数控机床 位置检测技术
- 格式:ppt
- 大小:1.10 MB
- 文档页数:53
数控加工中的测量与检验技术随着科技的不断进步,数控加工技术在各个工业领域中得到了广泛应用。
而在数控加工过程中,测量与检验技术起着至关重要的作用。
本文将探讨数控加工中的测量与检验技术,并介绍其在提高产品质量和生产效率方面的重要性。
一、测量技术在数控加工中的作用在数控加工过程中,测量技术被广泛应用于工件尺寸、形状、位置等方面的检测。
通过精确的测量,可以确保工件在加工过程中达到所需的精度要求。
同时,测量技术还可以用于检测机床的几何误差、工具磨损等问题,为加工过程的控制提供重要参考。
1. 工件尺寸测量在数控加工中,工件的尺寸测量是最基本的任务之一。
通过使用各种测量工具,如千分尺、游标卡尺、光学投影仪等,可以准确测量工件的尺寸,并与设计要求进行比较。
如果测量结果与设计要求不符,可以及时采取措施进行调整,确保工件的精度。
2. 工件形状测量除了尺寸测量外,工件的形状测量也是数控加工中的重要任务。
通过使用三坐标测量机等高精度测量设备,可以测量工件的曲面形状、轮廓等参数。
这对于需要进行复杂形状加工的工件来说尤为重要,可以确保工件的形状满足设计要求。
3. 机床几何误差测量在数控加工中,机床的几何误差会直接影响工件的加工精度。
因此,通过测量机床的几何误差,可以了解机床的精度状况,并及时进行调整和维修。
常用的机床几何误差测量方法包括激光干涉仪、球棒法等。
这些测量技术可以帮助提高机床的加工精度,提高产品质量。
二、检验技术在数控加工中的作用除了测量技术,检验技术在数控加工中也起着重要的作用。
通过对加工过程和成品进行检验,可以确保产品的质量和性能达到要求。
1. 加工过程检验在数控加工过程中,通过对加工过程的监控和检验,可以及时发现和纠正加工中的问题。
常用的加工过程检验方法包括切削力检测、温度检测、振动检测等。
这些检验技术可以帮助提高加工效率,减少加工中的故障和损耗。
2. 成品检验在数控加工完成后,对成品进行全面的检验是确保产品质量的关键。
第五部分数控机床位置检测与传感器件1.位置传感器件主要分类(1)直线和角位移传感器:a.直线位移传感器直线位移传感器用于测量工作台的位移,通常装在工作台侧面。
为了使传感器的热膨胀系数与机床床身的相同,要选择传感器的材料,否则会影响测量的准确性。
直线位移传感器还要避免油雾、冷却液和切屑等的污染。
b.角位移传感器是用来测量传动轴的角度位移的。
用角位移传感器测量直线位移时,要求它的测量值与工作台的直线位移有一定的对应关系,通常是将角位移传感器装在带动工作台移动的丝杠的端部。
位移传感器的输出只有两种形式,即模拟式或数字式;直线或角位移传感器也可能是绝对、半绝对或增量位移传感器。
(2)模拟式和数字式位移传感器:模拟传感器——传感器输出信号的强度产生连续的、逐渐的变化。
数字位移传感器——工作台位置变化时,位移传感器以电脉冲的形式产生一个数字式输出信号。
根据机床的最小设定单位,每移动相应的距离就产生一个脉冲。
(3)绝对、半绝对及增量位移传感器:绝对、增量传感器产生的信号,前者是一个绝对的位置数据.后者是相对于上一个位置的增最(相对)数据。
半绝对位移传感器大部分使用绝对角位移传感器测量丝杠的角位移,为了得到工作台的直线位移,需要采用一些附加的方法测定丝杠旋转的圈数。
2.精度的概念精度和分辨率是描述传感器件性能的重要指标。
传感器件的测量精度是其可以一致的、重复测出的最小单位;分辨率是指传感器件能辨别的一个物理量等分后的最小单位。
无论是直线位移传感器还是角位移传感器,精度都是指其测量工作台位移的精度,而不是传感器的分辨率。
另一方面,测量的精度并非工件的加工精度,工件的加工精度受很多因素的影响。
3.光栅位移检测装置光栅位移传感器基于莫尔条纹和光电效应将位移信号转变为电信号,有直线光栅和困光栅两种类型。
光栅位移检测装置的测量精度高,在大量程测长方面其精度仅低于激光式的测量精度;而对要求整困范围内高分辨率的困分度测量来说,光栅式测量装置是精度最高的一种。
数控机床精度检验数控机床精度检测数控机床的⾼精度最终是要靠机床本⾝的精度来保证,数控机床精度包括⼏何精度和切削精度。
另⼀⽅⾯,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使⽤。
因此,数控机床精度检验对初始使⽤的数控机床及维修调整后机床的技术指标恢复是很重要的。
1、检验所⽤的⼯具1.1、⽔平仪⽔平:0.04mm/1000mm扭曲:0.02mm/1000mm⽔平仪的使⽤和读数⽔平仪是⽤于检查各种机床及其它机械设备导轨的直线度、平⾯度和设备安装的⽔平性、垂直性。
使⽤⽅法:测量时使⽔平仪⼯作⾯紧贴在被测表⾯,待⽓泡完全静⽌后⽅可读数。
⽔平仪的分度值是以⼀⽶为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进⾏计算:实际倾斜值=分度值×L×偏差格数1.2、千分表1.3、莫⽒检验棒2、检验内容2.1、相关标准(例)加⼯中⼼检验条件第2部分:⽴式加⼯中⼼⼏何精度检验JB/T8771.2-1998加⼯中⼼检验条件第7部分:精加⼯试件精度检验JB/T8771.7-1998加⼯中⼼检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000加⼯中⼼技术条件JB/T8801-19982.2、检验内容精度检验内容主要包括数控机床的⼏何精度、定位精度和切削精度。
2.2.1、数控机床⼏何精度的检测机床的⼏何精度是指机床某些基础零件本⾝的⼏何形状精度、相互位置的⼏何精度及其相对运动的⼏何精度。
机床的⼏何精度是综合反映该设备的关键机械零部件和组装后⼏何形状误差。
数控机床的基本性能检验与普通机床的检验⽅法差不多,使⽤的检测⼯具和⽅法也相似,每⼀项要独⽴检验,但要求更⾼。
所使⽤的检测⼯具精度必须⽐所检测的精度⾼⼀级。
其检测项⽬主要有:直线度⼀条线在⼀个平⾯或空间内的直线度,如数控卧式车床床⾝导轨的直线度。
数控机床检测技术综述数控机床是现代制造业中不可或缺的重要设备,其精度和性能对产品质量和生产效率有着直接影响。
为了保证数控机床的稳定运行和高精度加工,检测技术在数控机床的制造、安装、调试和使用过程中起着关键作用。
本文将综述数控机床检测技术的发展现状、常用方法以及未来发展方向。
一、数控机床检测技术的发展现状1. 传统检测方法传统的数控机床检测方法主要包括人工测量和简单工具测量。
人工测量依赖于操作人员的经验和技能,容易受到主观因素影响,且效率低下。
简单工具测量主要通过使用划线尺、游标卡尺等简单仪器进行线性尺寸的测量,但对于复杂曲面和非线性尺寸的测量效果较差。
2. 光学检测技术光学检测技术是一种非接触式的高精度检测方法,可以实现对零件形貌、表面质量等多个方面进行全方位的检测。
常用的光学检测技术包括激光干涉仪、激光三角测量仪、视觉系统等。
这些技术在数控机床的精度检测、工件形状复原等方面具有广泛应用。
3. 电子检测技术电子检测技术是一种基于电子信号的高精度检测方法,可以实现对尺寸、位置、形状等多个方面进行精确测量。
常用的电子检测技术包括激光干涉仪、位移传感器、编码器等。
这些技术在数控机床的定位精度检测、轴向误差检测等方面具有重要应用。
4. 智能化检测技术智能化检测技术是近年来快速发展的一种新型检测方法,主要利用人工智能和机器学习算法对数控机床进行自动化和智能化的监控与诊断。
通过对大量数据进行分析和处理,可以实现对数控机床状态的实时监测和故障诊断,提高生产效率和设备利用率。
二、数控机床常用的检测方法1. 几何精度检测几何精度是衡量数控机床性能的重要指标之一,常用的几何精度检测方法包括坐标系误差检测、直线度检测、平面度检测、圆度检测等。
这些方法主要通过光学或电子检测技术对机床的几何特征进行测量和分析,以评估机床的加工精度和稳定性。
2. 动态性能测试动态性能测试是评估数控机床动态响应能力和运动轨迹精度的重要手段。
数控机床位置检测装置的分类方法数控机床位置检测装置的分类方法对于不同类型的数控机床,因工作条件和检测要求不同,可以采用以下不同的检测方式。
下面就一起随店铺来了解下数控机床位置检测装置的分类方法吧。
1、增量式和绝对式测量增量式检测方式只测量位移增量,并用数字脉冲的个数来表示单位位移(即最小设定单位)的数量,每移动一个测量单位就发出一个测量信号。
其优点是检测装置比较简单,任何一个对中点都可以作为测量起点。
但在此系统中,移距是靠对测量信号累积后读出的,一旦累计有误,此后的测量结果将全错。
另外在发生故障时(如断电)不能再找到事故前的正确位置,事故排除后,必须将工作台移至起点重新计数才能找到事故前的正确位置。
脉冲编码器,旋转变压器,感应同步器,光栅,磁栅,激光干涉仪等都是增量检测装置。
绝对式测量方式测出的是被测部件在某一绝对坐标系中的绝对坐标位置值,并且以二进制或十进制数码信号表示出来,一般都要经过转换成脉冲数字信号以后,才能送去进行比较和显示。
采用此方式,分辨率要求愈高,结构也愈复杂。
这样的测量装置有绝对式脉冲编码盘、三速式绝对编码盘(或称多圈式绝对编码盘)等。
2、数字式和模拟式测量数字式检测是将被测量单位量化以后以数字形式表示。
测量信号一般为电脉冲,可以直接把它送到数控系统进行比较、处理。
这样的检测装置有脉冲编码器、光栅。
数字式检测有如下的'特点:(1)被测量转换成脉冲个数,便于显示和处理;(2)测量精度取决于测量单位,与量程基本无关;但存在累计误码差;(3)检测装置比较简单,脉冲信号抗干扰能力强。
模拟式检测是将被测量用连续变量来表示,如电压的幅值变化,相位变化等。
在大量程内做精确的模拟式检测时,对技术有较高要求,数控机床中模拟式检测主要用于小量程测量。
模拟式检测装置有测速发电机、旋转变压器、感应同步器和磁尺等。
模拟式检测的主要特点有:(1)直接对被测量进行检测,无须量化。
(2)在小量程内可实现高精度测量。
第5章 位置检测装置习题及答案1.伺服系统中常用的位置检测装置有几种?各有什么特点?答:伺服系统中常用的位置检测装置有:旋转变压器、感应同步器、脉冲编码器和光栅,各检测装置的特点如下:旋转变压器:又称同步分解器,是利用电磁感应原理的一种模拟式测角器件,是一种旋转式的小型交流电动机,在结构上和二相绕线式异步电动机相似,由定子和转子组成,分有刷和无刷两种。
其特点是坚固、耐热、耐冲击、抗干扰、成本低,是数控系统中较为常用的位置传感器;感应同步器:感应同步器是从旋转变压器发展而来的直线式感应器,相当于一个展开的多级旋转变压器。
踏实利用滑尺上的励磁绕组和定尺上的感应绕组之间相对位置的变化而产生电磁耦合的变化,从而发出相应的位置信号来实现位移检测的,其特点为:精度高,工作可靠,抗干扰能力强,维修简单、寿命长,测量距离长,工艺好、成本低、便于成批生产;脉冲编码器:脉冲编码器分为光电式、接触式和电磁感应式三种。
数控机床主要使用光电式脉冲编码器。
光电式脉冲编码器按编码方式又分为绝对值式和增量式两种,常用的为增量式脉冲编码器,其优点是结构简单、成本低、使用方便,缺点是有可能由于噪声或其它外界的干扰产生计数误差,若因停电、刀具破损而停机,事故排除后不能再找到事故发生前执行部件的正确位置;光栅:在高精度数控机床和数显系统中,常使用光栅作为位置检测装置。
它是将机械位移或模拟量转变为数字脉冲,反馈给CNC或数显装置来实现闭环控制的。
计量光栅分为圆光栅和长光栅两种。
圆光栅用于测量转角位移,长光栅用于测量直线位移,由于激光技术的发展,光栅制作的精度有了很大的提高,现在光栅精度可以达到微米级甚至亚微米级。
2. 旋转变压器由哪些部分组成?其检测的基本原理如何?答:旋转变压器又称同步分解器,是利用电磁感应原理的一种模拟式测角器件,是一种旋转式的小型交流电动机,在结构上和二相绕线式异步电动机相似,由定子和转子组成,分有刷和无刷两种,结构如下图所示:有刷式旋转变压器的结构无刷式旋转变压器结构示意图1-转轴 ; 2-轴承 ; 3-机壳; 4-转子铁心; 5-定子铁心6-端盖 ; 7-电刷 ;8-集电环旋转变压器是根据互感原理工作的。
数控机床检测技术综述徐永智;王莉静【摘要】This paper studies the status of the geometric accuracy,precision of the linear positioning accuracy,the precision of the circular positioning accuracy on CNC machine tool at home and abroad,moreover described on the importance of precision detection technology for the development of detection technology on CNC.%研究了国内外数控机床的几何精度、直线运动精度、圆运动精度、切削精度检测技术的现状,阐述了精度检测技术对数控机床发展的重要意义。
【期刊名称】《安阳工学院学报》【年(卷),期】2012(011)006【总页数】2页(P18-19)【关键词】几何精度;运动精度;圆运动精度;切削精度;检测技术【作者】徐永智;王莉静【作者单位】西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072【正文语种】中文【中图分类】TG519.1随着机械制造业迅速发展,数控机床在机械制造中得到日益广泛的应用,在数控机床上实现对零件的高精度加工也成为业内人士的关注领域。
数控机床的精度是机床性能的一项重要指标,是影响工件加工精度的重要因素。
但是,数控机床作为一种精密加工设备,不仅存在着制造、装配误差,还存在有数控系统的插补进给误差、位置控制误差、伺服系统误差等各种非机械原因造成的误差[1]。
实际使用中,这些误差并不可能完全消除,并且随着使用时间的增加,数控机床工作时的综合运动误差会变得越来越大,直接影响到机床的加工精度。
因此研究、分析数控机床动态的运动精度,相应地检测、控制其综合运动误差,并适时地给以补偿,可以保证设备使用时的正常精度,达到加工高精度工件的要求,延长设备的使用年限;同时分析数控机床的运动精度,在查寻数控机床故障原因和分析工件加工误差产生的主要原因中也具有十分重要的实际意义。
五轴数控机床精度检测以及标定技术应用分析五轴数控机床是现代制造技术一种很关键的设备,在高精尖的现代制造行业得到了广泛的应用,但是,一些通过机床进行生产或者加工的企业一直受到购买的高精度机床经常会出现各种各样的误差的困扰,加工或者生产出来的产品不能满足精度要求。
而精度检测以及标定技术为解决这个问题提供了一个很好的思路,目前,已经成为了加工精度以及提高加工效率的技术之一。
标签:五轴数控机床;精度检测;标定技术数控机床精度的提高保证了加工质量,而提高机床精度的主要途径就是进行误差补偿。
目前,现代制造业的加工越来越精密化,使用先进检测的手段来完成超精密的加工以及精度检测,确保产品的质量可以得到控制。
1 五轴数控机床引起误差的原因通常情况下,引起五轴数控机床误差的因素有:(1)五轴数控机床原始的制造误差数控机床原始的制造误差就是指由于部件工作表面的形状、质量以及部件间位置的误差而引起的运动误差,这种误差是产生数控机床的几何误差最主要的原因[1]。
(2)五轴数控机床由于热变形引起的误差数控机床热变形引起误差的主要原因是数控机床内部热源以及环境热的扰动而导致机床结构产生热变形,进而导致误差产生。
(3)由于切削负荷导致的工艺系统误差工艺系统的误差主要包括:机床变形导致的误差、刀具变形导致的误差、加工件变形导致的误差以及夹具变形导致的误差等。
通常情况下,人们把这种误差也称作为让刀。
这种误差可以导致加工件形状产生畸变,在薄壁工件的加工时这种误差特别明显和严重[2]。
(4)五軸数控机床振动导致的误差数控机床在进行切削加工时,因为工艺柔性以及多变的工序,数控机床的运行状态可能进入到不稳定的区域,激起了强烈颤振,致使加工件表面的粗糙度不能满足要求,甚至还会导致几何形状误差的出现。
(5)五轴数控机床的检测系统测试误差检测系统的测试误差主要包括:因为测量传感器制造误差以及其安装误差而引起的反馈系统自身的误差;因为机床零件以及机构的误差,或者在使用过程中的产生变形而致使测量传感器产生的误差。
第22卷 第2期 郑州铁路职业技术学院学报 V o.l 22 N o .22010年6月Journal o f Zhengzhou R a il w ay V ocati onal&T echn ica l Co llegeJun .2010收稿日期:2009-11-03作者简介:宁广庆(1960-),男,河南民权人,郑州铁路职业技术学院机电工程系副教授。
毛胜辉(1972-),男,河南郑州人,郑州铁路职业技术学院机电工程系讲师。
柴成林(1971-),男,辽宁铁岭人,中国铝业股份有限公司中州分公司运输部。
数控机床精度诊断及可靠性校验宁广庆1毛胜辉1柴成林2(1郑州铁路职业技术学院 河南郑州 450052)(2中国铝业股份有限公司中州分公司 河南郑州 454174)摘 要:数控机床上生产的产品质量有赖于机床自身精度及性能来保证,这就需要运用综合检测法检验数控机床的工作精度及可靠性,设计综合试切件并借助三坐标测量仪对试切件的加工精度进行检测诊断,用技术手段控制数控加工质量,确保机床生产运行的可靠性。
关键词:数控机床;精度诊断;可靠性检验;方法 随着现代机械加工技术的快速发展,数控机床已越来越突出地显示出其优越的性能。
数控机床上生产的每一件产品的质量在很大程度上依赖于机床自身性能和精度。
数控机床在制造精密零件之前,知道它是否具备生产出合格零件的能力是极其重要的,这对于减少不合格产品数量和机器停工时间非常有效。
一、数控机床精度诊断的必要性精度诊断 (A ccuracy D iagnostic)一词,最早出现于20世纪80年代初的国外文献上,指的是对机床静态几何精度和动态运动精度,尤其是机床在加工状态下的运动精度的诊断。
由于大部分机床的加工精度最终取决于工件!!!刀具系统的相对运动和相对位置,因而一台机床工作是否正常,能否满足加工要求,是否需要维修,最终亦取决于精度的诊断。
尤其是数控机床,其结构性能日趋复杂多样,价格昂贵,技术先进,生产率高,监测维修项目日渐增加,其可靠性与精度诊断的问题也越来越突出。
大型数控机床验收的几个问题对集机、电、液、气于一体的进口大型数控机床(含加工中心)的验收,无论是预验收、还是最终验收,都是十分重要的。
它是对机床设计、制造、安装调试的质量,特别是对机床精度的总体检验。
它直接关系到机床的功能、可靠性、加工精度和综合加工能力。
然而在实际验收中,常常会出现一些带有技术性或管理性的问题。
如果不能得到及时的正确处理,将会影响到机床的验收质量。
1 定位精度的检测检测机床的定位精度,常用标准有两种:·德国VDI/DGQ3441标准(机床运行精度和定位精度的统计方法)。
·美国AMT标准(美国机械制造技术协会制定)。
用两个标准,测量数据的整理均采用数理统计方法。
即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。
可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。
进而求出平均值偏差、标准差、分散度。
分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的最大定位偏差。
由于被测坐标轴长度不尽相同,因而其定位精度的线性允差的给定方式不应是单一的,而应有所区别。
国标GB10931-89数字控制机床位置精度的评定方法中规定,轴线定位精度线性允差的给定方式主要有以下几种:·在全行程上规定允差;·根据被测对象长度分段规定允差;·用局部公差方式规定允差;既规定局部公差,同时也规定全行程允差。
东方汽轮机厂从德国科堡(COBURG)公司进口工作台5m×17m的数控龙门铣床(下称龙门铣),共有X、Y、Z、W四个坐标轴。
只有Z轴长度小于2m、最长的X轴全行程为17.70m;从意大利贝拉尔蒂(BRERADI)公司进口的镗杆直径250mm的落地式数控镗铣床,X轴(立柱移动)长23m,Y轴(镗头升降)长7m。