金属切削工具机械制造论文-机械制造论文-工业论文
- 格式:docx
- 大小:20.20 KB
- 文档页数:5
切削加工技术论文(2)切削加工技术论文篇二超精密切削加工技术探析摘要:超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具具切削或SPDT。
对超精密切削加工技术及其机理进行介绍和总结,希望对超精密加工行业同事有所指导。
关键词:超精密切削;金刚石;机床中图分类号:T13文献标识码:A文章编号:1672-3198(2011)06-0263-02通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。
加工精度在0.1~1μm,加工表面粗糙度在Ra0.02~0.1μm之间的加工方法称为精密加工;精度高于0.1μm,表面粗糙度小于Ra0.01μm之间的称为超精密加工。
因此,如果从去除单位尺寸将切削加工加以区别的话,以微米级的去除,才属于超精密加工。
1 金刚石刀具切削的机理超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具切削或SPDT(Single Point Diamond Turning)。
金刚石刀具的超精密切削加工虽有很多优点,但要使金刚石刀具超精密切削达到预期的效果,并不是很简单的事,许多因素都对它有影响。
1.1 切削厚度与材料切应力的关系金刚石刀具超精密切削属微量切削,其机理和普通切削有较大差别。
精密切削时要达到0.1微米的加工精度和Ra0.01微米的表面粗糙度,刀具必须具有切除亚微米级以下金属层厚度的能力。
由于切深一般小于材料晶格尺寸,切削是将金属晶体一部分一部分地去除。
因此,精密切削在切除多余材料时,刀具切削要克服的是晶体内部非常大的原子结合力,于是刀具上的切应力就急剧增大,刀刃必须能够承受这个比普通加工大得多的切应力。
切削厚度与切应力成反比,切削厚度越小,切应力越大。
当进行切深为0.1微米的普通车削时,其切应力只有500MPa;当进行切深为0.8微米的精密切削时,切应力约为10000MPa。
因此精密切削时,刀具的尖端将会产生根大的应力和很大的热量,尖端温度极高,处于高应力高温的工作状态,这对于一般刀具材料是无法承受的。
金属切削机床论文摘要本论文主要研究了金属切削机床的设计、结构和应用。
金属切削机床作为制造业中不可或缺的工具,其性能和效率对产品质量和生产效率有着重要的影响。
通过深入研究金属切削机床的工作原理、运动方式、结构设计和控制系统,本论文旨在提出一套可行的金属切削机床设计理论,并对其应用进行探讨,以期在制造业领域取得更好的效益。
1. 引言金属切削机床是制造业中常见的一类设备,其主要功能是将工件上的金属材料进行切削加工,以达到所需的形状和尺寸。
在工业生产中,金属切削机床广泛应用于各个领域,包括汽车、航空航天、电子、船舶等行业,对提高产品质量和生产效率起着至关重要的作用。
本论文将从金属切削机床的设计、结构和应用三个方面进行研究。
首先,我们将介绍金属切削机床的工作原理和运动方式,分析其切削加工过程,并探讨不同的切削方式对加工效果的影响。
接着,我们将详细讨论金属切削机床的结构设计和控制系统,包括床身、主轴、工作台等部件的设计原则和优化方法。
最后,我们将通过实际案例,探讨金属切削机床的应用场景,并提出一些建议,以便在实际生产中更好地利用金属切削机床。
2. 金属切削机床的工作原理和运动方式金属切削机床的工作原理主要包括刀具对工件的切削和切削力的产生过程。
在切削加工过程中,切削刀具通过旋转等方式对工件进行切削,从而形成所需的形状和尺寸。
同时,切削力的产生也是切削加工过程中不可忽视的因素,它与切削速度、切削深度和切削材料有着密切的关系。
金属切削机床的运动方式主要有三种:直线运动、旋转运动和复式运动。
直线运动是指切削刀具在工件上沿直线方向进行切削,常用于平面和直线加工。
旋转运动是指切削刀具绕轴线进行旋转,常用于圆柱面和曲面加工。
复式运动是指同时进行直线运动和旋转运动,用于加工更复杂的曲线和轮廓。
3. 金属切削机床的结构设计和控制系统金属切削机床的结构设计和控制系统是影响其性能和效率的关键因素。
在结构设计方面,金属切削机床需要考虑床身的刚度、主轴的精度、工作台的平稳性等因素。
机械设计制造论文(5篇)机械设计制造论文(5篇)机械设计制造论文范文第1篇课程设计(CurriculumDesign)是高校某一课程的综合性实践教学环节。
一般是对该课程的理论和实践内容的综合性应用和考察,旨在使同学获得促进其迁移的进而促使同学全面进展的具有教育性阅历的方案和方案。
课程设计突破了课程局限于课堂教学中的界定,把积累、迁移、促进同学创新力量培育等多方面因素作为指标,是教育过程中不行或缺的重要环节。
机械制造技术基础课程设计是工科类院校机械专业针对《机械制造技术基础》这门课程绽开的综合性实践教学环节,该课程整合了机械加工方法、机床、刀具、夹具和工艺规程设计等原来分属多门课程的主要内容,其涵盖内容广、理论联系实际亲密,是在同学学习完理论基础课和机械专业基础课的基础上开设的一门综合性技术学科。
本课程设计则是在课程理论教学的基础上绽开的,是对同学理论学问进行考察、巩固和加深的特别好的实践环节,其目的是“培育同学把握机械零件的加工工艺过程所需要的机械制造技术学问,包括机床、夹具、刀具、量具等工艺装备的选择与使用,培育同学应用现代设计方法和手段解决工程实际问题的力量”。
课程设计的创新性改革是进行《机械制造技术基础》课程教学创新力量培育改革中不行或缺的一个环节。
二、课程设计主要内容通常,机械制造技术基础课程设计采纳理论教学、生产实习、课程设计分段实施,同学在经过72学时的理论基础课程学习后,由指导老师带领,深化合作企业进行为期一个月的生产实习。
通过观看和学习,进一步了解和熟识机械零件的典型加工和工艺过程,并在此过程中,对课堂学习所把握的理论学问进行反复加深、把握。
接下来,同学们返回学校,集中三周进行课程设计,对所学习的理论、实践学问加以应用。
本课程设计的主要内容按下面四个阶段进行:第一阶段,由指导老师下达设计任务,为同学供应零件图、设计要求,讲解设计过程及留意事项。
其次阶段,同学针对设计题目进行零件的结构分析和工艺设计,通过分析、争论、计算,确定毛坯结构和尺寸,并设计完成该零件的具体工艺规程,制作出工艺过程卡片及工序卡片。
2024年金属切削机床安全技术范文金属切削机床是用切削方法对金属毛坯进行机械加工,使之获得预定的形状、精度和光洁度的设备。
由于金属切削机床在工业中起着工作母机的作用,因此,它的应用范围是非常广泛的。
金属切削机床的工作特点金属切削机床进行切削加工的过程是:将被加工的工件和切削工具都固定在机床上,机床的动力源通过传动系统将动力和运动传给工件和刀具,使两者产生旋转和(或)直线运动。
在两者的相对运动过程中,切削工具将工件表面多余的材料切去,将工件加工成为达到设计所要求的尺寸、精度和光洁度的零件。
由于切削的对象是金属,因此旋转速度快,切削工具(刀具)锋利,这是金属加工的主要特点。
正是由于金属切削机床是高速精密机械,其加工精度和安全性不仅影响产品质量和加工效率,而且关系到操作者的安全。
金属切削机床的基本结构金属切削机床种类繁多,其结构也有较大差异,但其基本结构都是一致的。
因此,有些共性的装置如安全装置、传动装置、制动装置适用于各种机床,其基本结构包括:(1)机座(床身和机架)机座上装有支承和传动的部件,将被加工的工件和刀具固定夹牢并带动它们作相对运动,这些部件主要有工作主轴、拖板、工作台、刀架等。
由导轨、滑动轴承、滚动轴承等导向。
(2)传动机构将动力传到各运动部件,传动部件有丝杠、螺母、齿轮齿条、曲轴连杆机构、液压传动机构、齿轮及链传动机构和皮带传动机构等。
为了改变工件和刀具的运动速度,机床上都设有有级或无级变速机构,一般是齿轮变速箱。
(3)动力源一般是电动机及其操纵器。
(4)润滑及冷却系统。
金属切削机床的运动形式及切削方式机床的运动可分为主运动和进给运动。
主运动是切削金属最基本的运动,它促使刀具和工件之间产生相对运动,从而使刀具前面接近工件;进给运动使刀具与工件之间产生附加的相对运动,加上主运动,即可不断地或连续地切削,并得出具有所需几何特性的加工表面。
机床种类不同,切削方式、工件和刀具的运动形式就不同,对安全的要求也不同。
摘要随着工业技术的不断发展,车床作为一种重要的金属切削机床,在机械制造行业中扮演着至关重要的角色。
本文旨在探讨车床的工作原理、结构特点、应用领域以及发展趋势,通过对车床的深入研究,为我国机械制造业的发展提供理论支持和实践指导。
关键词:车床;工作原理;结构特点;应用领域;发展趋势第一章引言1.1 研究背景随着我国经济的快速发展,机械制造业在国民经济中的地位日益重要。
车床作为一种常见的金属切削机床,其性能和精度直接影响着产品的质量和生产效率。
因此,对车床的研究具有重要的理论意义和实际应用价值。
1.2 研究目的本文通过对车床的工作原理、结构特点、应用领域以及发展趋势的研究,旨在提高我国车床制造技术水平,为机械制造业的发展提供有力支持。
第二章车床的工作原理2.1 车床的切削过程车床的切削过程主要包括切削、进给、切削力、切削温度和切削液等方面。
本文将对这些方面进行详细阐述。
2.2 车床的传动系统车床的传动系统主要由主轴、进给箱、变速箱、齿轮箱等组成。
本文将对这些部件的工作原理和作用进行介绍。
第三章车床的结构特点3.1 车床的总体结构车床的总体结构包括床身、主轴箱、进给箱、溜板箱、刀架、尾座等部分。
本文将对这些部分的功能和特点进行详细分析。
3.2 车床的控制系统车床的控制系统主要包括电气控制系统、液压控制系统和气动控制系统等。
本文将对这些控制系统的组成和作用进行介绍。
第四章车床的应用领域4.1 车床在机械制造中的应用车床在机械制造中具有广泛的应用,如汽车、航空、船舶、军工等行业。
本文将对车床在这些行业中的应用进行探讨。
4.2 车床在其他领域的应用除了在机械制造中的应用,车床还在航空航天、医疗器械、精密仪器等领域有着重要的应用。
本文将对这些领域的应用进行介绍。
第五章车床的发展趋势5.1 车床技术的发展方向随着科技的不断进步,车床技术也在不断发展。
本文将对车床技术的发展方向进行展望。
5.2 车床的智能化、自动化发展趋势智能化、自动化是车床发展的必然趋势。
金属切削机床范文金属切削机床的主要组成部分包括床身、主轴、进给机构、刀架和控制装置。
床身是金属切削机床的框架,用于支撑和固定各个零件。
主轴负责带动切削工具进行旋转或线性运动。
进给机构用于控制工件相对于切削工具的移动速度和位置,以实现切削加工。
刀架是安装切削工具的部分,它可以进行多种刀具的转换和调整。
控制装置是金属切削机床的“大脑”,通过编程控制切削工具和工件的运动轨迹和速度。
金属切削机床的工作过程一般包括以下几个步骤:首先,通过控制装置设置切削参数和工件的加工路径。
然后,启动主轴和进给机构,使切削工具和工件开始运动。
切削工具通过旋转或线性运动,根据设定的加工路径逐渐去除工件上的金属材料。
在整个加工过程中,切削工具和工件之间保持一定的压力和摩擦,以确保切削的质量和效率。
最后,根据加工所需的精度和表面光洁度,进行必要的加工和调整。
金属切削机床的发展经历了多个阶段。
早期的金属切削机床采用机械式驱动,操作较为繁琐,加工效率较低。
随着电子技术和自动化技术的进步,金属切削机床逐渐实现了数字化控制,提高了加工精度和效率。
现代金属切削机床还具备多轴联动、高速切削和自动换刀等功能,能够满足各种复杂加工需求。
然而,金属切削机床也存在一些问题和挑战。
首先,切削过程中会产生大量的废渣和切屑,对环境造成污染,同时也加剧了工作环境的危险性。
其次,金属切削机床需要大量的能源和冷却液来维持运行和切削质量,对能源和资源的消耗较大。
此外,金属切削机床的维护和保养也需要一定的成本和技术人员。
为了解决以上问题,金属切削机床正在向绿色和智能化方向发展。
例如,采用高效节能的电机和传动装置,降低能源消耗;使用环保型的冷却液和切削液,减少环境污染;引入数字化和自动化技术,提高加工精度和生产效率。
总之,金属切削机床是一种重要的加工设备,广泛应用于各个制造领域。
它通过切削工具对工件上的金属材料进行去除,实现对金属材料的加工和加工。
金属切削机床的发展方向是绿色和智能化,以提高能源利用效率、环境保护水平和加工效率。
机械制造过程中金属切削刀具的应用摘要:工业产业模式在经历了电气化发展历程之后,如今正在向着数字化的模式迈进,特别是在高科技技术的加持下,工业管理模式以及制造水平已经具备了向着智能化转型的条件。
而智能机械制造作为一种新兴的工业化生产模式,充分融合了智能化信息技术的优势,对机械制造的设计、生产以及服务等全过程进行智能化的升级和改造,这样不仅可以提升我国机械制造行业的整体制造水平,而且对于推动我国工业领域向着智能化的方向发展也具有十分积极的意义。
关键词:机械制造;金属切削刀具;应用策略引言在市场经济飞速发展进程中,现代社会对产品制造工艺提出了更加严格的要求,产品制造方不仅需要确保产品质量达标,而且需要赋予产品外在美观性。
机械制造工艺与精密加工技术是现代产品制造需求催生的产物,在多年的发展应用过程中取得了喜人的成果,也获得了电子制造行业、冶金行业的青睐。
因此,分析现代机械制造工艺与精密加工技术具有非常突出的现实意义。
1数控高速切削加工技术的优势1.1提高加工精度机床制造精度在高速切削加工中尤为重要。
切削深度、切削宽度和切削力较小,刀具变形明显减小,工件精度得到保证,材料层较小,残馀应力较小,以确保工件精度。
采用数控加工技术控制高速加工,不仅提高了加工效率,而且提高了产品的整体精度。
技术控制可确保成功率,避免不必要的浪费,并节省材料和成本。
在“机械制造”中进行加工时更精确地定位刀具可确保后续加工周期的可靠性。
1.2提高机械制造效率在早期机械制造生产活动中,由于受到工艺技术与工具的限制,普遍由通用机床采取钻、磨等方法来初步加工零件,再由钳工对零件开展修配作业,把大量造型简单的工件组装形成机械设备整机或是单独机构,实际生产效率较低。
而如果使用金属切削刀具,就可以直接采取切削加工的方式,切除零件上的多余部分,在短时间内加工成特定造型尺寸的工件,以此来简化钳工修配等生产步骤。
同时,得益于金属切削刀具的更新迭代,使用快速切削刀具和精密切削刀具进一步缩短了机械制造周期,可以一次性加工获得造型轮廓复杂的工件。
前言在毕业设计选定题目的社会调研中发现,生产中所需的钢管大都使用手工切断,采用手工操作劳动强度大,工作效率低,并存在极其危险的安全隐患,建议设计制造机械化的钢管切割机,当即受到企业欢迎,表示愿意使用设备,我们小组主动承接了此项设计任务。
一、钢管切割机的用途及设计要求1、用途钢管切割机主要是用来切割加工工程所需不同长度的管材,它可以自动适应各种管材横截面直径的大小,对不同材质的钢管均有较好的切割性能,切口平整圆滑为下道工序的顺利加工奠定了基础。
2、设计要求1)被切割管子直径范围为19.05mm(3/4")~101.6mm(4") 。
2)被切割管子壁厚范围为3~5mm。
3)中批量生产。
4)中型机械厂承制。
5)单人操作,每日两班制(每班断续工作,时间≤10小时)。
二、钢管切割机的总体方案设计1、工艺分析原工厂对金属管材的切割采用了弓锯切割及气割的方法。
弓锯的工艺质量因人而异,且工作效率低下,浪费人工工时,不适合批量加工。
气割的方法较弓锯切割工作效率高,节约人工工时,但切割处的金属内部分子结构发生转变,材质性能劣化,并且切口处的金属熔渣严重影响下道工序的加工。
为此,根据加工现场的工艺情况和要求,设计研制了这台钢管切割机,它采用了碾压的方法切割金属管材,对管材的切口加工精度高,并且适合连续切削,节约了人工工时,提高了生产效率。
2、对执行机构的运动要求 2.1 计算总传动比和分配传动比 2.1.1 总传动比计算初步确定滚筒转速:n =70r/min 则总传动比:i 总=—电动机满载转速(nE )滚筒转速(nT ) =140070=202.1.2分配传动比各级传动机构的传动比分配如下: 带传动: i 0=1.67 蜗杆传动: i 1=25齿轮传动: i 2=2 i 3=5/21实际总传动比等于:i 总'=i0i1i2i3=1.67×25×2×521=19.88 2.2 各传动轴传动功率及机械效率的计算带传动: η1=0.96 蜗杆传动:η2=0.7 齿轮传动: η3=0.94 滚动轴承:η4=0.99各传动轴传动特性,见表1轴号功 率 P (KW)电机Ⅰ0P =1.50转 矩 T (N.m)转 速 (r/min)T =95500P 0n 0=95501.51400=10.23=14000轴Ⅰ=ⅠP 0 1.5×0.96 =1.44=×0.96=16.4T 0i 0η1n Ⅰn 0i 0=14001.67=838.3轴Ⅱ =P 1.44×0.78×0.99 =1.11η1 =η2Ⅰη4 =Ⅰ==316.6T i 1η2ⅡⅡⅠη4=16.4×25×0.78n n i 1=838.325=33.53ⅡⅠn==轴Ⅲ =ⅢPⅡ×0.99 =1.03=0n Ⅲn Ⅱi 2=33.52=16.8轴Ⅳ=P 1.03×0.94×0.99 =0.96η3η3Ⅲη4 =Ⅲ=×0.96×T i 2η3ⅣⅣⅡη4=316.6×2× ×0.94n n i 3==70.6ⅣⅢ==η4i 3222521122=61.416.8×4.22T T P 表1轴T P P P 1.11×0.94 ==10.23×1.67T ×0.993 切管工艺方案及传动方案设计和选型3.1 切管工艺方案选择,见表23.2传动方案选择如下图1所示图 1如上图1所示,提供的切管机的三种传动系统方案.若仅满足总传动比要求,可以采用单级蜗杆传动.但综合考虑结构,操作及调整布局等方面的要求,宜采用图中传动系统方案3。
金属切削机床原理全文共四篇示例,供读者参考第一篇示例:金属切削机床是一种用于加工金属材料的机械设备,它主要通过切削原理来加工工件,包括车削、铣削、钻削、镗削等多种加工方式。
在金属加工领域中,金属切削机床是起着至关重要的作用,它能够高效、精确地加工各种不同形状和尺寸的金属工件,广泛应用于航空、航天、汽车、机械制造等行业。
金属切削机床的工作原理主要包括以下几个方面:1. 切削原理:金属切削是指利用刀具对金属材料进行加工,通过不断切削,将工件表面金属层逐渐去除,从而形成所需的形状和尺寸。
在金属切削过程中,刀具与工件之间产生相对运动,刀具沿着工件表面移动,将金属层切削下来,形成所需的加工表面。
2. 机床结构:金属切削机床通常由机床主体、传动系统、控制系统、润滑系统和冷却系统等部分组成。
机床主体包括床身、立柱、横梁、工作台和主轴等部分,通过传动系统控制刀具在三维空间内的移动,实现加工操作。
控制系统则负责对机床进行控制和监控,确保加工的精度和质量。
润滑系统和冷却系统则起着保护机床零部件和刀具的作用。
3. 切削参数:金属切削的质量和效率与切削参数密切相关。
切削参数包括切削速度、进给量、切削深度和切削角度等。
切削速度是指刀具在单位时间内相对于工件表面的线速度;进给量是刀具在切削方向的移动距离;切削深度是刀具切入工件的深度;切削角度是刀具相对于工件表面的角度。
通过合理调整这些参数,可以实现不同加工需求的加工效果。
4. 切削工艺:金属切削工艺是一项复杂的加工过程,需要运用切削原理来实现。
在实际加工中,需要选择合适的切削工艺,根据工件材料、形状和尺寸来确定刀具的选择、切削速度、进给量和切削深度等参数,以获得高质量的加工效果。
还需要考虑切削过程中产生的热量和切屑的处理,保证加工过程的稳定性和安全性。
金属切削机床是一种重要的加工设备,它通过切削原理来实现对金属材料的加工。
了解金属切削机床的工作原理,可以帮助我们更好地理解其加工过程和性能特点,进而提高加工效率和加工质量。
●车刀按用途与结构来分有哪些类型?它们的使用场合如何?答:车刀按用途分,为:外圆车刀、端面车刀、内孔车刀、切断车刀、螺纹车刀、成形车刀等按结构分为(1)整体车刀:小型刀具和加工非铁金属刀具(2)焊接式车刀:各类刀具,特别是小刀具(3)机夹式车刀:大型车刀,螺纹车刀、切断车刀(4)机夹可转位式车刀:普通车床刀具,自动线、数控机床刀具●焊接车刀的使用性能优缺点优点:焊接车刀结构简单、紧凑;刚性好、抗振性能强;制造、刃磨方便;使用灵活。
缺点:刀片经过高温焊接,强度、硬度降低,切削性能下降;刀片材料产生内应力,容易出现裂纹等缺陷;刀柄不能重复使用,浪费原材料;换刀及对刀时间较长,不适用于自动车床和数控车床。
●关焊接式于刀槽的形式和参数的选择常见的刀槽形状有开口槽、半封闭槽、封闭槽和切口槽。
开口槽制造简单,焊接面积最小,刀片内应力小,适用于A1、C3型刀片等。
半封闭槽刀片焊接面积大,刀片焊接牢靠,制造时只能用立铣刀单件加工,生产效率低,适用于A2、A3和A4型等刀片,封闭槽、切口槽刀片焊接面积最大,刀片焊接牢靠,焊接后,刀片内应力大,易产生裂纹,分别适用于C1和C3型刀片。
●可转位车刀特点:可转位车刀由刀片、刀垫、夹紧元件和刀柄组成。
与焊接式车刀相比,它避免了因焊接、刃磨所引起的内应力,可使用涂层刀片,有合理的槽型和几何参数,刀片转位迅速,更换方便,因而具有较长的寿命和较高的生产率,并且能实现一刀多用,减少刀具储备量,简化了刀具管理工作。
●可转位车刀夹紧方式:杠杆式、楔钩式、楔销式、上压式、爪式上压式、螺销上压式、压孔式。
●可转位车刀的选用:1.选择刀柄的形状和尺寸。
2.选择刀头部形式和主偏角。
3.可转位车刀夹紧结构的选择。
4.根据具体的加工条件和加工要求等选择刀片的牌号和型号。
5.必要时对可转位车刀的几何角度进行验算。
●成形车刀按结构和形状分为哪几种?按进给方式分为哪几种?答:按结构和形状分1.平体形成形车刀2.棱形成形车刀3.圆体成形车刀按进刀方式分1、切向进给成形车刀2、斜向进给成形车刀●成形车刀切削刃上各点前后角是否相同?为什么?答:成形车刀切削刃上各点前后角不相等。
金属切削工具机械制造论文-机械制造论文-工业论文
——文章均为WORD文档,下载后可直接编辑使用亦可打印——
1金属切削工具的分类
刀尖轨迹法机械制造过程中,切削工具的刀尖运行轨迹主要是由加工机床内可用的金属切削工具与目标机械与工件相互间的相对运动决定的。
考虑到这一点,在实际机械制造时,可以利用切削工具刀尖在加工零件表面的运动轨迹,进一步确定零件最终完成加工后所需要的几何形状与表面形式,同样可采用刨削、车削等加工形式。
2金属切削时应当具备的基本要素
2.1合理应用切削工具
结合我国2013年金属切削工具的生产情况来看,共生产金属切削工具近7.61亿件,同比增长了近56.24%。
金属切削工具应当具备刃口,且工具本身的金属材质应当比加工零件拥有更高硬度。
不同金属切削工具及切削运动的形式,也会使得零件的加工方法出现相应变化。
以刃形金属切削工具为例,在使用该类工具加工零件时,主要加工方法
包括拉削、锯切、钻削及刨削等多种方式。
要有效提高机械制造效益,结合零件特点,选择相应的切削工具也尤为重要。
以常见的普通外圆车刀为例,该工具的构成,主要包含了刀柄与刀头两个部分。
刀柄主要是在加工零件时,确保车刀的切入位置及夹持方式符合加工需要,刀头的主要作用则是充分切削零件。
结合目前金属切削工具的材质发展现状来看,除高速钢等稳定性与硬度较高的材料外,还有硬质合金等新型材料,对金属切削工具性能的完善发挥了重要作用,进一步推动了机械制造业的可持续发展。
在此之后,以PCD和PCBN以及复合型金属材料为代表的新型材料迅速产生。
切削工具材质的不断优化,主要是为了满足部分零件材料在加工时不易切削、紧密度难以把握好等问题。
此外,金属切削工具配套的辅助工具在机械制造过程中也具有重要意义,以原有组合夹具为例,在制造该机械零件的过程中,为全面提高夹具强度,逐渐从槽系加工演变成了孔系加工。
目前机械制造实践当中,应用较广泛的是EROWA类金属切削工具的配合使用,机械制造工作逐渐从原有的电加工演变为高精度化切削加工。
现有的金属切削工具,采用热装刀柄,精确度得到了有效提高,将误差控制在了微米单位内。
2.2金属切削工具的材质选择
作为机械制造业中不可缺少的关键性组成部分,金属切削工具及其相应的工艺设备,给机械制造业实际工作中零件加工质量、精确程度及
综合效率造成直接影响。
金属切削工具的材料,主要是用于切削部分的材质。
由此看来,切削工具的寿命及精确度,最终仍然由切削工具材质的优劣来决定。
想要确保切削工具拥有良好性能,首先应当确保其材料拥有较高强度与韧性,且耐热导热性能良好,能够经得起高压磨损,制作工艺也需要进行全面考虑。
目前金属切削工具用于切削部分的材料,主要种类包括了碳素类工具钢、硬质合金以及超硬切削工具材料等多种复合型材料。
就目前金属切削工具的制作工艺及使用材料来看,以碳素和合金工具钢为代表的材料,其耐热性能较差,但拥有优秀的抗弯强度,焊接性及刃磨性均较为良好,故在中等或低等速度的机械切削工具中具有较好的表现,但若是高速型机械切削,则使用高速钢或者硬质合金更为适宜。
3合理运用金属切削工具提高机械设备质量的措施
3.1切削工具种类的选择
在考察切削工具的种类时,应当优先选择耐磨性能优秀的工具,再适当调整工具的几何参数,在使用前,应当反复研磨刃口确保其锋利而平滑。
若使用磨具进行机械加工,则应当确保磨具磨粒较细且硬度较高,在使用前应当准确调整其砂轮。
金属切削工具的未来发展方向,会在金属材料的类型方面进行不断优化创新,并进一步提高切削工具表面的涂层沉积技术,在确保切削工具基础材料性能优秀的基础上,
为其配置硬度更高,灵活性更强的涂层,从而更为良好的处理金属材料本身硬度同零件硬度之间的冲突。
此外,切削工具的结构也会得到进一步优化,有效提升精确度,使得产品精确度更高,有效提升切削质量,使得工具更为实用。
3.2切削润滑油的选择
切削润滑油通常实用液体形式,在切削区域内进行浇注,其作用一方面是确保及时散发切削区域在加工过程中产生的大量热量,有效降低切削温度,发挥充分冷却的作用。
另一方面,切削润滑油的使用,也能够进一步减少机械制造过程中因切屑过多等原因导致的过大摩擦力,从而控制加工过程产生的热量。
通过合理运用润滑油,可以有效避免零件同切削工具的相互粘连及磨损,并防止切割工具给机床及机械表面造成磨损。
此外,润滑油还能够在金属切削工具的防锈蚀养护中发挥重要作用。
3.3切削角度等相关数据的测定
为了准确把握金属切削工具的在进行切削时的几何角度,应当提前构建完善的参考空间坐标系与平面。
按照金属切削工具角度的不用,主要包含两部分参考系。
一部分为静止时的参考系,另一部分为进行加工工作时的参考坐标系。
静止参考坐标系,主要用于对切削工具的设
计、指导以及刃磨等工作时的参考。
此参考系中所确定切削工具加工角度,称之为标注角度。
在确定静止参考坐标系时,应当确保主运动方向同合成切削运动的方向保持一致,此外工具安装定位方向也应该同主运动方向呈平行或者垂直状。
此外,切削工具刀柄位置,应确保其轴线同运动方向保持平行状,视情况可调整为垂直状。
4结语
综合上述情况,金属切削工具在机械制造业中虽然属于较为传统的加工方式,但是随着时代的发展,该类型加工工艺也获得了巨大的进步。
目前金属切削加工工具的精确度等方面,已经基本可以满足机械制造加工业的各方面需要。
这要求我们在积极探索新型金属材料,提高切削工具性能的基础上,不断完善加工工艺,实现其长远发展。