铁路信号交流道岔控制电路原理说明
- 格式:ppt
- 大小:4.50 MB
- 文档页数:44
信号基础四线制道岔控制电路道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。
一、道岔启动电路:1、道岔启动电路应满足的技术条件:(1)道岔区段有车时,道岔不应转换。
此种锁闭的作用叫做区段锁闭。
(2)进路在锁闭状态时,进路上的道岔,都不应再转换。
此种锁闭的作用叫做进路锁闭。
(3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。
(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。
(5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。
(6)道岔转换完毕,应自动切断电动机的电路。
2、道岔控制方式:控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。
(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。
(2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。
选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接通道岔启动电路使该道岔转向反位。
全进路上的道岔按进路要求一次排出。
(3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。
单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。
进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。
3、道岔启动电路的工作原理:道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。
道岔启动电路及表示电路说明1道岔表示电路的技术条件1 •只能用继电器的吸起状态与道岔的正确位置相对应,分别设置道岔定位表示继电器 DBJ和道岔反位继电器 FBJ。
2 •当室外联系线路发生混线或混入其他电源时,必须保证不致使DBJ或FBJ错误吸起。
3 •当道岔在转换或发生挤岔事故、停电或断线等故障时,必须保证DBJ或FBJ失磁落下,因此必须使用安全型继电器。
2、四线制道岔控制电路(一)道岔启动电路现行的道岔控制电路采用四线制控制电路,通过三级电路完成对道岔转换的控制,如图L:.!四线制道岔控制电路图第一级控制电路是IDQJ3_4 (道岔第一启动继电器)线圈励磁电路,检查联锁条件,确定能否接收控制命令。
人工操纵道岔[选路时DCJ(定位操纵继电器)↑或FCJ(反位操纵继电器)↑,单操时KF- ZDJ有电、AJ(按钮继电器)↑或KF-ZFJ有电、AJ ↑ ]时,IDQJ3_4线圈检查了没有办理人工锁闭[CA(道岔按钮)在定位],没有进行区段锁闭和进路锁闭[SJ (锁闭继电器)↑ ],又经2DQJ(道岔第二启动继电器)检查道岔需要转换后,励磁吸起。
第二级控制电路是 2DQ J的转极电路,确定道岔的转换方向(向定位转还是向反位转)。
1DQJ↑后使2DQJ转极。
第三级控制电路是1DQJ1一 2线圈自闭电路。
接通并随时检查电动机动作电路是否正常。
1DQJ↑> 2DQJ转极接通道岔动作电路:1DQJ检查电动机正常工作而自闭,道岔转换到底后由电动转辙机的自动开闭器的动作接点切断动作电路,使动作电路复原。
(二)道岔表示电路电路中使用了两个安全型偏极继电器,作为道岔表示继电器,使用了独立的表示变压器,并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流造成表示继电器抖动,在表示继电器两端并联了 4 μF电容器起滤波作用。
3、六线制直流双电动转辙机控制电路当轨道线路采用12号60 kg/m AT道岔时,一台转辙机已经适应不了转换力和牵引力的要求。
zd6型电动转辙机道岔控制电路工作原理
ZD6型电动转辙机道岔控制电路是一种常见的道岔控制装置,主要用
于铁路交通的信号控制系统中。
该电路具有快速、准确、可靠的特点,可有效控制电动转辙机的运作,以确保铁路交通的安全和顺畅。
ZD6型电动转辙机道岔控制电路由以下几个主要部分组成:电源部分、控制逻辑电路、触发器和输出部分。
首先,电源部分为整个电路提供必要的电能,一般需要使用交流电源
或直流电源。
然后,控制逻辑电路接收来自信号控制中心的信号,经
过处理后将控制信号传递给触发器进行触发。
触发器接收到控制信号后,将其转换成电脉冲信号,并将其传递到输出部分控制电动转辙机
的反转。
在使用过程中,当控制逻辑电路接收到信号控制中心发来的命令时,
将根据信号的指令进行处理,并将处理后的信息传递给触发器。
触发
器接受到控制信号后将产生一个电脉冲信号,并将其发送到输出部分。
输出部分通过电磁力作用控制电动转辙机道岔的反转,直到道岔位置
处于指定的状态为止。
当路径状态发生变化时,ZD6型电动转辙机道
岔控制电路会自动监测和调整电路的运作,以确保道岔在安全的范围
内运作。
总之,ZD6型电动转辙机道岔控制电路是一种高效、可靠的控制设备,可保证铁路交通的安全和顺畅。
通过精确的控制和监测机制,该电路
能够快速、准确地响应信号控制中心的指令,并控制电动转辙机的反转,使道岔在合适的位置运作,从而确保路段的运行安全和高效性。
四线制道岔控制电路原理与焊接实验引言四线制道岔控制电路是铁路信号系统中的重要组成部分,用于控制道岔的转向和位置。
道岔作为铁路线路上的转辙设备,能够实现列车的线路切换,确保列车的正常通行和安全运行。
本文旨在介绍四线制道岔控制电路的原理和焊接实验,通过深入探讨该主题,使读者能够全面、详细地了解四线制道岔控制电路的工作原理和实际应用。
一、四线制道岔控制电路的基本原理四线制道岔控制电路是一种采用直流电动机作为执行机构的电控系统,通过合理设计电路和控制信号的传递,实现道岔切换和位置控制。
其基本原理包括以下几个方面:1.1 道岔位置检测道岔位置监测是道岔控制电路的重要功能之一。
通过安装位置传感器,监测道岔的实际位置,并将信号反馈回控制电路。
常见的位置传感器有接近开关、编码器等,可以实现对道岔位置的准确检测。
1.2 控制信号传递控制信号的传递是四线制道岔控制电路的核心。
在道岔控制系统中,通常采用继电器作为控制信号的传递介质。
通过合理的继电器连接和控制信号的切换,可以实现对道岔电机的正转、反转和停止控制。
1.3 电源供电为了正常工作,四线制道岔控制电路需要稳定可靠的电源供电。
通常情况下,可以使用直流电源供电,通过合理的电源接入和保护措施,确保电路工作的稳定性和可靠性。
二、四线制道岔控制电路的焊接实验为了更好地理解四线制道岔控制电路的原理和实际应用,进行焊接实验是必不可少的环节。
焊接实验能够让学生亲自动手,将理论知识转化为实际操作能力,增强对电路原理的理解和掌握程度。
2.1 实验器材与材料准备在进行焊接实验之前,需要准备以下器材和材料: - 道岔控制电路焊接板 - 焊接工具(电烙铁、锡融剂、焊锡丝等) - 电源供应器2.2 实验步骤1.将道岔控制电路焊接板连接到电源供应器,确保电源供应器正常工作。
2.根据焊接板上的电路图和焊接指南,将电子元件逐一焊接到焊接板上。
注意焊接时的温度控制和焊接点的质量。
3.在焊接完成后,检查焊接点是否牢固,是否存在短路或接触不良的情况。
1、道岔启动电路应保证实现以下技术条件yimeijx05⑴道岔区段有车时,道岔不应转换。
此种锁闭作用叫做区段锁闭。
⑵进路在锁闭状态时,进路上的道岔都不应转换。
此种锁闭作用叫做进路锁闭。
⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。
⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。
⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。
2、道岔启动电路构成原理⑴1DQJ电路励磁电路①、道岔按钮CA-6接点道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。
②、锁闭继电器SJ-8前接点。
在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解锁状态。
当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。
③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。
CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。
条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。
条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。
④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。
当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。
⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。
•141-142闭合,道岔处在定位。
141-143闭合道岔处在反位。
⑥向定位单独操纵道岔的操作方法为:•同时按下道岔的单操按钮和总定位按钮,这时CAJ吸起接通电路。
ZDJ吸起使“KF-ZDJ”有电。
1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141_143-CAJ-KF-ZDJ。
信号基础四线制道岔控制电路道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。
一、道岔启动电路:1、道岔启动电路应满足的技术条件:(1)道岔区段有车时,道岔不应转换。
此种锁闭的作用叫做区段锁闭。
(2)进路在锁闭状态时,进路上的道岔,都不应再转换。
此种锁闭的作用叫做进路锁闭。
(3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。
(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。
(5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。
(6)道岔转换完毕,应自动切断电动机的电路。
2、道岔控制方式:控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。
(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。
(2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。
选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接通道岔启动电路使该道岔转向反位。
全进路上的道岔按进路要求一次排出。
(3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。
单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。
进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。
3、道岔启动电路的工作原理:道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。
道岔控制电路北京全路通信信号研究设计院有限公司2013.10《铁路技术管理规程》第81条:集中联锁设备应保证:当进路建立后,该进路上的道当进路建立后该进路上的道岔不可能转换;当道岔区段有车占用时,该区段的道岔不可能转换;列车进路向占用线路开时有关信列车进路向占用线路上开通时,有关信号机不可能开放(引导信号除外);能监督是否挤岔,并于挤岔的同时,使防护该进路的信号机自动关闭。
被挤道岔未恢复前,有关信号机不能开放。
被挤道岔未恢复前有关信号机不能开放TB10071-2000《铁路信号站内联锁设计规范》1、道岔转换设备的动作,必须与值班员的操纵意图一致。
1道岔转换设备的动作必须与值班员的操纵意图致2、道岔在任一种锁闭状态下不得启动。
3、道岔一经启动,不论其所在区段轨道电路故障或有车进入轨道区3、道岔经启动,不论其所在区段轨道电路故障或有车进入轨道区段,均应继续转换到底。
4、道岔因故被阻不能转换到底时,对非调度集中操纵的道岔,应保证经操纵后转换到原位;对调度集中操纵的道岔,应自动切断供电证经操纵后转换到原位对调度集中操纵的道岔应自动切断供电电路,停止转换。
5、电机电路故障,道岔不应再转换。
6、道岔转换完毕,应自动切断启动电路。
7、采用三相交流电源的电动(电液)转辙机,必须设置断相保护装置。
8、当设计有储存进路、道岔接受遥控时,必须对道岔的启动采用能自动切断供电电路、停止转换的防护措施,必须采取防止小车跳动措施。
¾按转辙机电机的类型进行大的分类直流电机:直流控制电路交流电机:交流控制电路,(单相交流电机)实现基本原理的两线制控制电路:改进的三线制控制电路:进一步改进的四线制控制电路:适应双机应用的六线制控制电路:五线制交流控制电路:三、道岔控制电路的组成1、表示电路部份(直流控制电路)1表示电路部份(直流控制电路)直流道岔表示电路中使用了两个安全型偏极继电器,作为道岔表示继电器,电源使用独立的表示变压器,并在作为道岔表示继电器电源使用独立的表示变压器并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流造成表示继电器抖动,在表直流电源为了防止半波整流造成表示继电器抖动在表示继电器两端并联了4μF电容器起滤波作用。
四线制道岔控制电路原理与焊接实验以四线制道岔控制电路原理与焊接实验为题,本文将介绍四线制道岔控制电路的原理和焊接实验过程。
一、四线制道岔控制电路原理四线制道岔控制电路是一种常用于铁路交通系统中的道岔控制方式。
道岔作为铁路交通系统中的重要组成部分,用于实现列车的转向。
四线制道岔控制电路通过控制道岔的转向,实现列车的正常行车。
四线制道岔控制电路由电源线、控制线、信号线和反馈线组成。
其中,电源线用于为整个电路提供电能;控制线用于接收操作信号,控制道岔的转向;信号线用于传输操作信号给道岔机构;反馈线用于传输道岔机构的状态信号,反馈给控制线。
四线制道岔控制电路的工作原理如下:1. 道岔处于定位状态时,控制线和信号线断开,道岔机构保持定位状态;2. 当需要改变道岔的状态时,操作人员通过控制线发送操作信号;3. 操作信号通过信号线传输给道岔机构;4. 道岔机构接收到操作信号后,执行转换操作,并通过反馈线将状态信号传输给控制线。
通过四线制道岔控制电路,可以实现对道岔的远程控制和状态反馈,确保列车的正常行车。
二、焊接实验为了验证四线制道岔控制电路的工作原理,我们可以进行焊接实验。
焊接实验的目的是将电路中的元器件焊接在一起,形成完整的四线制道岔控制电路。
焊接实验的具体步骤如下:1. 准备工作:收集所需的元器件和工具,包括电源线、控制线、信号线、反馈线、电源、道岔机构、焊接工具等;2. 按照电路原理图连接元器件:根据电路原理图,将电源线、控制线、信号线和反馈线连接到相应的元器件上,确保连接正确无误;3. 进行焊接:使用焊接工具将元器件焊接在一起,注意焊接点的牢固和焊接温度的控制;4. 检查焊接点:焊接完成后,检查焊接点是否牢固,避免出现接触不良或短路等问题;5. 进行电路测试:连接电源,测试电路的工作状态,确保四线制道岔控制电路正常工作。
通过焊接实验,我们可以将四线制道岔控制电路的原理转化为实际的电路连接,验证电路的工作可靠性和稳定性。