金属切削论文 中文
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
切削加工技术论文(2)切削加工技术论文篇二超精密切削加工技术探析摘要:超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具具切削或SPDT。
对超精密切削加工技术及其机理进行介绍和总结,希望对超精密加工行业同事有所指导。
关键词:超精密切削;金刚石;机床中图分类号:T13文献标识码:A文章编号:1672-3198(2011)06-0263-02通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。
加工精度在0.1~1μm,加工表面粗糙度在Ra0.02~0.1μm之间的加工方法称为精密加工;精度高于0.1μm,表面粗糙度小于Ra0.01μm之间的称为超精密加工。
因此,如果从去除单位尺寸将切削加工加以区别的话,以微米级的去除,才属于超精密加工。
1 金刚石刀具切削的机理超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具切削或SPDT(Single Point Diamond Turning)。
金刚石刀具的超精密切削加工虽有很多优点,但要使金刚石刀具超精密切削达到预期的效果,并不是很简单的事,许多因素都对它有影响。
1.1 切削厚度与材料切应力的关系金刚石刀具超精密切削属微量切削,其机理和普通切削有较大差别。
精密切削时要达到0.1微米的加工精度和Ra0.01微米的表面粗糙度,刀具必须具有切除亚微米级以下金属层厚度的能力。
由于切深一般小于材料晶格尺寸,切削是将金属晶体一部分一部分地去除。
因此,精密切削在切除多余材料时,刀具切削要克服的是晶体内部非常大的原子结合力,于是刀具上的切应力就急剧增大,刀刃必须能够承受这个比普通加工大得多的切应力。
切削厚度与切应力成反比,切削厚度越小,切应力越大。
当进行切深为0.1微米的普通车削时,其切应力只有500MPa;当进行切深为0.8微米的精密切削时,切应力约为10000MPa。
因此精密切削时,刀具的尖端将会产生根大的应力和很大的热量,尖端温度极高,处于高应力高温的工作状态,这对于一般刀具材料是无法承受的。
金属磨削有关的英文作文英文回答:Metal cutting is a manufacturing process that uses a cutting tool to remove material from a workpiece. The cutting tool is usually made of a harder material than the workpiece, and it is moved across the workpiece at a high speed. This causes the cutting tool to shear the material from the workpiece, creating a new surface.There are many different types of metal cutting processes, each with its own advantages and disadvantages. The most common type of metal cutting is milling, which uses a rotating cutting tool to remove material from the workpiece. Other types of metal cutting processes include turning, drilling, and sawing.Metal cutting is a versatile process that can be used to create a wide variety of products, from simple parts to complex components. It is a critical process in manyindustries, including the automotive, aerospace, and medical device industries.中文回答:金属切削是一种利用切削刀具从工件上去除材料的制造工艺。
中英文对照资料外文翻译文献Metal machining knowledge1 Mechanical processing systemFrom the whole process of mechanical manufacturing, the most basic components of machine part, also is the first to produce qualified parts, and then assembled into components, again from zero, parts assembly into machine, therefore, manufactured to meet the requirements of the various parts of processing machinery is main purpose, and in the vast majority of material machining is a metal material, so the machining is mainly to a variety of metal cutting.Parts of the surface is usually several simple surface such as plane, cylindrical surface, conical surface, forming surface and spherical, combination, and thesurface of the part is through a variety of machining method, in which the metal cutting machine tool with the workpiece and tool coordination relative movement of resection of part machining surplus materials, access to in shape, size and surface quality are compatible with the requirements of this process is called the metal cutting processing.Metal cutting processing, often as part of the final processing method, it needs to use metal cutting tools to process parts, between them to determine the relative motion and bear great cutting force, usually in the metal cutting machine tool for processing, parts and tools required by machine tool fixture and tool and machine tool for reliable connection they do the relative motion, drive, realize the cutting process, the metal cutting machine tool, cutting tool, fixture and workpiece machining closed system called mechanical processing system, the metal cutting machine tool processing machinery parts mechanical work, supporting and providing dynamic action; cutting tool direct action of parts machining; machine tool fixture used on parts positioning and clamping, the correct position of processing. The chapter on machining process system four part is analyzed, the mechanical parts of the processing of the whole process.2 Cutting motion and parameters2.1 Cutting movementMetal cutting processing, workpiece machining process is processed object in general, any one of the workpiece are composed of rough processing to finished product process, in this process, to make the tool on the workpiece machining to form various surfaces, must make the tool and workpiece relative motion is generated, this in metal cutting processing must be relative motion is known as the cutting movement. To lathe processing outer cylindrical surface as an example, Figure 2-1 shows a turning movement, cutting layer and formed on the workpiece surface.Figure 2-1 turning movement, cutting layer and formed on theworkpiece surfaceCutting motion can be divided into the main movement and feed movement of the two kind.(1)Main movementMain movement is the removal of the unnecessary metal layer, forming the new surface necessary for the movement, it is the most basic, cutting the main motion, it is usually the highest speed, consumption of machine tool power most, such as turning, boring machining workpiece turning, milling and drilling processing cutter rotary motion, planing is planing linear motion.(2)Feed motionFeed movement is to be cutting metal layer intermittent or continuous input of cutting a movement, with the main movement coordination can becontinuously removed metal layer,to obtain the desired surface. Feed motion is characterized by low speed, low power consumption, can be composed of one or more exercise. Figure 2-1 in excircle turning along the axial direction of the longitudinal feed motion is continuous, radially along the workpiece transverse feeding motion, it is intermittent.(3)Layer cuttingCutting layer refers to cutting cutting workpiece to a single stroke the resection of the workpiece material layer. Shown in Figure 2-1, the workpiece rotates a circle back to the original level, because the tool longitudinal feed motion is continuous, the cutting tool from the position I had moved to position II, in the two position of the formed workpiece material layer (Figure ABCD region ) is cutting layer.(4)The cutting process is formed on the workpiece surfaceThe workpiece in the cutting process in the formation of the three surfaces: one of the surfaces to be processed is refers to the workpiece to be cut away the surface figure external circular surface 1; the transition surface is the workpiece cutting edges are cutting surface, as shown in the figure 2 surface; surface refers to the workpiece by the cutting process after the formation of the the surface of external circular surface, as shown in figure 3.2.2 CuttingBetween the tool and the workpiece with relative movement can be cutting, used to measure the movement of cutting size parameter called the cutting parameters, cutting speed, feed rate and depth ( depth ) called the cutting elements of the three. It is only reasonable to determine the amount of cutting can be carried out smoothly cutting.(1)Cutting speedThe cutting edge of selected points on the workpiece relative to the main movement speed, unit or. Because each point on the cutting edge of the cutting speed is different, when calculating the maximum cutting speed cutting tool usedon behalf of the cutting speed. The outer circle lathe turning cutting speed calculation formula:( 2-2 )In — the workpiece surface diameter ( mm ),—workpiece speed ().(2) FeedCutting tool in the direction of feed on the workpiece relative to the displacement of said feed, different processing methods, the cutting tool and the cutting movement in different forms, the feed formulation and measurement methodsare also different. Feed unit( used for turning, boring )or Stroke ( used for planing, grinding etc.). The feed that feed movement speed. Feed velocity can also be used to feed speed( company) Or feed per tooth( used for milling cutter, reamer, cutter, unit is Tooth) Express. In general(2-3)Type of—main motor speed(),—the cutter teeth.(3) Back cutting depth (depth of cut )In the direction perpendicular to the direction of main movement and feed movement in the direction of the working plane measurement of workpiece and the cutting tool edge cutting surface contact length. For cylindrical turning, back cutting depth for the workpiece on the machined surface and the vertical distance between the surface to be machined, the unit. That is( 2-4 )In —the workpiece surface diameter ( ), — machined surface diameter ( )3 Cutting tool basic knowledgeIn the process of metal cutting, cutting work is done directly tool, and the cutting tool is fit for cutting work, mainly by cutting part of the tool geometry and cutting tool materials reasonable physical, mechanical properties.3.1 Cutting part of the tool structural elementsCutting tool type are many, varied structure. Lathe tool, planer is asingle-point cutting tool, and the drill bit, cutter, cutter, although they differ in shape, but they are cutting part of the structural elements and geometry have many features in common, so a correct understanding and understanding a single-point cutting tool is the recognition and understanding of knife with foundation.As shown in Figure 3-1, tool comprises a knife body ( clamping part) and the cutter head ( cutting ). The knife body is used to the tool clamp on lathe tool holder, supporting and force transmission effect, the cutter head to cutting work. Tool cutting part ( also known as the cutter head ) by the rake face, the flank, minor flank, the main cutting edge, a secondary cutting edge and tip.Figure 3-1tool.Their definitions respectively:(1) front ( front) tool and chip contact and the interaction of surface.(2) the flank ( main behind the cutter and workpiece ) transition surface relative to and interacts with the surface of.(3) the minor flank ( side behind) tool and machined surface relative to and interacts with the surface of.(4) the main cutting edge rake face and flank of the intersection of main. It completes the main cutting work.(5) a secondary cutting edge rake face and flank of the line side. It is matched with the main cutting edge finish cutting, and finally forming the machined surface.Figure 3-2 cutter, drill bit, milling cutter cutting section shape(6) the main cutting edge and the side cutting edges at the connection of a blade. It can be small line segment or arc.Thus, turning tool is mainly composed of three blades, two cutting edges and a nose, and other types of tools, such as knives, drill bits, milling cutter, can be seen as the evolution and combination tool. As shown in Figure 3-2, planing cutting part of the tool shape and same ( Figure 3-2a ); the drill bit can be regarded as two positive and reverse turning hole wall and at the same time the tool, which has two main cutting edge, two side cutting edge, also adds a transverse blade (FIG. 3-2b ); milling cutter a plurality of cutter can be regarded as the combination of composite tools, each of which corresponds to a lathe tool cutter tooth ( Figure 3-2c ).3.2 Tool geometric angle(1)Tool angle reference coordinate systemThe angle of cutting tool is to determine the cutting part of the tool geometry parameters, to determine the angle of cutting tool, must determine for definitions and regulations angle of various reference plane, consisting of various reference coordinate system, outside round tool as an example in the production practice of the most commonly used coordinates are orthogonal plane reference coordinate system, as in Figure 3-3 in three main planar composition:① surface cutting edge of selected points, perpendicular to the point of main movement direction of plane assumption. To express with Pr.② the cutting plane cutting edge of selected points, and cutting edge tangential and perpendicular to the cutting tool, the flat base surface. The main cutting plane is indicated by Ps, side cutting plane with P ' s.③ orthogonal plane cutting edge selected point and perpendicular to the base surface and the cutting plane of the plane cutter. To express with Po.The three planar two two mutually perpendicular, called orthogonal coordinate system, so called orthogonal plane reference frame, in the picture, the main cutting edge and the side cutting edges of selected points selected point can be establishedin the orthogonal plane reference coordinate system, their base with the bottom surface of the flat surface parallel tool.Figure3-3 orthogonal plane reference coordinate system(2)Angles of cutterEstablishment of plane coordinate system, cutter knife surface and each coordinate plane arose between angle, so that they can be used to express the degree of tilt of each knife, thereby changing the sharp edges of the cutter and the strength, design, grinding and measuring tool geometry, the cylindrical turning tool, knife surface are three main one, each blade according to the side two analysis requires two angles to determine the spatial position, therefore requires a total of six angles to determine the outer circle lathe tool geometry, the six angle is called the outer circle lathe tool independent point of view, as shown in figure 3-4:Figure3-4The orthogonal plane of the reference coordinate system of cutting tool angleThe angle of cutting tool manufacturing and grinding tool is needed, and the cutter design drawing shall be stated angle, outside round tool as an example, the angle is defined:① anterior horn in the orthogonal plane measurement of the rake face and the angle between the front surface, angle of rake face inclined degree. Higher the rake angle cutter sharper rake face and the base surface, according to the relative positions of the different, respectively defined as positive rake angle, zero rake angle and side rake angle.② the angle in the orthogonal plane measurement of the flank and the angle between the cutting plane. After the main main flank angle of tilt degree, generally positive.③ side angle in the side cutting edges orthogonal plane measuring side flank face and the angle between the cutting plane. Back clearance angle said side flank inclination degree, generally positive.④ the main angle in the inner base surface measurement of the main cutting edge on the base with the direction of feed angle projection. The main general positive angle.⑤ on the surface side angle measurement in the secondary cutting edge on the surface projection and the feed motion in the opposite direction angle. General positive side angle.⑥ in a cutting plane cutting edge inclination measurement in the main cutting edge and base of the angle between the. When the blade is positive, the strength of the tool tip is low, iron filings to knife direction outflow, applicable to finish type cutter.3.3 Commonly used tool materials(1)Tool material should have the properties ofIn the process of metal cutting, cutting part of the tool at a high temperature under a lot of cutting force and cutting of intense friction, when working, also accompanied by shock and vibration caused by cutting, temperature fluctuations, therefore, cutting part of the tool materials should have good mechanical and physical and chemical properties, mainly:① high hardness hardness must be higher than the material hardness, general cutting tool materials at room temperature shall be above 60HRC hardness.② high wear resistance between the tool and the workpiece has a lot of relative motion velocity, friction, require high wear resistance material, generally the higher hardness wear resistance.③ sufficient strength and toughness of cutting tool and workpiece to produce great cutting force, simultaneously also has the big impact force, the cutting tool material should have enough strength and toughness to ensure that the tool does not generate damage.④ high heat resistance and high heat resistance is at a high temperature can still maintain the cutting performance of a character, usually with high temperature hardness values measured, can also be used while the tool is cutting allows the heat resisting temperature values measured. It is the important index of cutting tool material. Heat resistance and better material allows the cutting speed is higher.Tool material should also have better technological and economic. Tool steel should have good heat treatment, quenching deformation, hardening layer depth, decarburized layer shallow; high hardness materials need grinding processing; welding material, should have better thermal conductivity and welding technology. In addition, in satisfies the performance requirement, should as far as possible to meet the requirements of rich resources, low price.Selection of cutting tool materials, it is difficult to find all aspects of performance are the best, because the material properties between some restrict each other, can according to the needs of technology to ensure that the main performance requirements, such as rough rough forging, required to maintain a higher strength and toughness, and machining of hard materials with high hardness.金属切削加工基础知识节选1 机械加工工艺系统从机械制造的整个过程来看,机器的最基本组成单元为零件,也就是首先要制造出合格的零件,然后组装成部件,再由零、部件装配成机器,因此,制造出符合要求的各种零件是机械加工的主要目的,而机械加工中绝大部分材料是金属材料,故机械加工主要是对各种金属进行切削加工。
金属切削机床论文摘要本论文主要研究了金属切削机床的设计、结构和应用。
金属切削机床作为制造业中不可或缺的工具,其性能和效率对产品质量和生产效率有着重要的影响。
通过深入研究金属切削机床的工作原理、运动方式、结构设计和控制系统,本论文旨在提出一套可行的金属切削机床设计理论,并对其应用进行探讨,以期在制造业领域取得更好的效益。
1. 引言金属切削机床是制造业中常见的一类设备,其主要功能是将工件上的金属材料进行切削加工,以达到所需的形状和尺寸。
在工业生产中,金属切削机床广泛应用于各个领域,包括汽车、航空航天、电子、船舶等行业,对提高产品质量和生产效率起着至关重要的作用。
本论文将从金属切削机床的设计、结构和应用三个方面进行研究。
首先,我们将介绍金属切削机床的工作原理和运动方式,分析其切削加工过程,并探讨不同的切削方式对加工效果的影响。
接着,我们将详细讨论金属切削机床的结构设计和控制系统,包括床身、主轴、工作台等部件的设计原则和优化方法。
最后,我们将通过实际案例,探讨金属切削机床的应用场景,并提出一些建议,以便在实际生产中更好地利用金属切削机床。
2. 金属切削机床的工作原理和运动方式金属切削机床的工作原理主要包括刀具对工件的切削和切削力的产生过程。
在切削加工过程中,切削刀具通过旋转等方式对工件进行切削,从而形成所需的形状和尺寸。
同时,切削力的产生也是切削加工过程中不可忽视的因素,它与切削速度、切削深度和切削材料有着密切的关系。
金属切削机床的运动方式主要有三种:直线运动、旋转运动和复式运动。
直线运动是指切削刀具在工件上沿直线方向进行切削,常用于平面和直线加工。
旋转运动是指切削刀具绕轴线进行旋转,常用于圆柱面和曲面加工。
复式运动是指同时进行直线运动和旋转运动,用于加工更复杂的曲线和轮廓。
3. 金属切削机床的结构设计和控制系统金属切削机床的结构设计和控制系统是影响其性能和效率的关键因素。
在结构设计方面,金属切削机床需要考虑床身的刚度、主轴的精度、工作台的平稳性等因素。
2024年金属切削机床安全技术范文金属切削机床是用切削方法对金属毛坯进行机械加工,使之获得预定的形状、精度和光洁度的设备。
由于金属切削机床在工业中起着工作母机的作用,因此,它的应用范围是非常广泛的。
金属切削机床的工作特点金属切削机床进行切削加工的过程是:将被加工的工件和切削工具都固定在机床上,机床的动力源通过传动系统将动力和运动传给工件和刀具,使两者产生旋转和(或)直线运动。
在两者的相对运动过程中,切削工具将工件表面多余的材料切去,将工件加工成为达到设计所要求的尺寸、精度和光洁度的零件。
由于切削的对象是金属,因此旋转速度快,切削工具(刀具)锋利,这是金属加工的主要特点。
正是由于金属切削机床是高速精密机械,其加工精度和安全性不仅影响产品质量和加工效率,而且关系到操作者的安全。
金属切削机床的基本结构金属切削机床种类繁多,其结构也有较大差异,但其基本结构都是一致的。
因此,有些共性的装置如安全装置、传动装置、制动装置适用于各种机床,其基本结构包括:(1)机座(床身和机架)机座上装有支承和传动的部件,将被加工的工件和刀具固定夹牢并带动它们作相对运动,这些部件主要有工作主轴、拖板、工作台、刀架等。
由导轨、滑动轴承、滚动轴承等导向。
(2)传动机构将动力传到各运动部件,传动部件有丝杠、螺母、齿轮齿条、曲轴连杆机构、液压传动机构、齿轮及链传动机构和皮带传动机构等。
为了改变工件和刀具的运动速度,机床上都设有有级或无级变速机构,一般是齿轮变速箱。
(3)动力源一般是电动机及其操纵器。
(4)润滑及冷却系统。
金属切削机床的运动形式及切削方式机床的运动可分为主运动和进给运动。
主运动是切削金属最基本的运动,它促使刀具和工件之间产生相对运动,从而使刀具前面接近工件;进给运动使刀具与工件之间产生附加的相对运动,加上主运动,即可不断地或连续地切削,并得出具有所需几何特性的加工表面。
机床种类不同,切削方式、工件和刀具的运动形式就不同,对安全的要求也不同。
机械加工中的金属切削加工技术研究简介:机械加工一直以来都是制造业中不可或缺的一部分,而金属切削加工技术则是机械加工过程中的重要步骤。
本文将探讨金属切削加工技术的研究进展,并深入分析其在机械加工中的应用。
第一部分:金属切削加工技术的发展历程金属切削加工技术的起源可追溯到古代文明时期,当时人们使用手工工具对金属进行切削和加工。
随着工业革命的到来,机械切削工具的出现极大地改变了金属加工的方式。
从最早的手动机械切削到后来的自动化数控切削,金属切削加工技术经历了数百年的演变和创新。
例如,发展出的铣床、车床、钻床等工具,极大地提高了金属切削的效率和精度。
第二部分:金属切削加工技术的研究进展近年来,随着科技的快速发展,金属切削加工技术也取得了长足的进步。
其中,刀具材料的研究是非常重要的一方面。
高性能刀具材料如硬质合金、陶瓷刀具、多晶刀具等的出现,大大提高了切削加工过程中的切削速度和切削稳定性。
同时,刀具涂覆技术也是一个研究的热点领域,通过在刀具表面涂覆一层陶瓷或金属材料,能够显著提高刀具的寿命和耐磨性。
第三部分:金属切削加工技术的应用金属切削加工技术广泛应用于各个领域,如航空航天、汽车制造、电子设备等。
其中,航空航天工业是金属切削加工技术的重要应用领域之一。
在航空发动机制造中,金属切削加工技术被用于加工复杂的叶片结构,以保证其高精度和高强度。
而在汽车制造中,金属切削加工技术被广泛应用于发动机零部件的制造过程。
第四部分:金属切削加工技术的挑战与展望尽管金属切削加工技术取得了巨大的进步,但仍面临着一些挑战。
首先,传统的机械加工方式在对硬度较高的材料进行切削时容易出现刀具磨损、工件变形等问题。
其次,刀具的设计和制造过程需要更高的精度和稳定性。
未来,研究人员可以借助先进的材料科学、数值模拟和机器学习等技术,进一步提高金属切削加工技术的效率和质量。
结论:金属切削加工技术在机械加工中起着关键作用,对于提高制造业的竞争力和产品质量至关重要。
金属切削工具机械制造论文1金属切削工具的分类刀尖轨迹法机械制造过程中,切削工具的刀尖运行轨迹主要是由加工机床内可用的金属切削工具与目标机械与工件相互间的相对运动决定的。
考虑到这一点,在实际机械制造时,可以利用切削工具刀尖在加工零件表面的运动轨迹,进一步确定零件最终完成加工后所需要的几何形状与表面形式,同样可采用刨削、车削等加工形式。
2金属切削时应当具备的基本要素2.1合理应用切削工具结合我国xx年金属切削工具的生产情况来看,共生产金属切削工具近7.61亿件,同比增长了近56.24%。
金属切削工具应当具备刃口,且工具本身的金属材质应当比加工零件拥有更高硬度。
不同金属切削工具及切削运动的形式,也会使得零件的加工方法出现相应变化。
以刃形金属切削工具为例,在使用该类工具加工零件时,主要加工方法包括拉削、锯切、钻削及刨削等多种方式。
要有效提高机械制造效益,结合零件特点,选择相应的切削工具也尤为重要。
以常见的普通外圆车刀为例,该工具的构成,主要包含了刀柄与刀头两个部分。
刀柄主要是在加工零件时,确保车刀的切入位置及夹持方式符合加工需要,刀头的主要作用则是充分切削零件。
结合目前金属切削工具的材质发展现状来看,除高速钢等稳定性与硬度较高的材料外,还有硬质合金等新型材料,对金属切削工具性能的完善发挥了重要作用,进一步推动了机械制造业的可持续发展。
在此之后,以PCD和PCBN以及复合型金属材料为代表的新型材料迅速产生。
切削工具材质的不断优化,主要是为了满足部分零件材料在加工时不易切削、紧密度难以把握好等问题。
此外,金属切削工具配套的辅助工具在机械制造过程中也具有重要意义,以原有组合夹具为例,在制造该机械零件的过程中,为全面提高夹具强度,逐渐从槽系加工演变成了孔系加工。
目前机械制造实践当中,应用较广泛的是EROWA类金属切削工具的配合使用,机械制造工作逐渐从原有的电加工演变为高精度化切削加工。
现有的金属切削工具,采用热装刀柄,精确度得到了有效提高,将误差控制在了微米单位内。
金属的切削加工这学期,我学习了一门从来没接触过的科目——《机械制造技术基础》,作为一名文科生,对这门科目既陌生又熟悉,在我们的生活中,经常接触着和机械制造有关的知识,最常见的就比如金属的切削,所以,学习完了这门科目,我最想谈谈的就是关于金属的切削加工。
何谓金属的切削加工,就是用刀具从工件上切除多余材料,从而获得形状、尺寸精度及表面质量等合乎要求的零件的加工过程。
实现这一切削过程必须具备三个条件:工件与刀具之间要有相对运动,即切削运动;刀具材料必须具备一定的切削性能;刀具必须具有适当的几何参数,即切削角度等。
金属的切削加工过程是通过机床或手持工具来进行切削加工的,其主要方法有车、铣、刨、磨、钻、镗、齿轮加工、划线、锯、锉、刮、研、铰孔、攻螺纹、套螺纹等。
其形式虽然多种多样,但它们有很多方面都有着共同的现象和规律,这些现象和规律是学习各种切削加工方法的共同基础。
通过查阅相关资料,我了解到金属切削原理的研究始于19世纪中叶。
1851年,法国人M.科克基拉最早测量了钻头切削铸铁等材料时的扭矩,列出了切除单位体积材料所需功的表格1864年,法国人若塞耳首先研究了刀具几何参数对切削力的影响1870年,俄国人..季梅首先解释了切屑的形成过程,提出了金属材料在刀具的前方不仅受挤压而且受剪切的观点。
1896年,俄国人..布里克斯开始将塑性变形的概念引入金属切削。
至此,切屑形成才有了较完整的解释。
1904年,英国人J.F.尼科尔森制造了第一台三向测力仪,使切削力的研究水平跨前了一大步。
1907年美国人F.W.泰勒研究了切削速度对刀具寿命的影响,发表了著名的泰勒公式。
1915年,俄国人..乌萨乔夫将热电偶插到靠近切削刃的小孔中测得了刀具表面的温度(常称人工热电偶法),并用实验方法找出这一温度同切削条件间的关系1924~1926年,英国人E.G.赫伯特、美国人H.肖尔和德国人K.科特文各自独立地利用刀具同工件间自然产生热电势的原理测出了平均温度(常称自然热电偶法)。
金属切削实习报告(共9篇):篇一:金属切削机床实践报告中文名称:金属切削机床定义:用切削、磨削或特种加工方法加工各种金属工件,使之获得所要求的几何形状、尺寸精度和表面质量的机床(手携式的除外)。
通常狭义的机床仅指金属切削机床类产品。
金属切削机床是采用切削的方法把金属毛坯加工成机器零件的机器,它是制造机器的机器,所以又称为”工作母机”或”工具机”,习惯上简称机床。
金属切削的过程是刀具与工件相互运动、相互作用的过程。
刀具与工件的相对运动可以分解为两个方面,一个是主运动,另一个是进给运动。
使工件与刀具产生相对运动而进行切削的最主要的运动,称为主运动。
刀刃上选定点相对于工件的主运动速度称为切削速度。
主运动特点是运动速度最高,消耗功率最大。
主运动一般只有一个。
保证金属的切削能连续进行的运动,称为进给运动。
工件或刀具每转或每一行程时,工件和刀具在进给运动方向的相对位移量,称为。
进给运动的特点是运动速度低,消耗功率小。
进给运动可以有几个,可以是连续运动,也可以是间歇运动。
金属切削过程是通过刀具切削工件切削层而进行的。
在切削过程中,刀具的刀刃在一次走刀中从工件待加工表面切下的金属层,被称为切削层。
切削层的截面尺寸被称为切削层参数。
此外,在切削层中需介绍一重要概念-背吃刀量ap,对于外圆车削,它指已加工表面与待加工表面间的垂直距离。
1.金属切削机床分类方法机床的传统分类方法,主要是按其工作原理和加工性质进行分类。
根据我国定制的金属切削机床型号编制方法,目前将机床划分为12 类:车床、铣床、钻床、镗床、磨床、齿轮加工机床、螺纹加工机床、刨床、插床、拉床、锯床及其他机床。
在每一类机床中,又按工艺范围、布局形式和结构等,分为10 个组,每一组又细分为若干系(系列)。
其他分类方法1.1通用性程度按通用性程度,同类型机床可分为以下三种:1.通用机床它可用于加工多种零件的不同工序,加工范围较广,通用性较大,但结构比较复杂。
这种机床主要适用于单件小批量生产,例如卧式车床、万能外圆磨床、万能升降台铣床等。
●车刀按用途与结构来分有哪些类型?它们的使用场合如何?答:车刀按用途分,为:外圆车刀、端面车刀、内孔车刀、切断车刀、螺纹车刀、成形车刀等按结构分为(1)整体车刀:小型刀具和加工非铁金属刀具(2)焊接式车刀:各类刀具,特别是小刀具(3)机夹式车刀:大型车刀,螺纹车刀、切断车刀(4)机夹可转位式车刀:普通车床刀具,自动线、数控机床刀具●焊接车刀的使用性能优缺点优点:焊接车刀结构简单、紧凑;刚性好、抗振性能强;制造、刃磨方便;使用灵活。
缺点:刀片经过高温焊接,强度、硬度降低,切削性能下降;刀片材料产生内应力,容易出现裂纹等缺陷;刀柄不能重复使用,浪费原材料;换刀及对刀时间较长,不适用于自动车床和数控车床。
●关焊接式于刀槽的形式和参数的选择常见的刀槽形状有开口槽、半封闭槽、封闭槽和切口槽。
开口槽制造简单,焊接面积最小,刀片内应力小,适用于A1、C3型刀片等。
半封闭槽刀片焊接面积大,刀片焊接牢靠,制造时只能用立铣刀单件加工,生产效率低,适用于A2、A3和A4型等刀片,封闭槽、切口槽刀片焊接面积最大,刀片焊接牢靠,焊接后,刀片内应力大,易产生裂纹,分别适用于C1和C3型刀片。
●可转位车刀特点:可转位车刀由刀片、刀垫、夹紧元件和刀柄组成。
与焊接式车刀相比,它避免了因焊接、刃磨所引起的内应力,可使用涂层刀片,有合理的槽型和几何参数,刀片转位迅速,更换方便,因而具有较长的寿命和较高的生产率,并且能实现一刀多用,减少刀具储备量,简化了刀具管理工作。
●可转位车刀夹紧方式:杠杆式、楔钩式、楔销式、上压式、爪式上压式、螺销上压式、压孔式。
●可转位车刀的选用:1.选择刀柄的形状和尺寸。
2.选择刀头部形式和主偏角。
3.可转位车刀夹紧结构的选择。
4.根据具体的加工条件和加工要求等选择刀片的牌号和型号。
5.必要时对可转位车刀的几何角度进行验算。
●成形车刀按结构和形状分为哪几种?按进给方式分为哪几种?答:按结构和形状分1.平体形成形车刀2.棱形成形车刀3.圆体成形车刀按进刀方式分1、切向进给成形车刀2、斜向进给成形车刀●成形车刀切削刃上各点前后角是否相同?为什么?答:成形车刀切削刃上各点前后角不相等。
20.9 切削加工性
一种材料的切削加工性通常从四个方面来定义:
1、已切削部分的表面光洁度和表面完整性。
2、刀具的寿命。
3、切削力和切削的功率需求。
4、切屑控制。
由上述可知,好的切削加工性指的是好的表面光洁度和完整性,长的刀具寿命,低切削力和功率需求。
至于切屑控制,细长而卷曲的切屑,如果没有及时清理,就会在切削区缠绕,严重影响切削工序。
由于切削工序的复杂性,因此很难建立一个定量确定一种材料切削加工性的关系式。
在制造厂里,刀具寿命和表面粗糙度通常被认为是切削加工性中最重要的影响因素。
尽管切削性能指数使用的并不多,但基本的切削性能指数在下面的材料中仍然被使用。
20.9.1钢的切削加工性
因为钢是最重要的工程材料之一(如第5章所示),所以它的切削加工性已经被广泛地研究过。
通过加入铅和硫磺,可以使钢的切削加工性得到大幅度地提高。
从而得到了所谓的高速切削钢。
铅钢钢中高含量的铅在硫化锰杂质尖端析出。
在非二次硫化钢中,铅呈细小而分散的颗粒。
铅在铁、铜、铝和它们的合金中是不能溶解的。
由于它的低抗剪强度,铅在切削时充当固体润滑剂,被涂在刀具和切屑的分界处。
这一特性已经被证实--在切削加工铅钢时,在刀具横向表面的切屑上有高浓度的铅存在。
当温度足够高时——例如,在高的切削速度和进刀速度下——铅在刀具前直接熔化,并且充当液体润滑剂。
除了这个作用外,铅还可以降低第一剪切区中的剪应力,减小切削力和降低功率消耗。
铅能用于各种型号的钢,例如10XX,11XX,12XX,41XX等等。
铅钢由型号中第二和第三数码中的字母L识别(例如,10L45)。
(需要注意的是在不锈钢中,字母L 指的是低碳,这是提高不锈钢耐腐蚀性的先决条件)。
然而,因为铅是众所周知的毒素和污染物,因此在钢的使用中存在着严重的环境隐患(在钢产品中每年大约有4500吨的铅消耗)。
于是,消除铅在钢中使用是一个必然的趋势(无铅钢)。
铋和锡现正作为最可能替代钢中铅的物质而被人们所研究。
脱氧钙钢一个重要的发展是脱氧钙钢,在脱氧钙钢中可以形成硅酸钙的氧化物片。
这些片状物,可以减小第二剪切区中的应力,降低刀具和切屑分界处的摩擦和磨损。
温度也相应地降低。
于是,这种钢产生更小的月牙洼磨损,特别是在高速切削时更是如此。
不锈钢通常奥氏体钢很难进行切削加工。
振动可能是一个问题,这必需要求机床有足够的刚度。
然而,铁素体不锈钢有很好的切削加工性。
马氏体钢易磨蚀,易于形成积屑瘤,
并且要求刀具材料有高的热硬性和耐月牙洼磨损性。
经沉淀硬化的不锈钢强度高、磨蚀性强,因此要求刀具材料硬度高而耐磨。
钢中其它元素对切削加工性能的影响钢中铝和硅元素的存在总是有害的,因为这些元素结合氧会生成氧化铝和硅酸盐,而氧化铝和硅酸盐硬度高且具有磨蚀性。
这些化合物会加快刀具磨损,降低切削加工性。
因此生产和使用净化钢是非常必要的。
根据它们的构成,碳和锰在钢的切削加工性方面有各种不同的影响。
低碳钢(少于0.15%的碳)容易形成积屑瘤而使毛坯的表面光洁度很低。
铸钢的切削加工性和锻钢的大致相同,但铸钢更容易磨蚀。
工具钢和模具钢很难用于切削加工,通常是在切削加工之前进行退火处理。
大多数钢的切削加工性在冷加工后都有所提高,冷加工能使材料变硬而减少积屑瘤的形成。
其它合金元素,例如镍、铬、钼和钒,能改善钢的特性,而通常会钢减小切削加工性。
硼的影响可以忽视。
气态元素比如氢和氮在钢的特性方面有特别有害的影响。
氧已经被证明了在硫化锰夹杂物的纵横比方面有很强的影响。
含氧量越高,纵横比越低且切削加工性越好。
由于硫化铁的构成,硫元素能严重的降低钢的热加工性,除非有足够的锰元素来防止这种结构的形成。
在室温下,二次硫化钢的机械性能取决于变形的硫化锰夹杂物的定位(各向异性)。
二次磷化钢具有更小的延展性,被单独生成来提高切削加工性。