微生物发酵饲料研究进展
- 格式:pdf
- 大小:156.01 KB
- 文档页数:3
发酵液体饲料的研究进展发酵液体饲料的研究进展摘要:发酵液体饲料在欧洲已广泛使用,并成为当前人们研究的新热点。
本文仅从发酵液体饲料对猪的生产性能、胃中酸度及肠道菌群的影响、发酵液体饲料的发酵控制(pH、温度、水料比及日粮组成、发酵促进剂)和发酵液体饲料的应用现状及存在的问题几个方面的研究进展进行论述。
近来,研究者们发现液体饲料经发酵较使用酸化剂可产生更多的酸(PIG INT,1999a)。
这使得发酵液体饲料成为人们研究的新热点。
本文就发酵液体饲料近来的研究进展作一简要的论述。
1 发酵液体饲料对猪生产性能的影响Brooks(1998)指出,在仔猪断奶后第1周使用发酵液体饲料可大幅度提高仔猪的日增重,发酵液体饲料较液体非发酵饲料对仔猪的健康和生长有更大的影响。
JiHoon(1999)用干粉料和液体发酵饲料做比较研究发酵液体饲料对后期生长性能和蛋白沉积的影响时发现,14日龄时试验组(喂发酵液体饲料)较对照组(喂干粉料)个体重提高21%(P<0.001);日增重、采食量和料重比分别较对照组提高44%、18%和22%。
而在生长肥育阶段,其生长性能及胴体质量差异并不显著(P>0.10)。
Benevenga等(1990)、Harrell等(1993)、Zijkstra等(1996)、Azain等(1994,1995,1996)、Azain(1997)、Fisher等(1997)和Heo等(1999)也得到了类似的结果。
另外,JiHoon还发现,对于前2周饲喂发酵液体饲料的仔猪其优越的生长性能可一直维持到上市(P<0.05),而且其达到110kg 所需要的天数较对照组少3.7d。
同时发现饲喂液体发酵饲料还可降低猪上市体重的差异。
Harrel等(1993)报道,仔猪从2日龄饲喂发酵液体饲料到23日龄时,可提前10d上市(体重达110kg)。
Azain(1997)报道,早期断奶的仔猪(7~10日龄断奶)仅在断奶后第1周喂给发酵液体饲料,其优越的增重性能可一直保持到6~7周龄。
青贮微生物及其对青贮饲料发酵品质影响的研究进展许冬梅;张萍;柯文灿;郭旭生【摘要】青贮微生物在饲料发酵过程中起关键作用.无论是牧草表面附着的微生物还是外源添加的微生物菌剂在青贮发酵过程中对青贮微生物的群落结构及其演替过程都起着重要的作用,而青贮发酵过程中微生物的群落结构及其演替过程与代谢产物很大程度上影响着青贮饲料的发酵品质.本文阐述了青贮微生物群落结构,微生物在青贮过程中的演替及其对青贮饲料品质的影响.从目前研究结果来看,不同牧草及同种牧草生长在不同环境中其表面附着微生物存在很大差异.添加乳酸菌对提高青贮品质效果不稳定,还需了解牧草附着微生物特性决定是否需要接种乳酸菌以得到优质青贮饲料.%Silage microbes play a key role during ensiling.Both epiphytic and inoculated microorganisms have effects on microbial community and community succession during fermentation,which to some extent affect the fermentation quality of silage.This article exposited microflora structure and succession,and its effects on fermentation quality of silages.Shown from the present researches,epiphytic microbes are of great difference in different forage species and under different growth environments.The effect of addition lactic acid bacteria to improve silage quality is unstable.It is necessary to know the characteristics of epiphytic forage microbes to determine whether lactic acid bacteria need to be inoculated to get high-quality silage.【期刊名称】《草地学报》【年(卷),期】2017(025)003【总页数】6页(P460-465)【关键词】青贮发酵;青贮微生物;群落结构及演替;发酵品质【作者】许冬梅;张萍;柯文灿;郭旭生【作者单位】兰州大学生命科学学院草地农业生态系统国家重点实验室,甘肃兰州730000;兰州大学生命科学学院草地农业生态系统国家重点实验室,甘肃兰州730000;兰州大学生命科学学院草地农业生态系统国家重点实验室,甘肃兰州730000;兰州大学生命科学学院草地农业生态系统国家重点实验室,甘肃兰州730000【正文语种】中文【中图分类】S816.53青贮饲料是用新鲜的青绿饲草在厌氧条件下由乳酸菌经较长时间发酵制成的一种颜色黄绿、气味酸香、柔软多汁、适口性好、消化率较高的饲料,其能为反刍动物在冬春季提供优质的粗饲料[1]。
243浅谈微生物发酵饲料的研究进展李旋亮(盘锦市双台子区农业发展服务中心,辽宁盘锦 124000)摘 要:随着我国科学技术的不断发展,发酵饲料作为安全可靠、无毒副作用、无药物残留、适口性好的一种绿色环保型的饲料。
它的应用可促进畜禽的生长发育、提高动物机体免疫力、减少疾病发生、提高饲料利用率等,同时也可以改善肉质。
在饲喂的同时就起到了防病的效果,因此,它的发展前景很大,有待于人们的开发与利用。
关键词:发酵饲料;有益菌;微生态;肠道发酵饲料是利用微生物等为发酵剂菌种,在饲料原料中生长繁殖和新陈代谢,并逐渐积累微生物菌体蛋白、生物活性小肽类氨基酸、微生物活性益生菌等为一体微生物饲料。
1 常用发酵的微生物菌种1.1 乳酸菌特点及种类乳酸菌能够在乳糖或葡萄糖的发酵过程中产生乳酸,属革兰氏阳性菌。
它们形态不一,有杆状和球状,有单个、成对和链状的。
在动物体内通过产生大量乳酸、乙酸降低胃肠道的pH 值,促进肠道绒毛生长,从而增加小肠的吸收面积;增强机体的体液免疫和细胞免疫;乳酸菌可用于哺乳和断乳期动物的饲料中(王海珍等,2005;杨汝德等,2003;刘海军等;2005)。
青贮饲料中常见的乳酸菌有:干酪乳杆菌、弯曲乳杆菌、嗜酸乳杆菌、屎肠球菌;短乳杆菌、绿色乳杆菌、类肠明串珠菌、发酵乳杆菌。
1.2 芽孢杆菌特点及种类芽孢杆菌属于需氧芽孢杆菌中的不致病菌,吕道俊和何明清(1994)的研究发现芽孢杆菌可以产生芽孢,耐受胃内的酸性环境;抑制肠道内有害菌的繁殖;促进有益菌的生长;提高机体免疫力和抗病能力;可以分泌蛋白酶、脂肪酶和淀粉酶;提高动物生长速度促进消化吸收。
目前生产中应用的有枯草芽孢杆菌(Bacillussubtilis)、地衣芽孢杆菌(Bacillus licheniformis)、蜡样芽孢杆菌(Bacillus cereus)及纳豆芽孢杆菌(Bacillus natto)及迟缓芽孢杆菌(Bacillus lentus)等有益菌种类。
饲料加工工艺研究进展及发展趋势饲料加工是现代畜牧业中不可或缺的一环,它旨在将原料转化为高品质、高能量、高营养的饲料,以满足不同种畜的不同需求。
随着畜牧业的快速发展和科技的持续进步,饲料加工技术也在不断更新和完善,本文将从饲料加工工艺的研究进展和发展趋势两个方面进行探讨。
1、机械加工技术的进步饲料机械是饲料加工的关键设备之一,近年来,随着机械技术的不断创新和改进,饲料加工机械的效率和质量得到了大幅提高。
例如,现在市面上的饲料破碎机、混合机和造粒机等,都采用了先进的自动化控制技术和能耗保护技术,使其具有更高的加工效率和更低的能耗水平。
2、生物发酵技术的应用随着人们对饲料营养和健康的需求日益增加,生物发酵技术在饲料加工中的应用越来越广泛。
通过发酵可以有效地提高饲料的品质和营养价值,例如酸化发酵可以降低饲料的PH值,抑制细菌繁殖和消化不良;同时发酵还可以增加饲料中有益微生物的含量,有助于促进动物的生长和发育。
3、添加剂技术的创新现代畜牧业对饲料的质量和安全性要求越来越高,这促进了添加剂技术的不断创新和发展。
除了传统的维生素、矿物质等常规添加剂之外,目前新型添加剂如酶制剂和肠道微生态制剂等的应用也越来越受到关注。
酶制剂可以降低动物对有机物的需要量,促进蛋白质、碳水化合物等的消化吸收;肠道微生态制剂则可以通过调节肠道菌群,增强动物免疫力,预防某些疾病的发生。
1、智能化技术的应用智能化技术是未来饲料加工的重要发展趋势之一。
现代智能化设备和智能控制系统可以实现饲料加工的自动化、远程化和可视化,使生产效率和产品质量得到更好的保障。
2、绿色化、环保化发展绿色化和环保化是未来饲料加工的重要发展方向之一。
饲料加工过程中的产废问题已经成为了制约行业发展的重要因素之一。
因此,加强产废的处理和回收,实行资源循环利用可以有效地减少对环境的污染,使饲料加工企业走向健康、环保、可持续发展的道路。
3、产业链整合和优化饲料加工作为畜牧业的重要入口和拉动产业链的关键环节之一,其未来的发展需要与养殖业、兽药产业、畜牧行业等产业链中的其他环节形成紧密的联动、协同和互补。
菌酶协同发酵生产蛋白饲料的研究进展及应用。
随着我国蛋白资源短缺问题的出现,寻找其他原料弥补优质蛋白资源匮乏成为目前需要解决的问题。
我国非常规饲料原料来源广泛,富含维生素、蛋白质等营养成分,但存在抗营养因子和有毒物质且适口性差以及营养成分不平衡、差异大等缺点。
菌酶协同发酵是在微生物发酵工艺的处理下添加一定量的酶进行协同发酵,兼具酶解法和微生物发酵法的优点,能将原料中的抗营养因子降解,调节饲料苦味,改善饲料适口性,弥补单一微生物发酵产酶不足和酶解口味不佳等问题,促进动物采食,提高饲料转化率和营养价值。
因此,菌酶协同发酵饲料原料生产蛋白饲料能够充分利用我国非常规饲料资源,有效缓解我国蛋白饲料不足的压力,促进养殖业发展。
1菌酶协同发酵生产蛋白饲料的研究1.1菌酶协同发酵常用的菌种和酶菌酶协同发酵常用的菌种主要包括芽孢杆菌、酵母菌、乳酸菌以及霉菌。
芽孢杆菌类主要有枯草芽孢杆菌、地衣芽孢杆菌、凝结芽孢杆菌和蜡质芽孢杆菌等,能降解抗营养因子和有毒物质,分泌纤维素酶和蛋白酶将纤维素和大分子蛋白降解,调节动物肠道健康。
酵母菌类主要有酿酒酵母、产阮假丝酵母和啤酒酵母等,能使发酵饲料产生酒香味,改善饲料适口性,提升饲料风味,且因其本身是菌体蛋白,可增加蛋白产量,增加饲料利用率。
乳酸菌类主要有植物乳杆菌、干酪乳杆菌、乳酸杆菌和乳酸片球菌等,能产生多种有机酸和细菌素进而降低饲料pH值,抑制有害菌生长,提升饲料营养品质,促进动物采食,增强动物免疫力。
霉菌类主要有米曲霉、根霉、木霉、黑曲霉和青霉等,霉菌类菌株能分泌胞外酶,如蛋白酶、半纤维素酶和纤维素酶等来分解原料中的淀粉和蛋白来提升发酵效果和增加饲料利用率。
常用酶主要是非淀粉多糖酶和蛋白酶。
非淀粉多糖酶主要是纤维素酶、半纤维素酶、果胶酶和甘露糖酶等,可将饲料原料中的纤维破坏使营养物质得以释放,且可将原料中碳水化合物分解为葡萄糖和氨基酸等小分子物质为菌群提供能源,促进动物吸收消化。
微生物发酵饲料常见菌种及在养殖业中的应用。
在我国过去养殖行业的发展历程中,抗生素常应用于饲料中,作用显著。
但是,随着我国养殖行业不断呈规模化、集约化发展,药物残留及危害问题日益凸显,使得人们对食品安全格外关注。
因此,在如今“禁抗”“限抗”的背景趋势下,探求环保、营养好、利用率高、污染小的饲料成为行业研究的热点,其中,微生物发酵饲料以其科学、安全、环保等优势,成为现今饲料行业的主流发展方向。
为此,本文将结合有关微生物发酵饲料的研究成果,对微生物发酵饲料常见菌种及应用,微生物发酵饲料在生猪、家禽和反刍动物养殖生产中的应用研究进展进行综述,以期促进我国养殖业得到健康可持续发展。
1 微生物发酵饲料的定义微生物发酵饲料指将各种原料经过微生物发酵处理,其营养物质内部的抗营养因子得到了分解或转化,形成了利于消化、吸收和利于消解有毒、有害或抗营养物质的生物饲料。
微生物发酵饲料作为一种新型的生态健康型饲料无疑是当今养殖业的最佳选择。
2 微生物发酵饲料常见菌种及应用2013 年 12 月,中华人民共和国农业部公告第2045 号《饲料添加剂品种目录 2013》的微生物细目中列出了乳酸菌类、酵母菌类等33个菌种,本文主要介绍以下4类在微生物发酵饲料中应用较多的菌种。
2.1 乳酸菌乳酸菌是一类无芽孢、革兰氏染色阳性细菌,属原核生物细菌,为异养厌氧型,其细胞形态为球状、杆状,耐酸性环境,在自然界中广泛存在。
乳酸菌常见菌种有乳酸杆菌、链球菌、双歧杆菌、片球菌等。
乳酸菌发酵饲料主要作用于肠道,具有助消化、改善肠道健康,抑制有害菌、促进生长等作用,亦被称为益生菌。
其原理是乳酸菌产生的乳酸通过与金属离子螯合来改变细菌细胞膜的通透性,加之,乳酸的降 pH特性,对有害菌的生长繁殖抑制作用显著。
据报道,利用乳酸菌制备的发酵秸秆饲料,秸秆的干物质、中性和酸性洗涤纤维体外消化率分别提高了13.94%、22.56%、乳酸菌添加在饲料中的有益作用已被诸多试验证实,殷溪莎通过对犊牛生长发育、消化代谢以及血液指标的研究发现,饲用乳酸菌在提高犊牛的生长性能的同时,对犊牛的机体免疫力以及对营养物质的消化功能也有促进作用。
第30卷增刊福州大学学报(自然科学版)V ol.30Supp. 2002年11月Journal of Fuzhou University(Natural Science)N ov.2002文章编号:1000-2243(2002)S0-0709-05微生物发酵生产蛋白饲料的研究进展徐姗楠,邱宏端(福州大学侨兴轻工学院,福建福州 350002)摘要:对近10年来微生物发酵生产蛋白饲料的生产菌种、原料资源的开发与应用、生产技术和微生态制剂等产品的研究成果及发展进行了总结与分析.关键词:微生物;发酵;蛋白饲料中图分类号:T Q920.1文献标识码:AR esearch development of the production of protein-enrichedfeed fermented by microorganismX U Shan-nan,QI U H ong-duan(C ollege of Qiaoxing Light Industry,Fuzhou University,Fuzhou,Fujian350002,China)Abstract:T his paper summarizes and analyzes the achievements and development of the production of pro2tein-enriched feed fermented by microorganism in the past ten years.T hey include producing microbe,development and application of raw material res ource,producing techn ology and effective microorganisms.K eyw ords:microbe;fermentation;protein-enriched feed微生物蛋白饲料大体分为两类:一类是利用微生物发酵作用改变饲料原料的理化性质,提高饲料适口性、消化吸收率及其营养价值,或进行解毒、脱毒作用,积累有用的中间产物;另一类是利用各种废弃物如纤维素类、淀粉质、矿物质等原料及工业生产废水培养微生物菌体蛋白、藻类等[1].本文对近年来国内外微生物发酵生产蛋白饲料和单细胞蛋白的研究进行了综述.1 生产菌种类多并趋向复合菌株协同发酵微生物发酵生产蛋白饲料,菌种是关键.从目前报道的资料看,微生物蛋白饲料的菌种包括细菌(芽孢杆菌、枯草杆菌、拟杆菌、乳酸杆菌、双歧杆菌、乳酸球菌、光合细菌等)、酵母菌(啤酒酵母、假丝酵母、石油酵母等)、霉菌(曲霉、木霉、根霉、青霉[2]等)、放线菌、担子菌和微型藻类(小球藻、绿藻、螺旋藻等).作为微生物蛋白饲料的生产菌种,其原则为:①对所要处理的饲料原料作用要大;②菌种细胞及代谢产物对动物无毒无副作用;③对其他菌株不拮抗;④繁殖快、性能稳定、不易变异;⑤对环境适应性强[3].利用微生物单一菌株或组合菌株发酵,实现高蛋白菌体饲料的生物转化,已有较多文献报道,如张西宁等、周哓云等采用热带假丝酵母、产朊假丝酵母和黑曲霉单一菌种和组合菌种对酱渣[4,5]、碱性蛋白酶发酵渣[6]和柠檬酸渣[5]进行微生物发酵生产蛋白饲料.结果显示,采用热带假丝酵母A1、A2、A3,产朊假丝酵母E311和黑曲霉A S777单一菌种发酵,效果最好的为黑曲霉A S777发酵,粗蛋白和SCP净增量平均为20.26%和14.05%;而采用组合菌种发酵如A3+E311+A S777,粗蛋白和SCP净增量平均为22. 18%和17.95%,组合菌种发酵,粗蛋白含量从整体上高于单菌种发酵.徐坚平等[7]以稻草、玉米秸杆物质为原料,固态培养绿色木霉,液态糖化后接入产朊假丝酵母和快速酵母发酵生产单细胞蛋白,其中单一酵母发酵蛋白增量为3.1%,单一木霉发酵蛋白增量为9.0%,木霉与酵母共发酵蛋白增量为25.2%.侯收稿日期:2002-04-15作者简介:徐姗楠(1979-),女,硕士研究生;通讯联系人:邱宏端,副教授.文华等[8]从热带假丝酵母、白地霉、康宁木霉、树状酵母、绿色木霉、乳酸杆菌、担子真菌中选择30株菌种,以白酒糟为原料筛选得5株生产蛋白饲料的优化菌种,并采用液体发酵法,其中单一菌株发酵酒糟,粗蛋白提高了2%-7.2%,而采用多种菌株协同发酵酒糟,粗蛋白可提高10.1%-14.3%.陈庆森等[9]利用氨法对玉米秸秆进行前处理,建立了绿色木霉(T B9701)、康宁木霉(T B9704)、米曲霉、黑曲霉和四种酵母(323,321,1817,2.21)构成的菌种发酵体系;通过对单一菌株与组合菌种发酵比较,表明T B9704、曲霉与酵母建立的共发酵体系效果最好(粗蛋白含量增加7.13%,总纤维利用率增加12.30%).代小江等[10]以沙棘果渣作为唯一碳源进行单细胞蛋白的发酵研究,从40多株(包括霉菌、酵母菌和细菌)中选育出My -931霉菌与酵母菌组合发酵,产品粗蛋白提高35.8%,粗纤维降低10%.蔡俊等[11]以啤酒糟为主原料,配以麸皮等辅料,采用黑曲霉、米曲霉、异常汉逊氏酵母、产朊假丝酵母进行多菌种固态发酵生产蛋白饲料,真蛋白平均提高率为41.19%.钟世博等[12]以大曲酒糟为原料,采用热带假丝酵母和绿色木霉混合发酵生产蛋白饲料,产品粗蛋白提高13.96%,真蛋白提高11.58%,粗纤维减少7.43%,淀粉含量减少14.1%.王冬梅等[13]利用E M 技术固体发酵啤酒糟生产蛋白饲料,发酵后产品粗蛋白提高15.88%,总氨基酸提高17.34%,粗纤维含量降低10.02%.李发生等[14]采用霉菌(J Z -1)为主发酵菌种,和大型食用真菌(J Z -2)为辅助性菌种发酵白酒酒糟,获得比原糟粉粗蛋白提高10.46%,粗纤维减少3.91%的生物转化蛋白饲料产品.Smirnova I E 等[15]用芽孢杆菌、纤维单胞菌和扣囊拟内孢霉、热带假丝酵母、丝孢酵母混合发酵稻草生产蛋白饲料,获得了微生物细胞生物量和纤维素酶活有效提高的良好结果.从上述例子中看出,微生物蛋白饲料的生产菌种具有种类多和采用多菌种组合发酵的特点.从多菌种的使用情况看,霉菌和酵母菌的组合发酵为多数,这是由于霉菌同化淀粉、纤维素的能力强,可将工业废渣中的淀粉和纤维素降解为酵母能利用的单糖、双糖等简单糖类物质,使酵母得以良好地生长繁殖,实现生物转化蛋白饲料的效果.采用两种或两种以上微生物发酵,体现了微生物之间的互惠、偏利生等关系.该发酵形式对各种原料的有效转化、蛋白饲料的品质提高起到了积极重要的作用.2 发酵原料多为工农业生产的废弃物,趋向资源再生和治理环境微生物发酵蛋白饲料,就原料种类而言是多种多样的.其中有工农业生产的废水(如酿酒、味精、制糖、造纸、石油工业等产生的废水),废渣(如酱油、淀粉加工[16]、糖蜜、甲醇、醋酸等富含有机物的工业废渣),纤维素类物质(如木薯、玉米杆、豇豆藤[17]、花生茎、山药皮、橘皮[2]、香蕉皮[18]、菠萝皮、可可豆、豆荚、棕榈粉、米糠、木屑等),菜籽、棉籽饼粕、桐饼、芝麻饼等蛋白质的下脚料,屠宰厂废弃的毛、血、骨、蹄、壳、皮等,鸡、猪等畜禽粪便[19],鱼虾等海产品深加工产生的废弃物[20-23],甚至包括城市生活垃圾[17].这些原料大都是工农业生产活动的附属物或废弃物,以价格低廉,原料利用率低或污染环境而引起人们的关注.通过微生物发酵,将生产、废弃物综合利用和环境保护三者有机的结合起来,不但可弥补我国动物性蛋白饲料的不足,又可有效地降低对环境的污染.金其荣等[24]以味精、酒精及柠檬酸等工业废水为原料,以假丝酵母为菌种生产饲料酵母蛋白,产品粗蛋白含量为40%-50%,味精废液C OD Cr 降低75%-80%,柠檬酸废液C OD Cr 降低30%-50%,酒精废液C OD Cr 降低70%.焦士蓉[25]利用高浓度玉米酒精废糟液生产饲料酵母,产品的粗蛋白含量为50108%,废糟液C OD 的去除率平均为72.50%,酸去除率平均为89.29%.Shojaosadati S A 等[26]从酒精厂废液中分离出汉逊酵母,利用甜菜废糖蜜蒸馏残液连续发酵生产SCP ,培养过程中添加N 、S 源后,产品粗蛋白含量可达50.6%,C OD Cr 降低35.7%,细胞含量8.5g/dm ,必需氨基酸组分与大豆、鱼粉等其他食物蛋白相当.刘仲敏等[27]从12株曲霉中筛选出一株能发酵降解猪、牛血的RA 3菌株,并用于猪、牛血固态发酵生产蛋白饲料,产品粗蛋白含量达31%-35%,成品收率为40%-44%.涂国全等[28]利用E M 制剂对含有羽毛角蛋白饲料和啤酒糟粉的粗饲料进行发酵,使粗蛋白提高20.15%,粗纤维降低46.3%.蔡皓等[29]利用乳酸菌、芽孢菌、酵母菌、白地霉及光合细菌组成微生态制剂,对废弃物蛋白资源如血粉、皮革粉、芝麻粕、棉籽粕、角粒粉、玉米粉等原料进行混合固态发酵,结果其蛋白质・017・福州大学学报(自然科学版)第30卷消化率由发酵前的75.9%提高到发酵后的91.2%.Faid M 等[30]利用剁碎的沙丁鱼废弃物包括内脏、鱼头和鱼尾等,混合25%的糖蜜,接种酵母、乳酸菌进行发酵,相对原料而言,其发酵产物中三甲胺含量降低或保持较低水平,大肠杆菌、梭状芽孢杆菌以及具有分解脂肪、蛋白能力的有害微生物显著减少.陶德录等[3]选育了产纤维素酶较高的丝状真菌,并以酵母菌、芽孢杆菌和乳酸菌协同完成对各种秸杆类作物的青贮或“黄贮”,达到降解粗纤维5%-10%,提高粗蛋白3%-5%的效果.冯克宽等[31]利用绿色木霉和啤酒酵母混合发酵纤维素物质(玉米秆、玉米芯、油菜秆、洋芋秆、麦秆、青草、胡麻秆、黄豆秆、麸皮等),蛋白质含量均有不同程度的提高,其中以玉米秆发酵的效果最好,蛋白质含量比对照组提高5-6倍.林晓艳等[32]用康宁木霉、黑曲霉和博伊丁假丝酵母N o.2201诱变菌株Y -108混菌两步发酵混合原料(玉米芯水解渣、米糠、麸皮和油饼)生产高蛋白饲料,其发酵产品的粗蛋白质含量从12.21%提高到25.00%.K uo Y u -Haey 等[33]用米曲霉和小孢根霉发酵低毒性的山黧豆种子生产蛋白饲料,发酵产品中神经毒素b -ODAP (3-N -乙二酰基-L -2,3-二氨基丙酸)的去除率可达52.4%-82.2%,脱毒效果显著.此外,从60年代起,世界各国也高度重视以液态正构石蜡或用石油馏分、原油及气态烃(主要是甲烷)作为原料,用酵母或细菌为生产菌生产SCP.采用石油微生物发酵生产单细胞蛋白同样具有原料来源广泛、产率高和营养丰富等方面的优点[34].微生物发酵后的蛋白粗饲料,由于复杂的大分子物质被消化分解为小分子物质,有毒有害物质被去除,同时增加了蛋白质、氨基酸,维生素、酶类等有用代谢产物[35],使物料适口性改善,营养价值提高,有助于动物对营养物质的消化吸收、并提高了饲料的转化率和利用率.微生物发酵蛋白饲料,其效果有较大的差异,这是由于发酵原料与菌种的差异所致.3 发酵工艺微生物发酵蛋白饲料的方法包括固态、液态、吸附在固体表面的膜状培养以及其他形式的固定化细胞培养等.常规发酵以固态发酵和液体深层发酵为主.3.1 固态发酵工艺流程斜面菌种扩培至种子罐↓废渣→粉碎→配料→灭菌→接种→发酵→产品烘干→质检→包装→成品固态发酵一般为浅盘发酵,接种量约为10%.在发酵过程中物料碳氮比、营养成分、含水量、pH 和发酵温度是主要的影响因素.碳氮比(C/N )对微生物生长影响很大,氮源不足,菌体繁殖缓慢;碳源缺乏,菌体容易衰老和自溶,要开展物料成分与微生物菌种需要的研究.最适C/N 应在10-100∶1[36];基质含水量应控制在发酵菌种能够生长而又低于生长所需要的水分活度值,基质初始含水量一般控制在30%-75%,也可采用低含水量物料、中间补水的工艺等;为防止基质内缺氧,常选用薄层、粗粒的培养基质,并在发酵过程中以通风、搅拌或翻动来增大氧的传递,促进均匀传热.此外,发酵种龄、发酵时间与温度等条件也应在实验基础上根据不同菌种、不同工艺及不同发酵目的进行确定.生料发酵也是固态发酵中的一种,如郭维烈等[37]利用粗淀粉及渣粕类原料不经灭菌成功地进行固态发酵生产4320菌体蛋白饲料,该制造工艺简单,由于减少了能耗,降低了成本,因而应用前景良好.但是生料发酵的技术核心是选育微生物菌种的问题.固态发酵具有工艺粗放,技术简单,投资少,产率高,污染环境少等优点,但也存在着劳动强度大,易染杂,工艺控制和过程参数难以实现准确测定与自动化等问题.3.2 液体深层发酵工艺流程斜面菌种→种子罐→发酵罐→板框过滤或介质吸附→干燥→粉碎→质检→包装→成品.液体深层发酵有分批发酵和连续发酵两种.连续发酵是在对数期用恒流法培养菌体细胞,使基质消耗和补充、细胞繁殖与细胞物质抽出率[3]维持相对恒定.该法和分批培养相比,不易染杂,质量稳定.近年来兴起的生物反应器和分离耦合技术在液体深层发酵中的应用已取得了很大进展[38],根据不同的菌种控制好不同的发酵条件如营养成分、温度、pH 、搅拌等是决定发酵成功与否的关键因素,例如・117・增刊徐姗楠,等:微生物发酵生产蛋白饲料的研究进展在酵母菌的高密度发酵中,主要限制因素表现在营养供给不适宜、生产抑制性物质的积累和发酵液流变学特性的影响上,可采用分批补料、重复补料的发酵方式,并保持一定的溶氧和比生长速率,使所产生的乙醇为酵母菌再利用[39].液体深层发酵具有发酵时间短,效率高,适合于工业化生产和易于控制条件等优点,但存在着投资大,生产成本较高等缺点.4 微生态制剂渐趋活跃微生态制剂是由许多有益的微生物及其代谢产物、促生长等物质组成,是近年来出现的一类新型饲料添加剂.目前市场上出现的微生态制剂产品如:E M 、增菌素、生态宝、益生菌王等.这些微生态制剂多数是以乳酸杆菌[20-23]、双歧杆菌、芽孢杆菌[40]、光合细菌、拟杆菌和消化杆菌等菌种进行单一或多菌株组合发酵而成.微生态制剂作为活菌制剂,不但可保证动物的正常代谢,提高动物的免疫机能[41],为动物的生长发育提供丰富的营养物质[42],并具有抑制有害菌,改善微生态环境的功能.在这些微生态制剂中,光合细菌在作为饵料、饲料添加剂、处理高浓度有机废水和改善养殖水体水质方面的作用尤为突出.光合细菌细胞富含蛋白质、人和动物必需的氨基酸等生理活性物质;能分解多种有机物质,转化氨氮、亚硝态氮和H 2S 等物质,其应用前景广阔.如田维熙等[43]将光合细菌应用于反刍动物奶牛、肉牛饲养中,奶牛平均每天多产奶2.5-3kg ,肉牛平均每天多增重0.2kg ,净肉率提高0.7%;李坤宝等[44]在淡水家鱼养殖中添加2%干饵料量的光合细菌,结果家鱼成活率提高5%-28%,单位产量提高22%-38%,饲料系数降低14%-27%.G etha K 等[45]在西米淀粉加工废液中分离与培养光合细菌生产SCP ,在最佳条件下,最大细胞产率约为2.5g drycell /L ,同时淀粉废液C OD Cr 降低77%.邱宏端等[46]利用光合细菌进行鱼池养殖,结果使鱼池水化学因子氨氮、亚硝基氮和C OD Cr 降低,水体病害细菌如假单胞菌、气单胞菌减少,有益细菌如硝化细菌等数量增多.微生态制剂以其天然、无毒、无副作用、无污染、无残留、无抗药性等优点,而逐渐取代抗生素,成为养殖业、畜牧业上安全可靠的兽药和饲料添加剂,其研究领域也日渐成熟与活跃.综上所述,利用生物技术,对可再生资源、废弃资源进行工业化生产微生物蛋白饲料,发展前景广阔.微生物蛋白饲料近年来虽然已取得可喜的研究进展和成果,但是也存在许多问题有待于解决,如生产菌株性能不稳定,耐受性低;某些活菌制剂不易保存;有益菌群协同作用机制或拮抗作用机理不明[47]等.因而,今后的研究可着重于筛选高性能、高耐受性的菌株;或利用基因工程技术对菌株进行遗传改造,促进生料发酵的应用和开发新型饲料;并从生理、代谢和遗传角度深入研究多菌株发酵的协同作用机制;拓宽微生物发酵蛋白饲料的原料资源等,从而更好地发展微生物蛋白饲料的研究与应用.参考文献:[1] 刘仲敏,马德强,常琴.微生物饲料资源的开发[J ].中国饲料,1998(4):36.[2] Scerra V ,Caridi A ,F oti F ,et al.In fluence of dairy Penicillium spp.on nutrient content of citrus fruit peel[J ].Animal Feed Sci 2ence and T echnology ,1999,78(1-2):169-176.[3] 陶德录,韩宁,蒋安文.微生态饲料菌株和成套设备的研究[J ].饲料工业,2000,21(12):31-33.[4] 张西宁.以酱渣为原料生产蛋白饲料的研究[J ].食品与发酵工业,1996(2):1-4.[5] 周晓云,王飞雁.食品工业废渣以发酵技术生产菌体蛋白饲料的研究[J ].中国环境科学,1998,18(3):223-226.[6] 张西宁,许培雅.以碱性蛋白酶发酵渣制备蛋白饲料的研究[J ].粮食与饲料工业,1996(12):22-24.[7] 徐坚平,刘均松,孔维,等.利用秸杆类物质进行微生物共发酵生产单细胞蛋白[J ].微生物学通报,1995,22(4):222-225.[8] 侯文华,李政一,杨力,等.利用酒糟生产饲料蛋白的菌种选育[J ].环境科学,1999,20(1):77-79.[9] 陈庆森,刘剑虹,蔡红远,等.多菌种共发酵生物转化天然纤维素材料的研究[J ].天津商学院学报,2000,20(3):1-6.[10] 代小江,王礼德,贺锡勤,等.利用微生物混合培养物生产沙棘果渣单细胞蛋白[J ].微生物学通报,1995,22(5):267-270.[11] 蔡俊,邱雁临.啤酒糟发酵生产蛋白饲料影响因子的研究[J ].粮食与饲料工业,2000(4):30-31.[12] 钟世博,赵建国,朱中原.混种固态发酵大曲酒糟生产蛋白饲料研究[J ].粮食与饲料工业,2000(11):23-25.[13] 王冬梅,郭书贤,薛刚.E M 技术在啤酒糟发酵饲料上的应用研究[J ].粮食与饲料工业,1999(4):25-26.・217・福州大学学报(自然科学版)第30卷[14] 李发生,谷庆宝,菅小东,等.双菌联合固态发酵生产酒糟菌体蛋白饲料的试验研究[J ].环境科学研究,1999,12(6):39-42.[15] Smirnova I E ,Inst M ikrobioli Virus ol ,M oin R K,et al.M ixed cultures of cellulolytic bacteria and yeasts for preparation of feedprotein based on plant waste material[J ].Vestn S -kh Nauki K az (Russian ),2000(6):62-63.[16] Senez J C ,Raimbault M ,Descham ps F.Protein enrichment of starchy substrates by s olid -state fermentation.the use of organicresidues in rural communities[M].Japan :United Nations University Press ,1983.[17] Onwuka C F I ,Adetiloye P O ,A folami C e of household wastes and crop residues in small ruminant feeding in Nigeria[J ].Small Ruminant Research ,1997,24(3):233-237.[18] Joshi S S ,Dhopeshwarkar Rahul ,Jadhav Unmesh ,et al.C ontinuous ethanol production by fermentation of waste banana peels us 2ing flocculating yeast[J ].Indian Journal of Chemical T echnology ,2001,8(3):153-156.[19] 周立新,黄凤洪.蛋白饲料资源的开发利用[J ].粮食与饲料工业,1999(4):23-24.[20] Dapkevicius M lne ,R ombouts F M ,H ouben J H ,et al.Biogenic amine formation and degradation by potential fish silage startermicroorganisms[J ].International Journal of F ood M icrobiology ,2000,57(1-2):107-114.[21] Hamm oumi A ,E l Y achioui M ,Amarouch H ,et al.Characterization of fermented fish waste used in feeding trials with broilers[J ].Process Biochemistry ,1998,33(4):423-427.[22] Z akaria Z ,Shama G,Hall G ctic acid fermentation of scam pi waste in a rotating horizontal bioreactor for chitin recovery[J ].Process Biochemistry ,1998,33(1):1-6.[23] Hamm oumi A ,Faid A ,Amarouch e of fermented fish waste as a poultry feed ingredient[J ].Cahiers Agricultures ,1999,8(3):207-209.[24] 金其荣,赵建国.利用发酵工业废水生产饲料酵母[J ].无锡轻工业学院学报,1987,6(2):85-89.[25] 焦士蓉.利用高浓度有机废水选育单细胞蛋白菌株的研究[J ].四川工业学院学报,1999,18(1):41-44.[26] Shojaosadati S A ,Jalilzadeh A ,Sanaei H R ,et al.Bioconversion of m olasses stillage to protein as an economic treatment of thiseffluent[J ].Res ources ,C onservation and Recycling ,1999,27(1-2):125-138.[27] 刘仲敏,何伯安,曹友声,等.猪、牛血固态发酵生产蛋白质饲料的研究[J ].微生物学通报,1995,22(6):351-354.[28] 涂国全,张宏玉,张宝.E M 在粗饲料发酵中的转化效果[J ].中国饲料,1999(16):9-11.[29] 蔡皓,余哓斌.多菌种发酵生物活性蛋白饲料的发酵研究[J ].粮食与饲料工业,2000(6):32-34.[30] Faid M ,Z ouiten A ,E lmarrakchi A ,et al.Biotrans formation of fish waste into a stable feed ingredient [J ].F ood Chemistry ,1997,60(1):13-18.[31] 冯克宽,曾家豫,王明谊,等.利用木霉和酵母混合发酵提高纤维素物质蛋白质含量[J ].西北师范大学学报(自然科学版),1998,34(4):67-69.[32] 林晓艳,陈彦,尹淑媛.玉米芯混菌两步发酵生产单细胞蛋白及高蛋白饲料[J ].中国饲料,1999(18):28-29.[33] K uo Y u -Haey ,Bau H wei -M ing ,R ozan Pascale ,et al.Reduction efficiency of the neurotoxin b -ODAP in low -toxin vari 2eties of Lathyrus sativus seeds by s olid state fermentation with Aspergillus oryzae and Rhizopus microsporus var chinensis[J ].Sci F ood Agric ,2000,80(15):2209-2215.[34] 罗家立.生物工程技术的发展及其在石油化工中的应用[J ].石油化工动态,2000,8(2):8-11.[35] 罗明朗.论固体发酵对物料蛋白质含量的提高[J ].粮食与饲料工业,1996(11):26-28.[36] 赵德英,茌亚青,张景宏,等.固态发酵及其在饲料工业中的应用[J ].中国饲料,2000(10):28-29.[37] 郭维烈,郭庆华,谢小保,等.4320菌体蛋白饲料中双菌作用机制的研究[J ].农业工程学报,2002,18(1):122-125.[38] Mattiassin B ,H olst O.Extractive Bio -conversions[M].New Y ork :M orcel Dekker Inc ,1991.[39] 陈洪章,李佐虎.酵母菌的高密度发酵[J ].工业微生物,1998,28(1):28-31.[40] Smirnova I E ,Saubenova M e of celluloselytic nitrogen -fixing bacteria in the enrichment of roughage with protein[J ].Prikl Biokhim M ikrobiol ,2001,37(1):86-92.[41] Maqbool A ,Shafiq M K,K han I A.S tudies on effective microorganism treated rice straw on Deg Nala disease in Bu ffaloes[J ].Indian Journal of Dairy Science ,1999,52(6):389-392.[42] 叶成远,张惠云.微生态制剂在水产养殖中的应用[J ].水产养殖,2000,21(3):25-27.[43] 田维熙,王叶,赵荣芝,等.光合细菌在奶牛、肉牛饲养中应用的试验[J ].中国饲料,2000(13):11-12.[44] 李坤宝,程启明.光合细菌在淡水家鱼养殖中的应用研究[J ].粮食与饲料工业,1998(10):35-36.[45] G etha K,Vikines wary S ,Chong V C.Is olation and growth of the phototrophic bacterium Rhodopseudom onas palustris strain B1insag o -starch -processing wastewater[J ].W orld Journal of M icrobiology &Biotechnology ,1998,14(4):505-511.[46] 邱宏端,徐姗楠,朱航,等.耐盐红螺菌科细菌对淡水鱼池水质及细菌类群的影响[J ].水产学报,2002,26(3):231-236.[47] 冯树,张忠泽.混合菌———一类值得重视的微生物资源[J ].世界科技研究与发展,2000,22(3):44-47.・317・增刊徐姗楠,等:微生物发酵生产蛋白饲料的研究进展。
自20世纪50年代开始,在动物日粮中添加抗生素显著促进了动物生产,并对集约化畜牧业的发展做出了重大贡献。
然而随着时间的推移,饲料中添加抗生素的危害日益显现,并受到社会的广泛关注。
2004年,WTO 、联合国粮农组织(FAO )和世界动物卫生组织(OIE )联合召开专题讨论会,讨论了非人用抗生素的使用和抗生素的耐药性问题。
欧盟自2006年1月起全面禁止在畜禽饲料中添加抗生素,我国在饲料中批准使用的抗生素种类也在逐渐减少。
人们开始纷纷寻求其他的替代品和替代技术,以保证畜牧业生产的效率与效益不受影响[1]。
同时饲料和粮食生产一直是我国国民经济的薄弱环节。
由于受人口增长、耕地减少和肉食品消费增加的影响,我国粮食供需平衡十分脆弱。
我国人均占有粮食一直在400kg 以下,其中,粮食总产量的40%左右用于饲料生产。
在耕地和水资源长期紧缺的情况下,我国粮食产量已很难提高,饲料资源短缺的问题长期制约着我国畜牧业的发展。
从长远来看,牲畜与人争粮问题仍然是我国不能掉以轻心的大事,这是由我国国情及粮情所决定的[2]。
因此,发展高效饲料工业,生产生态健康型饲料是当务之急。
1发酵饲料概况1.1发酵饲料定义发酵现象的历史与地球生命体的诞生时间一样长,但人们对其本质的了解却是近200年的事情。
英语发酵为“fermentation ”是由拉丁语“ferver ”派生而来,意思是翻涌,就是只看到了发酵现象。
许多现代化发酵工业的建立是近10年的事情[3]。
发酵饲料是指在人工控制条件下,微生物通过自身的代谢活动,将植物性、动物性和矿物性物质中的抗营养因子分解或转化,产生更能被畜禽采食、消化、吸收且无毒害作用的饲料原料[4-5]。
通过发酵处理的饲料不仅具有改善饲料营养吸收水平,降解饲料原料中可能存在的毒素,还能起到促进生长、维持动物体内微生态平衡、增强机体免疫力、防病治病的作用。
1.2发酵饲料菌种我国农业部2003年12月发布的第318号公告“饲料添加剂品种目录”中有15种:地衣芽孢杆菌、枯草芽孢杆菌、两歧双歧杆菌、粪肠球菌、屎肠球菌、乳酸肠球菌、嗜酸乳杆菌、干酪乳杆菌、乳酸乳杆菌、植物乳杆菌、乳酸片球菌、戊糖片球菌、产朊假丝酵母、酿酒酵母、沼泽红假单胞菌。
目前,市场上用于饲料发酵的益生菌种类主要是乳酸菌、芽孢杆菌、酵母和霉菌[6]。
1.2.1乳酸菌:乳酸菌是应用最早、最广泛的益生菌,是一类能在可利用的碳水化合物发酵过程中产生大量乳酸的细菌的总称。
通常为厌氧或者兼性厌氧菌,耐酸,在pH 值为4.5以下时仍可生长。
研究发现,代谢产物和活菌液对革兰氏阳性菌、革兰氏阴性菌都有很强的抑菌效果,随着pH 值的降低抑菌作用逐渐变强,活菌体内和代谢产物中含有较高的超氧化物歧化酶(SOD ),能增强动物的体液免疫和细胞免疫。
1.2.2芽孢杆菌:芽孢杆菌是一种能够产生芽孢的好氧菌,耐受高温、高压和酸碱,生命力强。
芽孢杆菌能够耐受胃酸和消化道上段胆盐和消化液破坏,在到达消化道下段以后出芽生长繁殖;芽孢杆菌是好氧菌,在小肠道内消耗大量的氧气,维持肠道厌氧环境,从而促进乳酸菌双歧杆菌等厌氧益生菌的生长,抑制需氧致病菌的生长,维持动物肠道的菌群平衡。
芽孢杆菌能够产生VB 1、VB 2、VB 6等B 族维生素,VC ,蛋白酶,淀粉酶和脂肪酶等酶以及多种代谢产物,对饲料的降解、消化、吸收和动物的营养代谢起到促进作用。
1.2.3酵母:酵母是一类非丝状真核微生物,一般泛指能发酵糖类的各种单细胞真菌,酵母菌体中含有非常丰富的蛋白质、B 族维生素、脂肪、糖、酶等多种营养成分。
大量的应用研究试验证明,酵母在提高动物免疫力、提高动物生产性能和减少应激等方面均起到一定的作用。
饲用酵母的主要种类有啤酒酵母和产朊假丝酵母。
啤酒酵母除用于酿造啤酒及其他的饮料酒外,还可发酵面包。
菌体维生素、蛋白质含量高,可作食用、药用和饲料酵母。
产朊假丝酵母能发酵葡萄糖、蔗糖、棉子糖,能同化硝酸盐。
产朊假丝酵母的蛋白质含量和VB 含量均高于啤酒酵母,它能以尿素和硝酸盐为氮源,不需任何生长因子。
特别重要的是它能利用五碳糖和六碳糖,还能利用造纸工业的亚硫酸、木材水解液及糖蜜等生产人畜食用的蛋白质。
1.2.4霉菌:常用的霉菌有根霉、黑曲霉、米曲霉等[7]。
霉菌可利用分解纤维素和淀粉。
1.3发酵饲料种类微生物发酵饲料按照水分含量的多少可分为液体发酵饲料和固体发酵饲料。
液体发酵饲料国外使用较多,普遍采用饲料中天然存在的乳酸菌、酵母发酵;而国内普遍使用微生物发酵剂或菌种,使用固体发酵饲料技术。
1.3.1益生菌液体发酵饲料:国外在制作微生物液体发酵饲料时一般不添加菌种,自然发酵而成,在发酵好的液体发酵饲料微生物菌群中占据主导地位的是乳酸菌。
Winsen 提出的液体发酵饲料指标被广大研究者认同:pH 值<4.5、收稿日期:2010-03-29作者简介:王子强(1980—),男,助教,主要从事畜牧兽医方面的成人教育工作。
微生物发酵饲料研究进展王子强(山东畜牧兽医职业学院,山东潍坊261061)畜牧与饲料科学Animal Husbandry and Feed Science 2010,31(4):34-36摘要:近年来,随着世界上许多国家限制和禁止使用抗生素,以及饲料资源日趋紧张,寻找高效、生态健康型饲料成为当务之急。
综述了发酵饲料定义、菌种、种类、优势及存在的问题。
关键词:发酵;发酵饲料;菌种中图分类号:S816.6文献标识码:A文章顺序编号:1672-5190(2010)04-0034-03LAB>91og10CFU/mL、乳酸含量>150mmol/L、乙酸含量<40 mmol/L、酒精含量<0.8mmol/L。
液体发酵饲料在国内外的使用都有悠久的历史,国外对其研究比较深入,并且广泛使用。
1.3.2微生物固体发酵饲料:微生物固体发酵饲料的种类大致可分为:全价发酵饲料、发酵浓缩料、发酵豆粕、酵母培养物和其他发酵产品。
1.3.2.1全价发酵饲料:全价发酵饲料是在营养均衡全面的无抗生素全价配合饲料中加入微生物和水,混合后在适当的温度下经厌氧或好氧发酵而成的饲料。
该类饲料不仅能全面满足动物的营养需要,还能增加多种消化酶有机酸、维生素、多肽、小肽、氨基酸的含量,富含大量的益生菌。
具有明显的促生长、防治疾病等生物学效应,对肠道疾病的控制效果好,并能节约生产成本。
1.3.2.2发酵浓缩料:发酵浓缩料是将不含抗生素的浓缩饲料与微生物和水等混合后发酵而成的非全价饲料。
发酵浓缩料跟全价益生菌发酵饲料相比只是在制作时少添加能量饲料,其他的功能作用相同,具有体积小、运输使用方便的优点,是最具市场前景的一类产品。
1.3.2.3发酵豆粕:发酵豆粕是一种以豆粕为原料,经微生物发酵而成的富含小肽的高档饲料蛋白质[8]。
由于小肽营养机理研究的深入、益生菌发酵豆粕在饲料中应用的优良效果以及全球鱼粉产量减少价格走高等原因,益生菌发酵豆粕目前成为饲料行业中的热点。
益生菌发酵豆粕中小肽含量的高低和抗营养因子的消除程度与发酵所使用的微生物菌种及发酵工艺息息相关,在生产中一般采用多种益生菌搭配使用,促进酶解,分解抗原和抗营养因子,经过多种益生菌分阶段发酵酶解,使蛋白质得到充分降解,产品富含多种活性小肽、益生菌、生物活性酶等[9]。
益生菌发酵豆粕在我国许多地方已大批量生产,在高档饲料中作为优质饲料蛋白的植物蛋白源。
1.3.2.4酵母培养物:从目前国内外用得较多的酵母培养物产品来看,主要分为2大类:①以酵母活细胞为主要功能部分的酵母培养物;②以含有的大量酵母代谢产物为主要功能部分的产品,并不强调活细胞的作用,产品主要由酵母代谢产物、酵母菌体和经过发酵后变性的培养基所构成。
酵母培养物可明显提高反刍动物的生产性能。
1.3.2.5其他发酵产品:除了以上介绍的已进行大规模工业批量生产的益生菌发酵饲料外,还有其他各具特色的发酵产品如:青贮饲料;对棉籽饼(粕)、菜籽饼(粕)和油茶枯饼等进行发酵脱毒而制成的饲料蛋白;用工业废弃物如甜菜渣、啤酒渣、豆渣、柠檬酸渣、玉米淀粉渣、果渣等制成的发酵饲料;用农业废弃物(如秸秆等)制成的发酵饲料等[1,10-11]。
2发酵饲料优势利用微生物加工和调制饲料具有物理和化学方法所不可替代的优势,这是由微生物本身的特点所决定的。
归纳起来微生物发酵饲料具有以下5大优势。
2.1原料来源广泛据统计,目前已发现的微生物种类多达10万种以上,而且不同种的微生物具有不同的代谢方式,能够分解各种各样的有机物质。
因此,利用微生物发酵生产饲料具有原料来源广的优点。
能够用来生产微生物饲料的废弃物包括:工、农、林、水、渔等产业的各种有机废水、废渣甚至城市垃圾和粪便[12];矿物质资源:石油、天然气及由它们衍生出的副产物,如甲醇、乙醇、醋酸、甲烷等;纤维素资源:各种农作物秸秆、糠稗、木屑、蔗渣、薯渣、甜菜渣等,这些都是自然界最丰富的物质[13];糖类资源:甘薯、木薯、马铃薯等淀粉类物质和废糖蜜等[14]。
同时利用微生物不同的代谢方式可以生产菌体蛋白、酶制剂、饲用抗生素、有机酸、氨基酸等,还可以进行秸秆微贮发酵、青贮饲料、糖化饲料、饼粕类脱毒发酵、畜禽粪便发酵除臭和作为猪饲料、动物屠宰残渣发酵饲料(血粉发酵饲料)、酵母饲料、石油蛋白饲料、微型藻类生产和光合细菌培养等。
2.2投资少、效能高微生物一般都能在常温常压下,利用简单的营养物质生长繁殖,并在生长繁殖过程中积累丰富的菌体蛋白和中间代谢产物。
因此,利用微生物生产和调制饲料,一般具有投资少、效能高等特点。
同时,因为微生物个体微小、构造简单、世代时间短、对外界条件敏感,所以容易产生变异,这有利于有目的地进行诱变育种,改变菌种的生产特性和提高菌种的生产能力。
可以通过物理的或化学的诱变剂对微生物进行处理,使它们的遗传性质发生变异,从而可以改变微生物的代谢途径。
例如:对木霉进行无数次的诱变试验,从中筛选出比以前更好的变异菌株,应用于植物秸秆等纤维素资源的发酵,取得了很好的效果。
国外的研究表明,通过基因工程可以将草食动物瘤胃内的消化非纤维素的细菌转变成为可消化纤维素的细菌,从而提高反刍动物消化纤维素的能力。
同样的道理,利用这种“基因工程菌”作为粗饲料的发酵菌,可以调制出高营养、高消化、高吸收率的优良饲料来。
2.3代谢旺盛产出率高由于微生物个体微小,具有极大的表面积和容积的比值。
因此,它们能够在有机体与外界环境之间进行迅速的营养物质与废物交换。
从单位重量来看,微生物的代谢强度比高等动物的代谢强度大几千倍到上万倍,例如,利用乳酸菌进行乳酸发酵,每个细胞产生的乳酸为其体重的1000~10000倍。
所以,在调制青贮饲料时,原料本身自然附着的微生物乳酸菌作为发酵菌种就足够了(当然如果当时自然界存在的杂菌比较复杂且多,则为了使乳酸菌迅速成为优势菌群,则必须添加乳酸菌发酵剂)。