数控机床 位置检测技术
- 格式:ppt
- 大小:1.10 MB
- 文档页数:53
数控加工中的测量与检验技术随着科技的不断进步,数控加工技术在各个工业领域中得到了广泛应用。
而在数控加工过程中,测量与检验技术起着至关重要的作用。
本文将探讨数控加工中的测量与检验技术,并介绍其在提高产品质量和生产效率方面的重要性。
一、测量技术在数控加工中的作用在数控加工过程中,测量技术被广泛应用于工件尺寸、形状、位置等方面的检测。
通过精确的测量,可以确保工件在加工过程中达到所需的精度要求。
同时,测量技术还可以用于检测机床的几何误差、工具磨损等问题,为加工过程的控制提供重要参考。
1. 工件尺寸测量在数控加工中,工件的尺寸测量是最基本的任务之一。
通过使用各种测量工具,如千分尺、游标卡尺、光学投影仪等,可以准确测量工件的尺寸,并与设计要求进行比较。
如果测量结果与设计要求不符,可以及时采取措施进行调整,确保工件的精度。
2. 工件形状测量除了尺寸测量外,工件的形状测量也是数控加工中的重要任务。
通过使用三坐标测量机等高精度测量设备,可以测量工件的曲面形状、轮廓等参数。
这对于需要进行复杂形状加工的工件来说尤为重要,可以确保工件的形状满足设计要求。
3. 机床几何误差测量在数控加工中,机床的几何误差会直接影响工件的加工精度。
因此,通过测量机床的几何误差,可以了解机床的精度状况,并及时进行调整和维修。
常用的机床几何误差测量方法包括激光干涉仪、球棒法等。
这些测量技术可以帮助提高机床的加工精度,提高产品质量。
二、检验技术在数控加工中的作用除了测量技术,检验技术在数控加工中也起着重要的作用。
通过对加工过程和成品进行检验,可以确保产品的质量和性能达到要求。
1. 加工过程检验在数控加工过程中,通过对加工过程的监控和检验,可以及时发现和纠正加工中的问题。
常用的加工过程检验方法包括切削力检测、温度检测、振动检测等。
这些检验技术可以帮助提高加工效率,减少加工中的故障和损耗。
2. 成品检验在数控加工完成后,对成品进行全面的检验是确保产品质量的关键。
第五部分数控机床位置检测与传感器件1.位置传感器件主要分类(1)直线和角位移传感器:a.直线位移传感器直线位移传感器用于测量工作台的位移,通常装在工作台侧面。
为了使传感器的热膨胀系数与机床床身的相同,要选择传感器的材料,否则会影响测量的准确性。
直线位移传感器还要避免油雾、冷却液和切屑等的污染。
b.角位移传感器是用来测量传动轴的角度位移的。
用角位移传感器测量直线位移时,要求它的测量值与工作台的直线位移有一定的对应关系,通常是将角位移传感器装在带动工作台移动的丝杠的端部。
位移传感器的输出只有两种形式,即模拟式或数字式;直线或角位移传感器也可能是绝对、半绝对或增量位移传感器。
(2)模拟式和数字式位移传感器:模拟传感器——传感器输出信号的强度产生连续的、逐渐的变化。
数字位移传感器——工作台位置变化时,位移传感器以电脉冲的形式产生一个数字式输出信号。
根据机床的最小设定单位,每移动相应的距离就产生一个脉冲。
(3)绝对、半绝对及增量位移传感器:绝对、增量传感器产生的信号,前者是一个绝对的位置数据.后者是相对于上一个位置的增最(相对)数据。
半绝对位移传感器大部分使用绝对角位移传感器测量丝杠的角位移,为了得到工作台的直线位移,需要采用一些附加的方法测定丝杠旋转的圈数。
2.精度的概念精度和分辨率是描述传感器件性能的重要指标。
传感器件的测量精度是其可以一致的、重复测出的最小单位;分辨率是指传感器件能辨别的一个物理量等分后的最小单位。
无论是直线位移传感器还是角位移传感器,精度都是指其测量工作台位移的精度,而不是传感器的分辨率。
另一方面,测量的精度并非工件的加工精度,工件的加工精度受很多因素的影响。
3.光栅位移检测装置光栅位移传感器基于莫尔条纹和光电效应将位移信号转变为电信号,有直线光栅和困光栅两种类型。
光栅位移检测装置的测量精度高,在大量程测长方面其精度仅低于激光式的测量精度;而对要求整困范围内高分辨率的困分度测量来说,光栅式测量装置是精度最高的一种。
数控机床精度检验数控机床精度检测数控机床的⾼精度最终是要靠机床本⾝的精度来保证,数控机床精度包括⼏何精度和切削精度。
另⼀⽅⾯,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使⽤。
因此,数控机床精度检验对初始使⽤的数控机床及维修调整后机床的技术指标恢复是很重要的。
1、检验所⽤的⼯具1.1、⽔平仪⽔平:0.04mm/1000mm扭曲:0.02mm/1000mm⽔平仪的使⽤和读数⽔平仪是⽤于检查各种机床及其它机械设备导轨的直线度、平⾯度和设备安装的⽔平性、垂直性。
使⽤⽅法:测量时使⽔平仪⼯作⾯紧贴在被测表⾯,待⽓泡完全静⽌后⽅可读数。
⽔平仪的分度值是以⼀⽶为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进⾏计算:实际倾斜值=分度值×L×偏差格数1.2、千分表1.3、莫⽒检验棒2、检验内容2.1、相关标准(例)加⼯中⼼检验条件第2部分:⽴式加⼯中⼼⼏何精度检验JB/T8771.2-1998加⼯中⼼检验条件第7部分:精加⼯试件精度检验JB/T8771.7-1998加⼯中⼼检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000加⼯中⼼技术条件JB/T8801-19982.2、检验内容精度检验内容主要包括数控机床的⼏何精度、定位精度和切削精度。
2.2.1、数控机床⼏何精度的检测机床的⼏何精度是指机床某些基础零件本⾝的⼏何形状精度、相互位置的⼏何精度及其相对运动的⼏何精度。
机床的⼏何精度是综合反映该设备的关键机械零部件和组装后⼏何形状误差。
数控机床的基本性能检验与普通机床的检验⽅法差不多,使⽤的检测⼯具和⽅法也相似,每⼀项要独⽴检验,但要求更⾼。
所使⽤的检测⼯具精度必须⽐所检测的精度⾼⼀级。
其检测项⽬主要有:直线度⼀条线在⼀个平⾯或空间内的直线度,如数控卧式车床床⾝导轨的直线度。
数控机床检测技术综述数控机床是现代制造业中不可或缺的重要设备,其精度和性能对产品质量和生产效率有着直接影响。
为了保证数控机床的稳定运行和高精度加工,检测技术在数控机床的制造、安装、调试和使用过程中起着关键作用。
本文将综述数控机床检测技术的发展现状、常用方法以及未来发展方向。
一、数控机床检测技术的发展现状1. 传统检测方法传统的数控机床检测方法主要包括人工测量和简单工具测量。
人工测量依赖于操作人员的经验和技能,容易受到主观因素影响,且效率低下。
简单工具测量主要通过使用划线尺、游标卡尺等简单仪器进行线性尺寸的测量,但对于复杂曲面和非线性尺寸的测量效果较差。
2. 光学检测技术光学检测技术是一种非接触式的高精度检测方法,可以实现对零件形貌、表面质量等多个方面进行全方位的检测。
常用的光学检测技术包括激光干涉仪、激光三角测量仪、视觉系统等。
这些技术在数控机床的精度检测、工件形状复原等方面具有广泛应用。
3. 电子检测技术电子检测技术是一种基于电子信号的高精度检测方法,可以实现对尺寸、位置、形状等多个方面进行精确测量。
常用的电子检测技术包括激光干涉仪、位移传感器、编码器等。
这些技术在数控机床的定位精度检测、轴向误差检测等方面具有重要应用。
4. 智能化检测技术智能化检测技术是近年来快速发展的一种新型检测方法,主要利用人工智能和机器学习算法对数控机床进行自动化和智能化的监控与诊断。
通过对大量数据进行分析和处理,可以实现对数控机床状态的实时监测和故障诊断,提高生产效率和设备利用率。
二、数控机床常用的检测方法1. 几何精度检测几何精度是衡量数控机床性能的重要指标之一,常用的几何精度检测方法包括坐标系误差检测、直线度检测、平面度检测、圆度检测等。
这些方法主要通过光学或电子检测技术对机床的几何特征进行测量和分析,以评估机床的加工精度和稳定性。
2. 动态性能测试动态性能测试是评估数控机床动态响应能力和运动轨迹精度的重要手段。
数控机床位置检测装置的分类方法数控机床位置检测装置的分类方法对于不同类型的数控机床,因工作条件和检测要求不同,可以采用以下不同的检测方式。
下面就一起随店铺来了解下数控机床位置检测装置的分类方法吧。
1、增量式和绝对式测量增量式检测方式只测量位移增量,并用数字脉冲的个数来表示单位位移(即最小设定单位)的数量,每移动一个测量单位就发出一个测量信号。
其优点是检测装置比较简单,任何一个对中点都可以作为测量起点。
但在此系统中,移距是靠对测量信号累积后读出的,一旦累计有误,此后的测量结果将全错。
另外在发生故障时(如断电)不能再找到事故前的正确位置,事故排除后,必须将工作台移至起点重新计数才能找到事故前的正确位置。
脉冲编码器,旋转变压器,感应同步器,光栅,磁栅,激光干涉仪等都是增量检测装置。
绝对式测量方式测出的是被测部件在某一绝对坐标系中的绝对坐标位置值,并且以二进制或十进制数码信号表示出来,一般都要经过转换成脉冲数字信号以后,才能送去进行比较和显示。
采用此方式,分辨率要求愈高,结构也愈复杂。
这样的测量装置有绝对式脉冲编码盘、三速式绝对编码盘(或称多圈式绝对编码盘)等。
2、数字式和模拟式测量数字式检测是将被测量单位量化以后以数字形式表示。
测量信号一般为电脉冲,可以直接把它送到数控系统进行比较、处理。
这样的检测装置有脉冲编码器、光栅。
数字式检测有如下的'特点:(1)被测量转换成脉冲个数,便于显示和处理;(2)测量精度取决于测量单位,与量程基本无关;但存在累计误码差;(3)检测装置比较简单,脉冲信号抗干扰能力强。
模拟式检测是将被测量用连续变量来表示,如电压的幅值变化,相位变化等。
在大量程内做精确的模拟式检测时,对技术有较高要求,数控机床中模拟式检测主要用于小量程测量。
模拟式检测装置有测速发电机、旋转变压器、感应同步器和磁尺等。
模拟式检测的主要特点有:(1)直接对被测量进行检测,无须量化。
(2)在小量程内可实现高精度测量。
第5章 位置检测装置习题及答案1.伺服系统中常用的位置检测装置有几种?各有什么特点?答:伺服系统中常用的位置检测装置有:旋转变压器、感应同步器、脉冲编码器和光栅,各检测装置的特点如下:旋转变压器:又称同步分解器,是利用电磁感应原理的一种模拟式测角器件,是一种旋转式的小型交流电动机,在结构上和二相绕线式异步电动机相似,由定子和转子组成,分有刷和无刷两种。
其特点是坚固、耐热、耐冲击、抗干扰、成本低,是数控系统中较为常用的位置传感器;感应同步器:感应同步器是从旋转变压器发展而来的直线式感应器,相当于一个展开的多级旋转变压器。
踏实利用滑尺上的励磁绕组和定尺上的感应绕组之间相对位置的变化而产生电磁耦合的变化,从而发出相应的位置信号来实现位移检测的,其特点为:精度高,工作可靠,抗干扰能力强,维修简单、寿命长,测量距离长,工艺好、成本低、便于成批生产;脉冲编码器:脉冲编码器分为光电式、接触式和电磁感应式三种。
数控机床主要使用光电式脉冲编码器。
光电式脉冲编码器按编码方式又分为绝对值式和增量式两种,常用的为增量式脉冲编码器,其优点是结构简单、成本低、使用方便,缺点是有可能由于噪声或其它外界的干扰产生计数误差,若因停电、刀具破损而停机,事故排除后不能再找到事故发生前执行部件的正确位置;光栅:在高精度数控机床和数显系统中,常使用光栅作为位置检测装置。
它是将机械位移或模拟量转变为数字脉冲,反馈给CNC或数显装置来实现闭环控制的。
计量光栅分为圆光栅和长光栅两种。
圆光栅用于测量转角位移,长光栅用于测量直线位移,由于激光技术的发展,光栅制作的精度有了很大的提高,现在光栅精度可以达到微米级甚至亚微米级。
2. 旋转变压器由哪些部分组成?其检测的基本原理如何?答:旋转变压器又称同步分解器,是利用电磁感应原理的一种模拟式测角器件,是一种旋转式的小型交流电动机,在结构上和二相绕线式异步电动机相似,由定子和转子组成,分有刷和无刷两种,结构如下图所示:有刷式旋转变压器的结构无刷式旋转变压器结构示意图1-转轴 ; 2-轴承 ; 3-机壳; 4-转子铁心; 5-定子铁心6-端盖 ; 7-电刷 ;8-集电环旋转变压器是根据互感原理工作的。