汽轮机叶片的动强度
- 格式:ppt
- 大小:1.65 MB
- 文档页数:48
《汽轮机原理》思考题杨建明康松编东南大学动力工程系2000年10月第1章汽轮机级的工作原理1.何谓滞止参数?喷嘴和动叶的滞止参数如何计算?2.叶栅通道的速度系数代表了什么意义?影响速度系数大小的主要因素有哪些?3.反动度的意义是什么?汽轮机的级按反动度的大小如何分类?在叶栅通道结构上又是如何实现反动度设计的?4.速度系数、能量损失系数和喷嘴及动叶损失系数三者间的关系如何?5.什么是级的热力过程线?它在分析级的能量转换、认识级工作过程中有何特别作用?6.什么是速度三角形,其意义是什么?7.何谓轮周功率?何谓轮周功?何谓理想能量?轮周功在级热力过程线上如何表示?8.什么是余速损失?什么是余速利用系数?影响余速利用的主要因素有哪些?9.何谓速比?何谓假想速比?10.轮周效率的意义是什么?影响轮周效率的因素有哪些?11.什么是最佳速比?为什么会存在最佳速比?当余速利用后,轮周效率与速比之间的关系发生了哪些主要变化?12.最佳速比与反动度的关系怎样?对相同容量的汽轮机,为什么冲动式的级数一般少于反动式?13.何谓单列级?何谓复速级?它们各自有何优缺点?14.何谓流量系数?流量系数的大小有何特点?15.对汽轮机弯曲形渐缩叶栅通道,最大出口汽流速度能否超过音速?为什么?16.何谓叶栅通道的临界压比?在叶栅通道汽流速度和通流量计算中,临界压比计算有何特别意义?17.叶栅通道的最大出口流速和通过的最大流量是否出现于同一前后压比?为什么?18.何谓叶栅出口汽流偏转角?在什么工况下发生?19.喷嘴调节汽轮机,为什么调节级总为冲动式?20.何谓盖度?其主要起什么作用?21.为什么冲动式汽轮机总会有一定的反动度?22.为什么要采用长扭叶片?23.长扭叶片有哪些主要特点?24.何谓轮周损失?何谓级内损失?两者间的关系怎样?25.什么是叶高损失?其物理意义是什么?采取何种措施减小叶高损失?26.决定叶片高度的主要因素有哪些?27.什么是二次流损失?如何减小二次流损失?28.何谓撞击损失?主要发生在何种情况?29.何谓冲角?正、负冲角是如何定义的?30.何谓扇形损失?采取何技术措施可消除或减小扇形损失?31.叶轮摩擦损失的机理是什么?对冲动级和反动级,此项损失有何差别?32.什么是部分进汽度?为什么要采用部分进汽?33.部分进汽损失的机理是什么?如何减小部分进汽损失?34.什么是湿汽损失?产生湿汽损失的机理有哪些?如何减小湿汽损失?35.什么是漏汽损失?冲动级和反动级在此项损失上有何不同?36.试述级理想焓降、理想能量、轮周功率、级内功率的关系,它们在级热力过程线上如何表示?37.什么是级内效率?它与轮周效率的关系又怎样?38.冲动级和反动级在级焓降和级内损失方面存在哪些主要差别?论文:①冲动级与反动级的优劣之比较②最佳速度比与反动度、动叶出口绝对汽流角的关系第2章多级汽轮机1.为什么要采用多级汽轮机?多级汽轮机有何显著优点?2.何谓重热现象?何谓重热系数?重热系数的大小主要与哪些因素有关?3.多级汽轮机计及重热后,级数是增多还是减少?为什么?4.对冲动式中间再热汽轮机,为什么级的平均反动度随蒸汽膨胀流程逐级增大?5.为什么一次中间再热机组高压缸叶栅通道的平均直径变化不大,但低压缸变化较大?6.为什么一次中间再热汽轮机的焓降是逐级增大的?7.试分析一次中间再热汽轮机高、中、低三个汽缸相对内效率的大小分布和各自级内损失的特点。
第六节汽轮机叶片的动强度一、叶片动强度概念运行实践证明:汽轮机叶片除了承受静应力外,还受到因汽流不均匀产生的激振力作用。
该力是由结构因素、制造和安装误差及工况变化等原因引起的。
对旋转的叶片来说,激振力对叶片的作用是周期性的,导致叶片振动,所以叶片是在振动状态下工作的。
当叶片的自振频率等于脉冲激振力频率或为其整数倍时,叶片发生共振,振幅增大,并产生很大的交变动应力。
为了保证叶片安全工作,必须研究微振力和叶片振动特性,以及叶片在动应力作用下的承载能力等问题,这些属于叶片动强度范畴。
运行经验表明,在汽轮机事故中,叶片损坏占相当大比重,其中又以叶片振动损坏为主。
据国外统计,叶片事故约占汽轮机事故25%以上。
据国内1977年对1156台汽轮机统计,发生叶片损坏或断裂事故者约占31.7%。
应该指出,迄今为止还不能精确地对叶片动应力进行理论计算。
因此,下面只介绍激振力和叶片自振频率、动频率的计算,以及叶片安全准则和调频方法。
二、激振力产生的原因及其频率计算叶片的激振力是由级中汽流流场不均匀所致的。
造成流场不均的原因很多,归纳起来可分为两类:一类是叶栅尾迹扰动,即汽流绕流叶栅时,由于附面层的存在,叶栅表面汽流速度近于零、附面层以外汽流速度为主流区速度,当汽流流出叶栅时在出口边形成尾迹,所以在动静叶栅间隙中汽流的速度和压力沿圆周向分布是不均匀的,另一类是结构扰动,如部分进汽、抽汽口、进排汽管以及叶栅节距有偏差等原因引起汽流流场不均匀,都将对叶片产生周期性的激振力,因而使叶片发生振动。
当叶片自振频率与激振力频率相等时,无论激振力是脉冲形式还是简谐形式,都会使叶片发生共振。
当自振频率为激振力频率的整数倍时,只有脉冲形式激振力才会引起叶片共振。
当自振频率等于激振力频率或前者是后者的整数倍而共振时,称为两者合拍。
在汽轮机中叶片的激振力都是以脉冲形式出现的。
因5,6.2所示为叶片自振频率为脉冲激振力频率的三倍时的振幅变化情况。
汽轮机叶片的动强度汽轮机叶片是支撑着汽轮机正常运转的重要组成部分,因此其强度的稳定性是非常重要的。
在实际运行中,汽轮机叶片受到动载荷等复杂影响,因此动强度的分析是汽轮机叶片强度设计的重要手段之一。
本文将从汽轮机叶片的设计要求、动载荷的特点以及动强度的分析方法这三个方面来讨论汽轮机叶片的动强度。
汽轮机叶片设计要求第一点,具有满足所受静、动载荷的疲劳寿命。
叶片在运行过程中受到的静、动载荷会导致疲劳损伤,因此叶片必须具有足够的疲劳寿命。
第二点,具有满足所受瞬态载荷的强度。
叶片在汽轮机运行过程中,可能会受到瞬态载荷的作用,例如汽轮机的起动、停车等,因此叶片必须具有足够的强度来承受这些瞬态载荷。
第三点,具有满足所受高温腐蚀等环境因素的抗腐蚀能力。
汽轮机叶片在高温、高压的环境下长期工作,因此必须具有足够的抗腐蚀能力,防止在使用中因高温腐蚀产生的裂纹导致断裂。
动载荷的特点汽轮机叶片在运行过程中所受到的载荷包括静载荷和动载荷。
静载荷是稳定的载荷,而动载荷则是非常复杂的载荷,包括旋转惯性力、气动力、惯性离心力等。
其中,惯性离心力是最为重要的载荷之一,它是叶片在旋转时与介质之间产生的离心力,其作用方向垂直于叶片。
惯性离心力的大小与汽轮机的转速、叶轮直径以及介质密度等因素有关。
由于汽轮机在高速运转时惯性离心力非常大,因此叶片必须具有足够的强度来承受这一载荷。
此外,汽轮机在启动停车时也会受到瞬态载荷的作用,因此叶片必须具有足够的强度来承受这些载荷。
动强度的分析方法动强度是指叶片在受到动载荷作用时所承受的最大应力值,其计算方法是通过把叶片上的动载荷模型化为一个刚性系统,然后采用应力分析方法来计算叶片的动强度。
目前,常用的动强度分析方法有有限元法、分析法和试验法等。
其中,有限元法是一种较为常用的分析方法,它是根据叶片的几何形状、材料力学参数、加载条件等数据进行求解,得到叶片在动载荷作用下的应力分布情况和最大应力值。
除了有限元法以外,试验法也是一种比较直观的方法,它通过试验的方式来测量叶片在动载荷作用下的应力变化情况。
第五章汽轮机零件的强度校核-第七节叶轮振动第七节叶轮振动叶轮的动强度主要分析叶轮振动时叶轮临界转速和叶轮共振转速,以及讨论它们与⼯作转速避开的要求。
⼀、叶轮的据型正如本章第六节所指出的,作⽤在叶⽚上的⽓动裁荷是不均匀的,因⽽导致轴向⼒的变化,引起叶轮弯曲振动。
叶轮振动时总是带动叶⽚⼀起振动,实际上是叶轮、叶⽚弹性系统的振动,称为轮系振动。
习惯上把轮系振动仍称为叶轮振动。
叶轮振动也可能由主轴振动引起。
叶轮振动计算可根据圆板振动理论进⾏,这个问题是相当复杂的。
因此,下⾯只介绍叶轮振动的基本概念。
不转动叶轮的据型⼤致可归纳为四类:(1)⽆节径和节圆的振动叶轮振动时,整个轮⾯沿铀向作同⽅向振动,因此轮⾯上既⽆不振动的节径,也⽆不振动的节圆,如图5.7.1(a)所⽰。
图5.7.1 不转动叶轮的振型(2)有节径的振动叶轮振动时,在轮⾯上出现不振动的节径,节径两侧轮⾯上各点在轴向的位移是相反的(⽤正负号表⽰),图5.7.1(b)与图5.7.1(c)分别表⽰⼀条和两条节径的振动,节径越多,振动频率越⾼。
(3)有节圆的振动叶轮振动时,轮⾯上出现不振动的节圆,节圆两侧各点的轴向位移相反,如图5.7.1(d)、(e)、(f)所⽰。
节圆越多,振动频率也越⾼。
(4)有节径和节圆的振动叶轮振动时,在轮⾯上既有节径,⼜有节圆,如图(g)、(h)、(i)所⽰。
上述有节径的振动统称为扇型振动,⽽有节圆的振动称为伞型振动。
振动频率最低的是⽆节径和节圆的振动,其次是只有⼀条节径的振动。
汽轮机运⾏实践表明扇型振动是最危险的振动。
⼆、不旋转叶轮的扇型振动现在分析具有i 条节径的不旋转叶轮的扇型振动,如图5.7.2所⽰。
图(a )中表⽰出三条节径,在极坐标(?、γ)系中,轮⾯上各点振动的挠度⽅程如下: s i n ()c o s (p y R i ?ωτ= (5.7.1)式中 R ——根据半径确定的叶轮振型函数;——由某条节径算起的⾓度;τ——时间。
汽轮机调频叶片与不调频叶片振动强度安全准则在工业的世界里,汽轮机就像一位伟大的指挥家,指挥着能量的交响乐。
它的调频叶片和不调频叶片就像是乐团里的不同乐器,彼此配合,才能奏出美妙的乐章。
可是,大家有没有想过,这些叶片在高速旋转的时候,会产生什么样的振动呢?要是振动强度过大,可是会出事的哦!想象一下,如果一个小提琴拉得太用力,弦断了,乐器就得退休了。
汽轮机的叶片也是一样,振动太厉害,不但影响工作效率,还可能导致整个机器“罢工”。
说到振动强度,大家可能觉得这听上去有点儿高大上,其实就像平时我们走路的时候,不小心摔了一跤,那种“咣当”的声音就是振动。
这种声音如果太频繁,机器就像在发脾气。
调频叶片是为了保持旋转的稳定性而设计的,尤其是在负荷变化大的时候。
没错,这就像是一个人在坐过山车的时候,手里拿着饮料,必须得稳住,才能不洒一地。
这调频叶片的工作就是这样,确保汽轮机在各种情况下都能平稳运行。
然而,不调频叶片就有点儿“放飞自我”的感觉,尤其是在遇到负荷变化的时候。
像一只任性的孩子,时不时就要跳出来捣乱。
振动强度一旦超过安全准则,机器就可能会受到损害,严重的话还可能引发事故。
大家想象一下,机器突然冒烟,那可真是“叫天天不应,叫地地不灵”。
这时候,就得麻烦维修工人来出场了,保不齐还得停工几天,真是损失惨重。
说到安全准则,哎呀,这个可是关键中的关键。
就像是家里的安全守则,平时不能大意,尤其在工作环境中,更不能掉以轻心。
调频叶片和不调频叶片的振动强度都有相应的标准,确保在运行过程中不会出现问题。
大家都知道,预防胜于治疗,早些规避风险总比后面处理事故要好得多。
就像是出门前检查一下钥匙、钱包,要是落下了,可就尴尬了!怎么才能保证这些叶片在运行中的振动强度都在安全范围内呢?定期的检测和维护是必不可少的。
就像照顾宠物一样,要时不时带它去医院检查,才能确保它健康。
这里面包含了很多技术手段,比如振动监测、实时数据分析等等。
这些听起来可能有点儿复杂,但其实就是利用一些现代科技,帮助我们“看透”叶片的状态。
关于汽轮机叶片结构设计探讨摘要:叶轮是影响汽轮机工作效率的重要零器件,也是对汽轮机可靠性具有重要影响的器件。
随着经济社会的发展,汽轮机的数量越来越多,叶轮的形状更加复杂,对叶片的性能要求也越来越高。
一些特殊叶片的加工技术难度大,传统的加工方式难以满足要求。
对汽轮机叶片进行研究,可以提高汽轮机叶片制造技术的发展,促进新工艺的形成。
关键词:汽轮机;叶片结构;设计探讨1、前言随着经济社会的快速发展,汽轮机在各行各业得到快速发展。
汽轮机叶片作为汽轮机的关键组成部分,其质量是保障汽轮机运行可靠性的关键因素。
当前,汽轮机叶片越来越复杂,给制造技术带来了较大挑战。
使用机床技术,可以对叶片进行精确加工,提高了叶片质量。
2、汽轮机叶片的结构特点2.1汽轮机叶片构造机装配根据叶片功能的不同,汽轮机叶片可分为静叶片和动叶片。
静叶片通常与汽轮机静子连接,处于相对不动状态,可以改变气流的方向,促使蒸汽进入下一个叶片。
动叶片通常安装在转子叶轮或者转鼓上,受到喷嘴出口高速气流的冲力作用,将蒸汽的能量转换成机械能。
不同的汽轮机,叶轮的作用不同,叶片的固定方法也不相同。
动叶片由三部分组成,叶根、叶冠和叶身。
叶身通常是扭转的曲面,是叶片的基本组成部分。
叶身塑面主要有内塑面、背塑面、出气边圆角等组成。
直叶片的塑线从叶根到叶冠不发生变化,属于等截面叶片。
叶片通常是比较复杂的曲面,对加工精度要求较高,使用传统的加工方法难以满足要求,是塑面难度大的关键所在。
叶根主要是将叶片固定在叶轮上,保证叶片牢固。
叶根可以使叶片在巨大离心力作用下不从轮槽中拔出来。
叶根需要有足够的强度。
叶冠是叶片外端的固定。
叶冠部分通常有围带,可以将多个叶片进行联接。
围带可以提高叶片的刚性,避免叶片出现共振,并提高叶片抗振性。
围带还可以形成密闭槽道,减少气流的泄露。
2.2汽轮机叶片与叶轮的装配叶轮通常由轮缘、轮面和轮壳组成。
轮壳主要是配合叶轮主轴,一般套装在主轴上,可以提高轮壳的强度。