红外分光光度法检验标准操作规程
- 格式:doc
- 大小:33.05 KB
- 文档页数:7
1 范围本标准规定了工业废水和生活污水中的石油类和动植物油类测定。
当取样体积为500 ml,萃取液体积为50 ml,使用4 cm石英比色皿时,方法检出限为0.06mg/L,测定下限为0.24 mg/L。
2 规范性引用文件本标准等同于HJ 637—20183 分析方法3.1红外光度法3.2原理水样ph≤2的条件下用四氯乙烯萃取后,测定油类;后将萃取液用硅酸镁吸附,除去动植物油类等极性物质后,测定石油类。
总油和石油类的含量均由波数分别为2930 cm-1(CH2基团中C—H键的伸缩振动)、2960 cm-1(CH3 基团中的C—H键的伸缩振动)和3030 cm-1(芳香环中C—H键的伸缩振动)谱带处的吸光度A2930、A2960、A3030进行计算,其差值为动植物油类浓度。
4 试剂和材料4.1 盐酸:ρ=1.19 g/ml,优级纯。
4.2 盐酸溶液:1+1。
用盐酸4.1配置。
4.3 四氯乙烯:以干燥4 cm空石英比色皿为参比,在2800 cm-1~3100 cm-1之间使用4 cm石英比色皿测定四氯乙烯,2930 cm-1、2960 cm-1、3030 cm-1处吸光度应分别不超过0.34、0.07、0。
4.4 正十六烷:色谱纯。
不应出现锐峰,其吸光度值应不超过0.12。
4.5 异辛烷:色谱纯。
4.6 苯:色谱纯。
4.7 无水硫酸钠:在550 ℃下加热4 h,冷却后装入磨口玻璃瓶中,置于干燥器内贮存。
4.8 硅酸镁:100~60目。
取硅酸镁于瓷蒸发皿中,置于马弗炉内550 ℃下加热4 h,稍冷后移入干燥器中冷却至室温。
称取适量的硅酸镁于磨口玻璃瓶中,根据硅酸镁的重量,按6%(m/m)比例加入适量的蒸馏水,密塞并充分振荡数分钟,放置约12 h后使用,于磨口玻璃瓶内保存。
4.9 玻璃棉:使用前,将玻璃棉用四氯乙烯浸泡洗涤,晾干备用。
4.10 正十六烷标准贮备液:ρ≈1000 mg/L。
称取1.0 g(精确至0.1 mg)正十六烷(4.4)于100 ml容量瓶中,用四氯乙烯(4.3)定容,摇匀。
红外分光光度法1 简述化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。
红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。
习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm,0.78~2.5μm)。
其中中红外区是药物分析中最常用的区域。
红外吸收与物质浓度的关系在一定范围内服从于朗伯-比尔定律,因而它也是红外分光光度法定量的基础。
红外分光光度计分为色散型和傅里叶变换型两种。
前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。
以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。
波数与波长的换算关系如下:波数(cm-1)= 104波长(μm)傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。
该型仪器现已成为最常用的仪器。
2 红外分光光度计的检定所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。
2.1 波数准确度2.1.1波数准确度的允差范围傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
2.1.2波数准确度检定方法2.1.2.1以聚苯乙烯膜校正按仪器使用说明书要求设置参数,以常用的扫描速度记录厚度为50μm的聚苯乙烯膜红外光谱图。
测量有关谱带的位置,其吸收光谱图应符合《药品红外光谱集》所附聚苯乙烯图谱的要求,并与参考波数(表1)比较,计算波数准确度。
红外检测标准流程
红外检测的标准流程如下:
1. 仪器开机,进行内部温度校准,待图像稳定后对仪器的参数进行设置。
2. 根据被测设备的材料设置辐射率,一般取左右。
3. 设置仪器的色标温度量程,一般宜设置在环境温度加10K~20K左右的温升范围。
4. 开始测温,远距离对所有被测设备进行全面扫描,宜选择彩色显示方式,调节图像使其具有清晰的温度层次显示,并结合数值测温手段,如热点跟踪、区域温度跟踪等手段进行检测。
应充分利用仪器的有关功能,如图像平均、自动跟踪等,以达到最佳检测效果。
5. 环境温度发生较大变化时,应对仪器重新进行内部温度校准。
6. 发现有异常后,再有针对性地近距离对异常部位和重点被测设备进行精确检测。
7. 测温时,应确保现场实际测量距离满足设备最小安全距离及仪器有效测量距离的要求。
红外检测流程较为复杂,建议咨询专业人士获取更多信息。
GMP管理文件一、引用标准:中华人民共和国S药典(2005年版二部附录)。
二、目的:为规定分光光度法的检测方法和操作要求,特制定本操作规程。
三、适用范围:适用于本公司检品采用分光光度法的质量检测。
四、责任者:质检员。
五、正文:1 仪器的校正和检查:由于温度变化对机械部分的影响,仪器的波长经常会略有变动,因此除应定期对所用的仪器进行全面校正检定外,还应于测定前校正测定波长。
常用汞灯中的较强谱线237.65nm、253.65nm、275.28nm、296.73nm、313.16nm、334.15nm、365.02nm、404.66nm、435.83nm、546.07nm、576.96nm,或用仪器中氘灯的486.02nm与656.10nm谱线进行校正,钬玻璃在279.4nm、287.5nm、333.7nm、360.9nm、418.5nm、640.0nm、484.5nm、536.2nm与637.5nm波长处有尖锐吸收峰,也可作波长校正用,但因来源不同会有微小的差别,使用时应注意。
吸收度的准确度可用重铬酸钾的硫酸溶液检定。
取在120℃干燥至恒重的基准重铬酸钾约60mg,精密称定,用0.005mol/L 硫酸溶液溶解并稀释至1000ml,在规定的波长处测定并计算吸收系数,并与规定的吸收系数比较,如上表,相对偏差应在±1%以内。
杂散光的检查可按下表的试剂和浓度,配制成水溶液,置1cm石英吸收池中,在规定的波长处测定透光率,应符合表中的规定。
2 对溶剂的要求:测定供试品前,应先检查所用的溶剂在供试品所用的波长附近是否符合要求,即用1cm石英吸收池盛溶剂,以空气为空白(即空白光路中不置任何物质)测定其吸收度。
溶剂和吸收池的吸收度,在220~240nm范围内不得超过0.40,在241~250nm范围内不得超过0.20,在251~300nm范围内不得超过0.10,在300nm以上时不得超过0.05。
3 操作方法:测定时,除另有规定外,应以配制供试品溶液的同批溶剂为空白对照,采用1cm的石英吸收池,在规定的吸收峰波长±2nm以内测试几个点的吸收度,以核对供试品的吸收峰波长位置是否正确,除另有规定外,吸收峰波长应在该品种项下规定的波长±2nm以内;否则应考虑该试样的真伪、纯度以及仪器波长的准确度,并以吸收度最大的波长作为测定波长。
一、目的:制订详尽的工作程序,规范检验操作,保证检验数据的准确性。
二、范围:本操作规程适用于红外分光光度法的检验操作。
三、职责:1、检验员:严格按操作规程操作,认真、及时、准确地填写检验记录;2、化验室负责人:监督检查检验员执行本操作规程。
四、内容:1、原理:红外分光光度法是在4000〜400cm-1波数范围内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法。
除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析;化合物对红外辐射的吸收程度与其浓度的关系符合朗伯-比尔定律,是红外分光光度法定量分析的依据。
2、仪器及其校正:2.1可使用傅里叶变换红外光谱仪或色散型红外分光光度计。
用聚苯乙烯薄膜(厚度约为0.04mm)校正仪器,绘制其光谱图,用3027cm-1、2851cm-1、1601cm-1、1028cm-1、907cm-1处的吸收峰对仪器的波数进行校正。
傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1以内,在1000cm-1附近的波数误差应不大于±1cm-1。
2.2用聚苯乙烯薄膜校正时,仪器的分辨率要求在3110~2850cm-1范围内应能清晰地分辨出7个峰。
峰2851cm-1与谷2870cm-1之间的分辨深度不小于18%透光率,峰1583cm-1与谷1589cm-1之间的分辨深度不小于12%透光率。
仪器的标称分辨率,除另有规定外,应不低于2cm-1。
3、供试品的制备及测定:通常采用压片法、糊法、膜法、溶液法和气体吸收法等进行测定。
对于吸收特别强烈或不透明表面上的覆盖物等供试品,可采用如衰减全反射、漫反射和发射等红外光谱方法。
对于极微量或需微区分析的供试品,可采用显微红外光谱方法测定。
3.1原料药鉴别:3.1.1除另有规定外,应按照国家药典委员会编订的《药品红外光谱集》各卷收载的各光谱图所规定的方法制备样品。
陕西香菊药业集团有限公司GMP管理文件1.目的:本标准规定了红外分光光度法的测定方法和操作要求。
2.范围:本公司检品的红外分光光度法的测定。
3.责任人:QC检验员、QC主任。
4. 引用标准:《中华人民共和国药典》2010版二部附录ⅣC5.内容:5.1 仪器:红外分光光度计、电子分析天平5.2 简述:物质分子吸收波数位于4000~400cm-1范围的红外光而产生的吸收光谱称为红外吸收光谱。
基本原理是由分子的振动转动能级引起的光谱,振动过程中,若分子的偶极矩发生变化则相应的振动称为红外活性振动,红外活性振动产生吸收峰,没有偶极矩变化振动称为红外非活性振动,红外非活性振动不产生吸收峰,振动过程中,若分子的偶极矩变化越大,产生的红外吸收越强。
C=O键伸缩振动时键的偶极矩变化较大,因此在红外光谱中产生特征的强吸收峰,而C=C C C键伸缩振动过程中键的偶极矩变化较小,因此红外吸收峰较弱甚至不出现。
5.3仪器结构光源吸收池单色器检测器收据记录和处理5.3.1 光源:理想的红外光源应是能发射高强度、连续红外辐射的物体。
常用的有能斯特灯和硅碳棒等。
5.3.2样品室用于放置气、液、固态的待测样品,样品室应对透过的红外光无吸收,固体样品多以溴化钾压片。
5.3.3单色器作用是将入射的复合红外光色散为单色光再逐一由出射狭缝射出。
色散元件目前主要用光栅。
5.3.4 检测器用于将红外单色光信号转变为电信号。
目前常用的检测器有真空热电偶、高莱池等。
5.4.仪器使用5.4.1仪器校正:可使用傅立叶变换红外光谱仪或色散型红外分光光度计,用聚苯乙烯薄膜(厚度约为0.04mm)校正仪器,绘制其光谱图,用3027cm-1,2851cm-1,1601cm-1,1028cm-1,907cm-1处的吸收峰对仪器的波数进行校正。
傅立叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1,仪器的分辨率要求在3110~2850-1范围内,应能清晰的分辩7个峰,峰2851cm-1与谷2870-1之间的分辨深度不小于18%透光率,峰1583cm-1与谷1589cm-1之间的分辨深度不小于12%透光率。
一、目的:制订详尽的工作程序,规范检验操作,保证检验数据的准确性。
二、范围:本操作规程适用于参考美国药典标准检验品种红外分光光度法的测定。
三、职责:1、检验员:严格按操作规程操作,认真、及时、准确地填写检验记录;2、化验室负责人:监督检查检验员执行本操作规程。
四、内容:1、分光光度主要用以鉴别大多数一般化学物质。
以下的步骤适用于能吸收红外及紫外射线的物质(参见分光光度法和光散射<851>)2、一个物质的红外吸收光谱,在与从对应的USP标准品处获得的光谱图进行比较后,或许提供了从任何单一检验中所能获得的关于该物质的鉴别的最具决定性的证据。
而另一方面,紫外吸收图谱则并未展示出高度的特异性。
如大部分药典专论中所要求的,用于供试样品符合红外吸收和紫外吸收检验标准,鉴别几乎不会导致任何质疑。
3、总共有7种方法用以制备分析用的预干燥的样本和标准品。
3.1 197K:待测物质与溴化钾充分混合。
3.2 197M:待测物质细磨并与矿物油均匀混合。
3.3 197F:待测物质均匀悬置于适当的压片板之间(比如NaCl或者KBr)。
3.4 197S:特定浓度的溶液按专论规定的溶剂制备,除非专论指定不同的光程的洗收池,则该溶液在0.1mm的吸收池中检测。
3.5 197A:待测物质与内部反射元件紧密接触,做衰减全反射比(ATR)分析。
3.6 197E:将待测物质压成薄片做IR的显微分析。
3.7 197D:待测物质与不吸收红外的物质重复混合并转移到样品容器做漫反射分析。
4、当检测是定性的,且标准品的光谱图可用相似方法获得,那么ATR<197A>和<197E>分析方法可代替<197K>,<197M>,<197F>和<197S>。
5、除非另有规定,则应在2.6微米至15微米(3800cm-1至650cm-1)范围内记录被测样品的光谱和相应的USP标准品光谱。
大学拉赞助合同范本甲方(被赞助方):名称:[大学名称][社团名称]法定代表人:[负责人姓名]地址:[大学地址]联系电话:[联系电话]乙方(赞助方):名称:[企业名称]法定代表人:[法定代表人姓名]地址:[企业地址]联系电话:[联系电话]一、赞助项目1. 乙方赞助甲方举办的[活动名称]活动,赞助金额为人民币[X]元(大写:[大写金额])。
2. 乙方提供的赞助形式包括但不限于资金、物资、服务等,具体赞助内容如下:资金:[具体金额]物资:[物资名称、数量、规格等]服务:[服务内容、时间、地点等]二、双方权利和义务(一)甲方权利和义务1. 甲方有权根据活动的实际情况,合理安排和使用乙方提供的赞助资金、物资和服务。
2. 甲方应按照本合同的约定,为乙方提供相应的宣传和回报服务。
3. 甲方应确保活动的顺利进行,并对活动的质量和安全负责。
(二)乙方权利和义务1. 乙方有权了解活动的筹备和进展情况,并提出合理的建议和意见。
2. 乙方应按照本合同的约定,按时足额向甲方提供赞助资金、物资和服务。
3. 乙方有权要求甲方按照本合同的约定,为其提供相应的宣传和回报服务。
4. 乙方应遵守甲方活动现场的管理规定,不得干扰活动的正常进行。
三、宣传和回报方式活动现场背景板上显示乙方的企业名称和 logo。
活动现场主持人多次提及乙方的企业名称和赞助行为。
在活动现场为乙方设置专门的宣传展位,展示乙方的产品和服务。
在活动现场发放乙方提供的宣传资料。
在活动官方网站、公众号、微博等平台上发布乙方的企业名称、 logo 和赞助信息,并至乙方的官方网站。
向乙方提供活动的照片和视频,用于乙方的企业宣传。
四、合同期限本合同自双方签字(盖章)之日起生效,有效期至[活动结束日期]。
五、违约责任1. 若甲方未按照本合同的约定为乙方提供宣传和回报服务,乙方有权要求甲方采取补救措施,并赔偿乙方因此遭受的损失。
2. 若乙方未按照本合同的约定按时足额向甲方提供赞助资金、物资和服务,甲方有权解除本合同,并要求乙方返还已提供的部分赞助资金、物资和服务,同时乙方应赔偿甲方因此遭受的损失。
四氯乙烯红外分光光度测油方法操作规程编制说明自从《红外分光测油仪》发明以来,不足一年,1995年“蒙特利尔条约”就限制使用四氯化碳。
而“红外分光测油仪”测油技术中萃取剂使用的就是四氯化碳。
我单位在非常艰苦的环境中经过多年的研究,终于研究出替代四氯化碳的试剂-四氯乙烯。
本应尽快上市,却受到了不正当竞争的影响,几乎把我企业逼向绝路无人过问,使用法律也无效。
不得不先放弃四氯乙烯的上市。
我国政府在2010年已经禁止使用四氯化碳。
我单位也无法理睬。
2013年我企业经济形势有所好转,在有关部门的要求下,重开“四氯乙烯红外分光光度法”测油技术。
当年公开了四氯乙烯纯度的标准、仪器使用方法。
四氯乙烯纯度的标准涉及到水质、土壤和餐饮业红外分光光度法测油标准方法的修定。
现今,实施的国标HJ 637-2018,虽然,采用了四氯乙烯,但是,不完善的地方还较多。
用户用起来还是觉得不太方便,或不理解。
为了联接用户与标准的桥梁,本规程加大了实验室的工作力度。
为了使大家看得清楚、看得懂。
让我们一条一条的说明,希望大家能把这个规程“吃”下去消化掉。
规程的编制:为了提高国标HJ 637-2018测油技术水平和环境监测技术水平,根据《红外分光测油仪》产品标准,结合用户工作中出现的实际问题,编写本规程。
本规程的测油方法检出限是0.01mg/L。
说明:四氯乙烯红外分光光度测油方法是由重量法→紫外法→非色散红外法→四氯化碳红外色散法发展到今天的四氯乙烯红外色散法,也就是现今的四氯乙烯红外分光光度法测油,克服了由于油品变化的影响,使测油数据具有可比性。
表明着社会在进步、测油技术也在进步。
现今,红外分光测油仪采用了四氯乙烯测油技术和先进的射流萃取技术,使红外分光测油仪的检出限达到了0.4mg/L标准油,方法检出限达到了0.01mg/L。
检出限灵敏度远远高于重量法测油、紫外法测油和非色散红外法测油。
为了用好四氯乙烯红外分光光度测油方法,提高方法的清晰度,解决工作中的实际困难。
红外分光光度法检验标准操作规程目的:建立红外分光光度法标准操作规程,以确保检验结果的正确性与准确性。
范围:本规程适用于红外分光光度法。
职责:检测中心、质量管理部对本规程实施负责。
内容:1.简述化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。
红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。
习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm,0.78~2.5m)。
其中中红外区是药物分析中最常用的区域。
红外吸收与物质浓度的关系在一定范围内服从于朗伯-比尔定律,因而它也是红外分光光度法定量的基础。
红外分光光度计分为色散型和傅里叶变换型两种。
前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。
以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。
波数与波长的换算关系如下:波数(cm-1 )= 104 /波长μm傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。
该型仪器现已成为最常用的仪器。
2 红外分光光度计的检定所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。
2.1 波数准确度2.1.1波数准确度的允差范围傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
2.1.2波数准确度检定方法2.1.2.1以聚苯乙烯膜校正按仪器使用说明书要求设置参数,以常用的扫描速度记录厚度为50m的聚苯乙烯膜红外光谱图。
测量有关谱带的位置,其吸收光谱图应符合《药品红外光谱集》所附聚苯乙烯图谱的要求,并与参考波数(表1)比较,计算波数准确度。
表1 聚苯乙烯吸收谱带常用的波数值波数(cm-1)波数(cm-1)3027.1 1583.12850.7 1154.31944.0 1028.01801.6 906.71601.42.1.2.2以液体池用液体茚校正液体茚在3900~690cm-1范围内有较多的吸收峰可资比较,适于测定中等分辨率的仪器。
一般需用适当液层厚度的固定厚度密封液体池,选用液体池的窗片材料应能保证在测量波数范围内有良好的红外光透过率,窗片应有良好的光洁度和平面平行度,注样品时将液体池放在一楔形板上,打开2个进样孔塞,把样品用专用注射器从下部进样孔缓缓注入。
同时观察池内液面缓缓上升而不夹带气泡,至液体在上进样孔内接近满溢时,取下注射器,先盖好下进样孔塞,再盖上上进样孔塞,吸去外溢液体后即可在仪器上测定吸收光谱,其主要谱带见表2。
表2 茚主要吸收谱带的波数值(50m液层,cm-1)3926.5 3139.5 2771.0 1915.3 1553.21361.1 1205.1 1018.5 830.5 590.82.2 波数重现性用与2.1波数准确度测量相同的仪器参数,对同一张聚苯乙烯膜进行反复重叠扫描。
一般扫描3~5次。
从扫描所得光谱测定波数的重现性。
测得的各吸收峰的重现性应符合现行国家技术监督局的要求。
2.3 分辨率以聚苯乙烯膜检定。
色散型红外仪用常规狭缝程序,通常的扫描速度,或以较窄的狭缝程序用较慢的扫描速度,记录聚苯乙烯的图谱。
傅里叶红外仪设置于2cm-1分辨率和适宜的扫描次数,依法记录光谱图。
在3110~2850cm-1范围内,应能显示7个吸收带,其中峰2851cm-1与谷2870cm-1之间的分辨深度应不小于18%透光率;又峰1583cm-1与谷1589cm-1之间的分辨深度应不小于12%透光率。
仪器的标称分辨率,应不低于2 cm-1。
2.4 100%线平直度调节100%控制旋钮,使记录笔置于95%透光率处,以快速扫描速度扫描全波段,其100%线的偏差应小于1%透光率。
2.5 噪声调节100%控制旋钮,使记录笔置于95%透光率处,在1000cm-1处定波数连续扫描5min,其最大噪声(峰-峰值)应小于1%透光率。
2.6 其他杂散光水平和透光率准确度检查,因需要特殊器件,且对取。
如品种项下未规定提取方法,对国外药典已收载有红外光谱鉴别的制剂或有其他相关文献资料的品种,可参考相关文献方法进行处理。
对于无文献资料的药物制剂,可根据活性成分和辅料的性质选择适当的提取方法。
首选易挥发、非极性的有机溶剂为提取溶剂,如乙醚、乙酸乙酯、丙酮、三氯甲烷、二氯甲烷、石油醚、乙醇、甲醇等;如标准光谱集中有转晶方法,或可获得原料药的精制溶剂,最好选用与转晶方法相同的溶剂或精制溶剂。
若首选溶剂不适用,可考虑混合溶剂。
一般所选溶剂为无水溶剂,提取时有机层可加无水硫酸钠除去水分。
根据活性成分和辅料的溶解度不同,通过选择适合的溶剂即能提取活性成分又能去除辅料,则采用直接提取法。
对于多数药品,一般选用的常用溶剂如水、甲醇、乙醇、丙酮、三氯甲烷、二氯甲烷、乙醚、石油醚等就能基本达到分离效果,非极性溶剂的效果比极性的好。
一般非电离有机物质(不是有机酸或有机碱的盐)采用此法可获得满意的结果。
如冻干制剂常用辅料均不溶于乙醇和甲醇,用醇提取均能获得满意结果;辅料只有水的液体制剂,可蒸干水分后绘制红外光谱。
对于液体或半固体制剂宜选择萃取法,可根据活性成分和辅料性质选用直接萃取法,当有机酸或有机碱的盐类药物经直接提取法不能够获得满意的光谱图时,一般采用经酸化(或碱化)后再萃取的方法,但需与活性物质(基)的红外光谱进行比对。
含有待测成分的提取溶液经过滤后,可选择析晶、蒸干、挥发等方法获得待测成分;必要时可经洗涤、重结晶等方法纯化。
4.2.3 干燥可根据《药品红外光谱集》备注中的干燥方法对待测成分进行干燥,也可采用各种项下规定的干燥失重方法或参考(《中国药典》2010年版二部附录Ⅷ L)干燥失重测定法项下的方法进行干燥,可视待测成分情况适当增减干燥时间。
4.2.4 图谱对比4.2.4.1辅料无干扰,待测成分的晶型不变化,此时可直接与对照品图谱或对照图谱进行比对。
4.2.4.2 辅料无干扰,但待测成分的晶型有变化,此种情况可用对照品经同法处理后的图谱比对。
4.2.4.3 待测成分的晶型不变化,而辅料存在不同程度的干扰,此时可参照原料药的对照图谱,在指纹区内选择3~5个不受辅料干扰的待测成分的特征谱带作为鉴别的依据。
鉴别时,实测谱带的波数误差应小于规定值的0.5%。
4.2.4.4 待测成分的晶型有变化,辅料也存在干扰,此种情况一般不宜采用红外光谱鉴别。
4.3 多组分原料药的鉴别不能采用全光谱对比,可借鉴4.2.4.3的方法,选择主要成分的若干个特征谱带,用于组成相对稳定的多组分原料药的鉴别。
4.4 晶型、异构体的限度检查或含量测定供试品制备和具体测定方法均按各品种项下有关规定操作。
5 测量操作注意事项5.1 环境条件红外实验室的室温应控制在15~30℃,相对湿度应小于65%,适当通风换气,以避免积聚过量的二氧化碳和有机溶剂蒸气。
供电电压和接地电阻应符合仪器说明书要求。
5.2 背景补偿或空白校正记录供试品光谱时,双光束仪器的参比光路中应置相应的空白对照物(空白盐片、溶剂或糊剂等);单光束仪器(常见的傅里叶变换红外仪)应先进行空白背景扫描,扫描供试品后扣除背景吸收,即得供试品光谱。
5.3 采用压片法时,以溴化钾最常用。
若供试品为盐酸盐,可比较氯化钾压片和溴化钾压片法的光谱,若二者没有区别,则使用溴化钾。
所使用的溴化钾或氯化钾在中红区应无明显的干扰吸收;应预先研细,过200目筛,并在120℃干燥4h后分装并在干燥器中保存备用。
若发现结块,则须重新干燥。
5.4 供试品研磨应适度,通常以粒度2~5μm为宜。
供试品过度研磨有时会导致晶格结构的破坏或晶型的转化。
粒度不够细则易引起光散射能量损失,使整个光谱基线倾斜,甚至严重变形。
该现象在 4000~2000cm-1高频端最为明显。
压片法及糊法中最易发生这种现象。
5.5 压片法制成的片厚在0.5mm左右时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。
一般可将片厚调节至0.5mm以下即可减弱或避免。
也可用金相砂纸将片稍微打毛以去除干扰。
5.6 测定样品时的扫描速度应与波长校正的条件一致(快速扫描将使波长滞后)。
制成图谱的最强吸收峰透光率应在10%以下,图谱的质量应符合《药品红外光谱集》的要求。
5.7 使用预先印制标尺记录纸的色散型仪器,在制图时应注意记录笔在纸上纵横坐标的位置与仪器示值是否相符,以避免因图纸对准不良而引起的误差。
5.8 压片模具及液体吸收池等红外附件,使用完后应及时擦拭干净,必要时清洗,保存在干燥器中,以免锈蚀。
5.9 关于样品的纯度提取后活性成分的纯度在90%~95%的范围内就能基本满足制剂红外鉴别的要求。
5.10 建立自己的光谱库不同仪器间峰波数和峰的强弱会有微小差别,建议各实验室建立自己的光谱库,用仪器自带软件计算与参考图谱的一致性。
导数光谱能够极大的增强判断的准确性。
5.11 波数的偏差低于1000cm-1波数的偏差不超过0.5%,其他波数的偏差不超过±10cm-1。
5.12 整体性红外光谱与分子结构有密切的关系,谱带之间相互关联,特别是指纹区体现的是整体结构。
图谱比较时,应主要从整体上比较谱带最大吸收的位置、相对强度和性状与参考图谱的一致性。
6 结果判断红外光谱在药品分析中,主要用于定性鉴别和物相分析。
定性鉴别时,主要着眼于供试品光谱与对照光谱全谱谱形的比较,即首先是谱带的有与无,然后是各谱带的相对强弱。
若供试品的光谱图与对照光谱图一致,通常可判定两化合物为同一物质(只有少数例外,如有些光学异构体或大分子同系物等)。
若两光谱图不同,则可判定两化合物不同。
但下此结论时,须考虑供试品是否存在多晶现象,纯度如何,以及其他外界因素的干扰。
采用固体样品制备法,如遇多晶现象造成的实测光谱与对照光谱有差异时,一般可按照《药品红外光谱集》中所载重结晶处理法或与对照品平行处理后测定。
但如对药用晶型有规定时,则不能自行重结晶。
其他影响常可通过修改制样技术而解决。
由于各种型号的仪器性能不同,试样制备时研磨程度的差异或吸水程度不同等原因,均会影响光谱的形状。
因此,进行光谱比对时,应考虑各种因素可能造成的影响。
7 常见的外界干扰因素7.1 大气吸收7.1.1 二氧化碳 2350cm-1,667cm-1。