时,针对教学难点,利用多媒体计算机课件,将多边形由正三边形到正二十边形,再到正一百边形,放在屏幕上,通过屏幕上图像的连续变化,这样,使抽象教学为形象教学,化间断变化为连续变化,加深了学生对图形的认识,增强了学生对定义的理解和记忆。
突破了教学难点,发展了学生思维。
实践表明,利用多媒体辅助教学,是一种高效率的现代化教学手段,它让学生在学习中始终保持兴奋、愉悦、渴求上进的心理状态。
它不仅能进一步发挥学生的主体地位,激发学生学习兴趣,营造良好的学习氛围,而且对开发学生智力,培养创新意识和探索精神有着积极的作用。
在代数的学习中,加法与减法,乘法与除法,正数与负数、奇数与偶数……无不体现着对称,在几何图形中,对称更是屡见不鲜。
敦实的立方体、圆柱体,圆润光滑的球体,活泼有生机的锥体……无一不深刻地体现着对称的美丽。
还有许多组合体,如圆锥和圆柱的组合体,给人以无限遐思想象的空间。
在中学数学中,有关数与形的对称现象极为常见,这种对称有的是形象的,有的是抽象的观念和方法上的对称。
等边三角形是关于它的每条高线的轴对称图形,平行四边形是关于它的两条对角线交点的中心对称图形。
圆锥、圆柱、圆台是关于它的轴截面的对称图形。
代数中常利用来构造一元二次方程,几何中常利用对称思想添加辅助线,数学的对称美已成为人们研究解决问题的重要思想方法,它的作用越来越显得重要。
三、体验数学的实用美,让数学“有价值”。
美,其自身就具有功利性,即实用性。
鲁迅曾说过:“社会人之看事物和现象,最初是从功利地观点开始的,到后来才移到审美的观点去。
在一切人类所以为美的东西,就是于他有用……。
”数学知识来源于实践,又服务于实践,它与
实际生活紧密联系。
从生活实际中引出数学问题;用数学知识解决实际问题;体会到数学就在身边,感受到数学的趣味和价值,体验到数学美之实用美的魅力。
教师可以把生活情景融入数学教学,使学生体验数学的实用美。
很多人认为数学是枯燥无味的。
一提起数学课,仿佛就是无休止的计算。
其实,通过精心的创设情境,数学应该是非常有趣的科学。
因为它不仅具有工具性,而且还有较强的人文性,与生活实际密切相关。
在教学中,要灵活运用各种手段,如形体语言,课件、录音录像,简笔画,故事表演等等,在生活情境中体现教学内容。
引导学生涉境体味,能收到很好的教学效果。
如:在学完《统计》一课时,可以设计这样一道题“请你为新出现的禽流感做一个调查,并给出调查的建议。
”多种的统计方式,统计图的选择,统计数据的分析,统计趋势的估计等。
教师要根据课前的预设,让学生尽情地“淘金”,使学生在积极探索的过程中培养对数学学习的兴趣和数学价值观。
还有在教学《比例尺》知识时,让学生回家翻看家中地图或上网查询卫星地图;在教学《起跑线》知识时,让学生到学校田径场亲身体念;在教《圆的周长和面积》时,让学生动手测量生活中的圆的周长和面积……通过每节课的情境教学和实践数学活动不仅使学生感觉到数学与生活息息相关,消除了对数学的厌倦感,调动了学生学习数学的兴趣;同时由于简单易行,让每一位学生都能够积极参与其中,并体会到数学的价值。
四、感悟数学的和谐美,让学生喜欢数学。
美是和谐的。
和谐性也是数学美的特征之一。
和谐即雅致、严谨或形式结构的无矛盾性和关联性。
没有那门学科能比数学更为清晰的阐明自然界的和谐性。
和谐的美,在数学中多得不可胜数。
最显而易见的就要数著名的“黄金分割比”了,即0.61803398…。
在教学黄金分割点的时候,把生活中的这一现象穿插到教学内容中,能加深学生对知识点的记忆、理解和应用。
如建筑物的窗口,宽与高度的比一般为0.618;人的膝盖骨是大腿与小腿的黄金分割点,人的肘关节是手臂的黄金分割点,肚脐是人身高的黄金分割点;一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。
艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美;名画《蒙娜丽莎的微笑》中蒙娜丽莎的脸也符合黄金分割比;北京故宫紫禁城也是按照黄金分割比建造的。
这样学生不仅更牢地记住了知识点,还知道该知识被广泛的应用于我们生活、工作中。
举一反三不难发
现,在数学教学中联系身边事物,对学生掌握数学知识、感知数学知识的重要性及运用数学知识解决实际问题是有很大帮助的。
五、感悟数学的关联美,沟通知识之间的联系。
数学学科从定义、定理、公理、性质、公式以及方法、思想等方面来看,表面看来独立且毫无联系的知识之间都存在着必然的联系。
特别是由数学的对称性、统一性所表现出来的和谐性是一种实实在在的美,既有利于减轻学生的学习负担,又使学生感到学习数学趣意盎然。
比如在平行四边形一章中,几种四边形之间既有区别,又有着必然的联系。
学生认识从一般的四边形到平行四边形到矩形、菱形、正方形之间的变化过程,对于学生认识几种图形,减轻学习中的负担有很重要的作用,同时学生发现了所有平行四边形间的变化过程、掌握这一类图形间的区别与联系;如果再加入多媒体动画的运用,学生就更加能感到学习数学的乐趣了。
数学正如罗素所说:“数学,如果正确地看它,不但拥有真理,而且有至高的美。
”在数学教学中,要充分挖掘数学美的因素,引导学生对美的追求,使他们逐步体验到数学美,从直觉到知觉,从知觉到感悟,使他们摆脱“苦学”的束缚,走入“乐学”的天地;逐渐地喜欢上数学。