锂离子电池概述资料
- 格式:ppt
- 大小:1.57 MB
- 文档页数:32
锂离子电池简介2017-021.锂离子电池原理充电的时候,在外加电场的影响下,正极材料LiCoO2中的锂元素脱离出来,变成带正电荷的锂离子(Li+),在电场力的作用下,从正极移动到负极,与负极的碳原子发生化学反应,生成LiC6,于是从正极跑出来的锂离子就很“稳定”的嵌入到负极的石墨层状结构当中。
从正极跑出来转移到负极的锂离子越多,电池可以存储的能量就越多。
放电的时候刚好相反,内部电场转向,锂离子(Li+)从负极脱离出来,顺着电场的方向,又跑回到正极,重新变成钴酸锂分子(LiCoO2)。
从负极跑出来转移到正极的锂离子越多,这个电池可以释放的能量就越多。
在每一次充放电循环过程中,锂离子(Li+)充当了电能的搬运载体,周而复始的从正极→负极→正极来回的移动,与正、负极材料发生化学反应,将化学能和电能相互转换,实现了电荷的转移,这就是“锂离子电池”的基本原理。
由于电解质、隔离膜等都是电子的绝缘体,所以这个循环过程中,并没有电子在正负极之间的来回移动,它们只参与电极的化学反应。
2.锂离子电池构成锂离子电池内部需要包含几种基本材料:正极活性物质、负极活性物质、隔离膜、电解质。
正负极需要活性物质,是为了更容易参与化学反应,从而实现能量转换。
正负极材料不但要活泼,还需要具有非常稳定的结构,才能实现有序的、可控的化学反应。
一般选用锂的金属氧化物,如钴酸锂、钛酸锂、磷酸铁锂、锰酸锂、镍钴锰三元等材料。
负极通常选择石墨或其他碳材料做活性物质。
电解质是锂离子传导的介质,要求锂离子电导率要高,电子电导率要小(绝缘),化学稳定性要好,热稳定性要好,电位窗口要宽。
人们找到了由高纯度的有机溶剂、电解质锂盐、和必要的添加剂等原料,在一定条件下、按一定比例配制而成的电解质。
有机溶剂有PC(碳酸丙烯酯),EC(碳酸乙烯酯),DMC(碳酸二甲酯),DEC (碳酸二乙酯),EMC(碳酸甲乙酯)等材料。
电解质锂盐有LiPF6,LiBF4等材料。
1.锂离子电池哪一年商业化?锂离子电池首次由日本Sony公司在1990年研制成功并实现商业化。
2.锂离子电池工作原理。
以炭为负极,钴酸锂(LiCoO2)为正极为例。
充电过程中,锂离子从正极脱出,释放一个电子,三价钴氧化成四价钴,锂离子通过电解质嵌入负极,维持电荷平衡;放电过程中,电子从负极流经外部电路到达正极,在电池内部,锂离子通过电解液嵌入到正极,正极得到外电路一个电子,四价钴还原成三价钴。
3.锂离子电池的组成。
锂离子电池主要由正极、负极、隔膜、电解液和外包装组成。
其中,正极、负极、隔膜和电解液是锂离子电池的四大主材。
4.锂离子电池正极材料的作用。
锂离子电池正极材料不仅作为电极材料参与电化学反应,还要作为锂离子源。
5.锂离子电池正极材料应该满足哪些条件?①比容量大,这就要求正极材料具有低的相对分子质量,且其宿主结构中能插入大量锂离子;②工作电压高,这就要求体系放电反应的吉布斯自由能负值要大;③高倍率下的充放电性能好,这就要求锂离子在正极材料内部和表面的扩散速率大;④循环寿命长,这就要求锂离子脱出和嵌入正极材料的过程中,正极材料的结构变化要尽可能小;⑤安全性好,这就要求材料具有较高的化学稳定性和热稳定性;⑥容易制备,对环境友好,价格便宜。
6.锂离子电池正极材料有哪些?锂离子电池正极材料一般为含锂的过渡金属氧化物或聚阴离子化合物,包括LiCoO2、LiMnO2、LiFeO4及其相关衍生材料。
含锂的过渡金属氧化物作为锂离子电池正极材料的优势。
过渡金属往往具有多种价态,可以保持锂离子嵌入和脱出过程中的电中性;另外,过渡金属氧化物对锂有较高的电极电势,可以保证电池具有较高的开路电压。
一般来说,对锂电势,过渡金属氧化物>过渡金属硫化物;3d过渡金属氧化物>4d过渡金属氧化物>5d过渡金属氧化物。
3d过渡金属氧化物中,尤其以含Co、Ni、Mn元素的锂金属氧化物为主。
7.锂离子电池负极材料应该满足哪些条件?①低氧化还原电位,以满足锂离子电池具有较高的输出电压;②锂离子脱嵌过程中的电极电位变化较小,以保证充放电的电压波动小;③脱嵌锂离子过程中的结构稳定性和化学稳定性好,以使电池具有较高的循环寿命和安全性;④具有高的可逆比容量;⑤良好的锂离子导电性和电子导电性,以获得较高的充放电倍率和低温充放电性能。
一锂离子电池简介锂离子电池(Lithium-ion battery)是一种高能量密度、高电压的可充电电池。
它由锂离子在正负极之间迁移来储存和释放电能。
锂离子电池的高能量密度,使得它成为目前应用最广泛的可充电电池之一,被广泛应用于移动通信、电动工具、电动车辆、家庭储能等领域。
锂离子电池的基本构造包括正极、负极、分离膜和电解质。
正极通常由锂重氧化物(如LiCoO2、LiFePO4等)制成,负极由石墨材料制成。
分离膜通过电解质来隔离正负极,防止短路和电化学反应。
电解质通常是有机液体(如碳酸酯),它允许离子在正负极之间迁移,从而实现充放电过程。
锂离子电池的工作原理是通过离子在锂离子电池正负极之间的迁移来完成充放电过程。
在充电过程中,锂离子从正极(锂重氧化物)释放出来,经过电解质迁移到负极(石墨),在负极与锂发生化学反应,同时释放出电子。
在放电过程中,锂离子从负极迁移到正极,与正极物质发生化学反应,同时吸收电子,形成锂离子化合物。
通过充放电过程,锂离子的迁移实现了电能的储存和释放。
锂离子电池相对于传统的铅酸电池和镍氢电池具有许多优势。
首先,锂离子电池具有高能量密度,即单位体积或单位重量所存储的电能更多。
这使得锂离子电池在电子产品中得到广泛应用,如智能手机、平板电脑等,因为它们需要小型轻便的电池。
其次,锂离子电池具有较低的自放电率,即静置时电池不会快速放电。
这使得锂离子电池具有长期储存的能力,可以作为备用电池使用。
此外,锂离子电池具有较长的循环寿命,即充放电循环次数较高,这使得它成为电动车辆和家庭储能系统等领域的理想选择。
然而,锂离子电池也存在一些问题。
首先,锂离子电池存在较高的成本。
它的生产过程相对复杂,涉及到许多稀有材料和技术。
其次,锂离子电池的安全性是一个重要的问题。
当电池受到过热、过充、过放或物理损坏时,可能会发生热失控、爆炸或火灾等事故。
因此,在锂离子电池的设计和制造过程中,安全性应作为重要的考虑因素。