10分钟学会光电编码器
- 格式:ppt
- 大小:2.71 MB
- 文档页数:39
光电编码器原理及应用电路————————————————————————————————作者:————————————————————————————————日期:光电编码器原理及应用电路1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90度的脉冲信号。
图1 光电编码器原理示意图根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度的脉冲信号,Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
光电编码器原理课件光电编码器光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90&or dm;的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(REP)1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器原理及应用电路————————————————————————————————作者:————————————————————————————————日期:光电编码器原理及应用电路1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90度的脉冲信号。
图1 光电编码器原理示意图根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度的脉冲信号,Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
光电编码器的原理及应用光电编码器是一种精密测量设备,常用于测量旋转角度或线性位置。
它通过光电传感器和编码盘之间的互动来实现测量。
本文将介绍光电编码器的原理、构造和应用。
一、原理光电编码器的工作原理基于光电传感器对编码盘上光学标记的检测。
编码盘通常由透明和不透明的区域组成。
当光线照射到编码盘上时,透明和不透明的区域将交替出现在光电传感器面前,从而导致光电传感器输出脉冲。
光电编码器的输出脉冲数与编码盘上的光学标记数目相关。
通常,编码盘上的光学标记数越多,输出脉冲数就越多,从而实现更精确的位置测量。
此外,光电编码器还可通过增量编码或绝对编码方式进行测量。
二、构造光电编码器通常由光学系统、编码盘、信号处理电路和接口电路组成。
光学系统包括光源和光电传感器,用于发射和接收光线。
编码盘作为测量对象,用于生成光学标记。
信号处理电路负责对光电传感器输出的脉冲信号进行处理和解码。
接口电路用于将处理后的信号输出给外部设备。
光电编码器的结构形式主要有旋转式和直线式两种。
旋转式编码器适用于旋转轴测量,常见的有光栅编码器和光学电子编码器。
直线式编码器适用于直线位移测量,常见的有线性光栅编码器和直线电子编码器。
三、应用光电编码器在工业控制、机械加工、自动化系统等领域中有广泛的应用。
1. 位置测量:光电编码器可用于测量机械设备的旋转角度或线性位移,例如机床的进给系统、机器人的关节角度等。
其高精度和稳定性使得测量结果可靠准确。
2. 运动控制:光电编码器可作为反馈装置用于闭环控制系统中,实现对机械设备运动的精确控制。
通过实时监测位置变化,可以对运动过程进行调整和优化,提高生产效率。
3. 位置校准:光电编码器可在传感器灵敏度高、分辨率高的情况下,对其他传感器的测量结果进行校准。
例如,在无人驾驶领域中,光电编码器可用于对雷达或摄像头的测量结果进行校准,提高车辆的定位准确性。
4. 导航系统:光电编码器可用于导航系统中船舶、飞行器等航行过程的航向或航行距离的测量。
1.光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器内部结构【最新版】目录1.光电编码器概述2.光电编码器的结构组成3.光电编码器的工作原理4.光电编码器的分类及应用5.光电编码器的优缺点正文1.光电编码器概述光电编码器是一种将机械运动转换为数字信号的装置,常用于运动控制系统中。
它可以将位置和角度等参数转换为数字量,便于计算机处理。
光电编码器具有高精度、抗干扰能力强、可靠性高等优点,因此在工业生产中得到广泛应用。
2.光电编码器的结构组成光电编码器主要由码盘(codewheel 或 codedisk)、发光二极管(LED)、光电传感器和信号处理电路组成。
码盘是光电编码器的关键部件,其在旋转过程中产生代表运动位置的数字化的光学信号。
码盘可以根据用途和成本的需要,由金属、玻璃和聚合物等材料制作。
发光二极管(LED)作为光源,发射光线照射到码盘上,通过光电传感器接收透过码盘的光束,产生电信号。
信号处理电路对电信号进行处理,输出位置和速度信息。
3.光电编码器的工作原理光电编码器根据码盘上透光和遮光部分的组合产生电信号。
在码盘旋转过程中,透光和遮光部分的相对位置发生变化,使得照射到码盘上的光束产生间断。
通过光电传感器接收和电子线路处理,产生特定电信号的输出。
再经过数字处理,可计算出位置和速度信息。
4.光电编码器的分类及应用根据用途和原理的不同,光电编码器可分为旋转光电编码器和直线光电编码器。
旋转光电编码器用于测量旋转角度,而直线光电编码器则用于测量直线尺寸。
此外,还有绝对编码式光电旋转编码器和增量编码式光电旋转编码器两种类型。
绝对编码器在每个位置都有一个唯一的编码,而增量编码器只输出相对于某个参考点的位置变化。
光电编码器广泛应用于数控机床、机器人、自动化生产线等领域。
5.光电编码器的优缺点光电编码器具有高精度、抗干扰能力强、可靠性高等优点,适用于各种恶劣环境。
但其结构较复杂,成本较高,且码盘容易受到污染和损伤,影响其使用寿命。
光电编码器原理及应用电路1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90度的脉冲信号。
图1 光电编码器原理示意图根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度的脉冲信号,Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。
下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。
光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。
当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。
当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。
通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。
其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。
通过上述方法,可以很简单地判断旋钮的旋转方向。
在判断时添加适当的延时程序,以消除抖动干扰。
2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。
一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。
本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。
另一种是具有定制接口的流接口驱动程序。
它是一般类型的设备驱动程序。
流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。
光电编码器m法-回复什么是光电编码器?光电编码器(Optical Encoder),也被称为旋转编码器或角度编码器,是一种用于测量旋转运动的设备。
它通常由光栅盘、感光器和信号处理电路组成。
光栅盘是一个有着许多刻有光栅的透明圆盘,而感光器则安装在光栅盘的封闭空间内。
当光栅盘旋转时,光栅上的光纤与感光器之间会发生光强的变化,感光器会将这些变化转换成电信号,并经由信号处理电路进行分析和解码,最终得到准确的旋转角度。
光电编码器的工作原理是什么?光电编码器的工作原理可以分为两个基本步骤:光栅尺的运动控制和光电编码器的信号处理。
首先,光栅尺的运动控制。
光栅尺通过机械结构与被测物体连接,并随着被测物体的旋转运动而移动。
光栅尺上的光栅以等间距刻有透光和不透光的条纹,光源从光栅尺的一侧射入,而光栅上的光纤则通过感光器传递到另一侧。
当被测物体旋转时,光栅尺也会旋转,光纤会因为光栅条纹的变化而逐渐堵塞或透光,使得感光器接收到的光强信号发生变化。
其次,光电编码器的信号处理。
感光器接收到的光强信号会被转换成电信号,并经由信号处理电路进行解码和分析。
信号处理电路会根据光栅条纹的变化来计算出旋转角度,并输出相应的旋转角度数据。
常见的编码方式包括二进制编码、格雷码和绝对编码,每种编码方式都有其特定的优势和适用场景。
光电编码器的应用领域有哪些?光电编码器广泛应用于各个领域,包括工业自动化、机械制造、航空航天、医疗设备等。
以下是一些典型的应用领域:1. 机床和自动化控制系统:光电编码器能够准确测量机床的旋转角度,帮助控制系统实现精确的运动控制,提高生产效率。
2. 机器人和无人车:光电编码器可用于测量机器人和无人车的关节和轮子的旋转角度,从而实现精确的运动轨迹控制。
3. 医疗设备:光电编码器可用于测量医疗设备中旋转部件的角度,如手术机械臂和影像设备,以帮助医生进行定位和操作。
4. 航空航天:光电编码器可用于测量航空航天设备和飞机的舵机、螺旋桨和涡轮引擎等旋转部件的旋转角度,以确保飞行的安全和精确性。