地球进化史
- 格式:docx
- 大小:41.80 KB
- 文档页数:31
地球的演化过程地球是我们生活的家园,它经历了数十亿年的演化过程,形成了现在这个适宜生命存在的地球。
在漫长的历史长河中,地球经历了从原始地球到现代地球的多个演化阶段。
以下将详细介绍地球的演化过程。
1. 原始地球的形成大约46亿年前,原始地球形成于太阳系诞生之初。
当时的地球是一颗炙热的岩浆球,没有大气层和海洋。
在数百万年的时间里,原始地球不断经历着大量的陨石撞击,这些撞击加热了地球,并引发了地球内部的岩浆活动。
2. 地球的大气层形成约40亿年前,地球逐渐冷却,并开始形成大气层。
这是由于火山活动释放出的大量水蒸气和其他气体,以及彗星撞击引发的化学反应。
最初形成的大气层主要由氨、甲烷和水蒸气组成,后来逐渐演变为主要是二氧化碳和氮气的大气层。
3. 地球的海洋形成大约38亿年前,地球表面温度降低到足够低,使得水蒸气凝结成水,形成了地球上的第一个海洋。
这些海洋最初由撞击陨石引起的陨石撞击填充,随后也吸收了地下喷发的岩浆和岩浆活动中释放的水。
4. 地球上的生命起源约35亿年前,地球上开始出现单细胞生物,标志着地球生命起源的开始。
这些生物主要是通过化学反应在海洋中的原始池中产生的。
随着时间的推移,这些单细胞生物逐渐发展并演化为多细胞生物,形成了丰富多样的海洋生物群落。
5. 大氧化事件的发生约25亿年前,地球经历了一场重要的事件,即大氧化事件。
这是指地球上的光合作用生物开始释放出大量氧气,导致地球大气层中氧气浓度显著提高。
这个事件对地球演化产生了巨大的影响,为后来复杂生命的进化提供了氧气。
6. 大陆板块漂移大约17亿年前,地球上发生了大陆板块漂移,也被称为板块构造理论。
这一理论认为,地球上的陆地表面由几个大陆板块组成,它们在地球表面上不断移动和相互碰撞。
这一过程塑造了地球上的山脉、地震、火山活动等地质现象。
7. 地球的气候变化大约1000万年前,地球开始出现较大幅度的气候变化。
冰川期与间冰期交替出现,环境不断变化。
地球46亿年演变史顺序表
地球46亿年演变史的顺序表可以按照以下时间线进行概述:
1.前寒武纪(46亿年至5.42亿年前):这是地球的早期阶段,地球上没有生命,只有一些简单的单细胞生物。
2.太古宙(38.4亿年前至20亿年前):在这个阶段,出现了生命,最早的生物是所有生物的祖先“露卡”,它存在于地下极深的地方,以“硫、铁、氢和碳”为生。
3.古元古代(20亿年前至11亿年前):这个时期出现了蓝藻等更复杂的生物,大气中出现了氧气。
4.中元古代(11亿年前至
5.7亿年前):这个时期出现了超大陆瓦巴拉大陆,多细胞生物开始繁殖。
5.新元古代(5.7亿年前至6亿年前):这个时期出现了雪球地球时期,二氧化碳减少,“第二次生物大灭绝”发生。
6.显生宙(5.42亿年前至今):这个时期是生物多样性的高峰期,包括寒武纪大爆发和生物的繁殖和多样化。
请注意,这个时间线仅是一个概述,具体的演变过程可能因地质学研究的深入而有所修正。
地球与生物的进化详细史生物进化史一、冥古宙(地球形成38 亿年前) 1.古地理地球从 46 亿年前形成,从一个炽热的岩浆球逐渐冷却固化(计算表明仅需 1 亿年),出现原始的海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在 41 亿年前到 38 亿年前地球持续遭到了大量小行星与彗星的轰击。
冥古宙在 38 亿年前结束后,内太阳系不再有大规模撞击事件。
因为这个时期的岩石几乎没有保存到现在的(已知的地球最古老的岩石位于北美地台盖层的艾加斯塔片麻岩及西澳洲那瑞尔片麻岩层的杰克希尔斯部分),所以并没有正式的细分。
但月岩从 40 多亿年前就比较好的保存下来,因此月球地质年代的某些主要划分可参照用于地球的冥古宙划代。
冥古宙的最后一个代对应为月球地质年代中的早雨海世,以月球的东海撞击事件为结束时间(约为 38.4 亿年),这也是内太阳系的后期重轰击期的结束标志。
零散的锆石结晶沉积在西加拿大和西澳的杰克山中的沉积物里,对锆石的研究发现,液态水必然已存在了有四十四亿年之久,非常接近地球形成的时刻。
2.气候在形成地球的物质当中,曾经存在过大量的水。
在地球的形成时期,其质量比现在的小,水分子也就更容易挣脱重力。
1/ 3据推测,当时氢气和氦气在大气层中持续不断地逸散,然而,现时大气中高密度的稀有气体却相对缺乏,这表明,在早期大气层中可能发生过什么剧变。
有理论认为,在地球的年轻时期,它的一部分曾受过撞击而分裂,分裂出去的部分后来形成了月球。
然而,在这种说法下,撞击应该会令一到两个大区域融化,现时的组成成份却与完全融化的假设并不相符,事实上也很难将巨大的岩石完全融化并混在一起。
不过相当一部分的物质仍被此次撞击所蒸发,在这颗年轻的行星周围形成了一个由岩石蒸汽组成的大气层。
岩石蒸汽在两千年间逐渐凝固,留下了高温的易挥发物,之后有可能形成了一个混有氢气和水蒸气的高密度二氧化碳大气层。
另外,尽管当时表面温度有230℃,但液态的海洋依然能够存在,这得益于 CO2 大气层带来的高气压。
地球演化从原始地球到现在的变化地球是我们人类生活的家园,它经历了数十亿年的演化和变化。
本文将会从原始地球的形成开始,逐步探讨地球的演化过程,直至现代地球的现状。
一、地球形成的原始时期数十亿年前,地球是宇宙中一颗年轻的行星。
在宇宙尘埃云中的原子和分子逐渐聚集,形成了一个旋转的气体和尘埃的巨大云团。
由于引力的作用,云团逐渐收缩、旋转,并形成了一个巨大而高温的星云。
随着星云的不断旋转和收缩,云团逐渐形成了一个叫做原始地球的行星。
在这个时期,原始地球表面炽热且充满了火山活动,未来的地球地壳和岩石层开始形成。
二、原始地球的演化过程1. 地壳与岩石层的形成原始地球的地壳开始形成于约45亿年前。
当地球冷却下来时,岩浆开始从地壳的表面喷发出来,并且在表面形成了厚厚的岩石层。
这些岩石层不断变化、逐渐固化,形成了地球的基础结构。
2. 地球的海洋形成约40亿年前,地球表面开始下雨,形成了巨大的海洋。
原始地球的大气层中含有大量的水蒸气,在降温的过程中,水蒸气凝结成雨水,滋润了地表,填满了地壳低洼地区,形成了海洋。
3. 生命的起源随着地球温度的逐渐降低,海洋中出现了一些简单的生物形式。
这些古老的生物通过化学反应生成了必需的有机物,并逐渐演化出更加复杂的生物形式,为地球生态系统的建立奠定了基础。
三、地球的演化和变化1. 大陆漂移地球上的大陆板块并不固定,它们会在地球表面上漂移和碰撞。
约20亿年前,地球上的大陆板块开始漂移,形成了最原始的大陆。
随着时间的推移,大陆板块的漂移和碰撞导致了地球上的大陆形态的变化和多样性。
2. 生物进化生命在地球上的进化过程中发生了显著的变化。
从最早的简单生物到多细胞生物,再到现在的高度复杂的生命形式,地球上的生物进化经历了漫长而复杂的过程。
3. 气候变迁地球的气候也经历了多次变迁。
由于大气层的变化、太阳辐射的差异以及其他因素的影响,地球的气候在不同的时期出现了寒冷和温暖的周期性变化。
四、现代地球的现状如今,地球是一个充满生命和美丽景观的星球。
地球演变史的五个阶段地球演变史可以分为五个阶段,每个阶段都是地球上生命的演化和环境的变化。
下面将详细介绍这五个阶段,以帮助读者更好地理解地球的演化历程。
第一个阶段是地球的形成阶段。
大约在46亿年前,宇宙中的尘埃和气体开始聚集在一起,形成了太阳系。
地球是太阳系中的第三颗行星,形成于约45亿年前。
在这个阶段,地球的表面温度非常高,有大量的火山活动和陨石撞击。
然而,随着时间的推移,地球逐渐冷却下来,形成了现在熟悉的地球。
第二个阶段是地球的原始大气阶段。
在地球形成后的数百万年内,地球被一个由水蒸气、氨气和甲烷组成的原始大气层所环绕。
这个大气层中没有氧气,但有着丰富的二氧化碳和水蒸气。
在这个阶段,地球上的生命还没有出现,但是一些简单的有机分子通过化学反应形成了。
这为后来的生命演化提供了基础。
第三个阶段是地球的生命起源和早期生命的发展阶段。
在约40亿年前,地球上出现了最早的生命形式,这是通过化学反应在水面上形成的。
这些早期的生命形式是单细胞的微生物,如原核细菌和古菌。
它们在水中生存,并通过化学反应获取能量。
随着时间的推移,它们逐渐进化为更加复杂和多样化的生命形式。
第四个阶段是地球的氧气积累阶段。
大约在23亿年前,一些最早的光合作用细菌开始出现。
它们通过利用太阳能将水和二氧化碳转化为能量和氧气。
随着光合作用的扩大,地球上的氧气逐渐积累起来,形成了现在的大气层。
这个阶段标志着地球上出现了更多的复杂生物,如海藻和叶绿素细菌。
最后一个阶段是地球的多样化生态系统阶段。
大约在6亿年前,地球上的生物种类开始迅速增加。
在这个阶段,海洋中出现了早期的多细胞动物,陆地上也开始出现了植物和动物。
随着时间的推移,地球上形成了各种生态系统,包括森林、河流和海洋。
这个阶段也见证了大规模的物种灭绝和新物种的出现。
直到今天,地球上的生态系统仍在不断变化和演化。
地球的演变史是一个复杂而精彩的故事,它让我们了解了地球上生命的起源和演化过程。
通过研究这五个阶段,我们可以更好地了解地球的过去,也可以更好地保护和维护地球的未来。
地球编年史解说地球编年史解说一、地球的形成和演化阶段(4.6亿年前-44亿年前)1. 地球形成(4.6亿年前)- 地球起源于太阳系内的星云物质- 由于旋转和引力作用,星云物质逐渐凝聚成行星团块,最终形成地球2. 地球的原始大气和海洋(4.5亿年前)- 原始大气主要由水蒸气、氨气和甲烷组成- 随着地球的冷却,水蒸气逐渐凝结成水,形成了原始海洋3. 地壳的形成和地球的火山活动(约43亿年前)- 地壳始于地球表面的火山活动- 第一批岩浆从地球内部喷发而出,冷却后形成了地壳二、地球的生命起源和生物演化阶段(39亿年前-44万年前)1. 生命的起源(约39亿年前)- 通过化学进化,地球上出现了最早的单细胞生物- 这些生物以化学物质为能量来源,适应了地球上最初的环境条件2. 生命的多样性和进化(39亿年前-44万年前)- 生命开始不断演化,出现了各种不同的生物形式- 单细胞生物逐渐进化成多细胞生物,形成了复杂的生态系统3. 地球的气候变化和生命的适应(约25万年前)- 地球经历了多次气候变化,包括冰川期和间冰期- 生物通过适应气候变化,逐渐演化出多样的特征和生存策略三、人类文明的兴起和发展阶段(约10万年前-至今)1. 早期人类的出现和石器时代(约10万年前)- 早期人类(现代人类的祖先)开始使用石器工具- 狩猎、采集和火的使用成为早期人类生活的重要组成部分2. 农业革命和城市文明的兴起(约1万年前)- 人类开始种植农作物和驯养动物,实现了食品的稳定供应 - 农业的发展催生了城市文明的兴起,人类开始居住在集镇和城市中3. 工业革命和现代科技的进步(18世纪至今)- 工业革命的发生推动了科学技术的迅猛发展,改变了人类社会的面貌- 现代科技的进步极大地促进了人类社会的发展,使人类生活更加便利和舒适四、环境保护和可持续发展阶段(20世纪至今)1. 环境问题的突出和保护意识的兴起(20世纪)- 工业化和城市化进程导致环境问题的严重加剧- 人们开始关注环境问题,提出了环境保护和可持续发展的理念2. 气候变化和可再生能源的重要性(21世纪)- 全球气候变暖成为全球关注的焦点,人类为减缓气候变化积极寻求解决方案- 开发和利用可再生能源成为推动可持续发展的重要措施之一3. 地球村的愿景和全球合作(至今)- 地球村的理念强调全球问题需要全球合作来解决- 国际社会积极推进环境保护和可持续发展的工作,为人类和地球未来的发展奠定基础总结:地球的演化和人类文明的发展经历了漫长而复杂的过程。
地球的演化历程地球是我们生活的家园,它经历了数十亿年的演化,形成了今天我们所熟知的面貌。
地球的演化历程可以分为四个阶段:原始地球、古老地球、中古地球和现代地球。
本文将按照这个时间顺序,详细描述每个阶段的特征和演化过程。
1. 原始地球原始地球指的是地球诞生初期的时期,大约发生在46亿年前。
在这个时期,地球正处于形成过程中的太阳系内,各种原始物质不断聚集并形成了地球。
原始地球的温度极高,大气层稀薄,被烈日灼烤的地球上没有生命存在。
然而,随着时间的推移,地球逐渐冷却下来,开始进入下一个阶段。
2. 古老地球古老地球是指大约在38亿年前到25亿年前的时期。
在这个时期,地壳的形成和板块构造运动逐渐发展起来。
地壳不再是一片均匀的薄皮,而是分散成多个巨大的板块,它们不断地漂移、碰撞、合并、分裂,从而形成了今天我们所见的陆地和海洋的分布。
这个时期的地球上开始有了最早的原始生命形式,如原始藻类和细菌。
3. 中古地球中古地球是指大约在25亿年前到6亿年前的时期。
这个时期地球进入了古生代、中生代和新生代三个地质时代。
在这个时期,地球上的生命逐渐多样化,出现了原始动物和植物。
与此同时,地球内部的构造也在发生巨大变化,如大规模的火山喷发、地壳变形和地震活动。
这些变化不仅改变了地球的地貌,也影响了生物的演化。
4. 现代地球现代地球是指从大约6亿年前直到现在的时期。
在这个时期,地球上的生命经历了进化的进程,出现了多种复杂的生物形态和生态系统。
此外,气候也在不断变化,从寒冷的冰期到温暖的间冰期交替出现。
人类的进化也发生在这个时期,从最早的人类祖先到现代人类的形成。
除了这四个阶段,还有一些重要事件影响了地球的演化历程。
例如,地球上的大规模灭绝事件,如白垩纪末期的恐龙灭绝事件,改变了地球上的生态系统。
此外,地球的大气成分的变化,如氧气的增加和二氧化碳的减少,也对地球的演化起到了重要作用。
地球的演化历程是一个极其复杂而又奇妙的过程,它塑造了现在我们所熟知的地球面貌。
生物进化史一、冥古宙(地球形成——38亿年前)1.古地理地球从46亿年前形成,从一个炽热的岩浆球逐渐冷却固化(计算表明仅需1亿年),出现原始的海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在41亿年前到38亿年前地球持续遭到了大量小行星与彗星的轰击。
冥古宙在38亿年前结束后,内太阳系不再有大规模撞击事件。
因为这个时期的岩石几乎没有保存到现在的(已知的地球最古老的岩石位于北美地台盖层的艾加斯塔片麻岩及西澳洲那瑞尔片麻岩层的杰克希尔斯部分),所以并没有正式的细分。
但月岩从40多亿年前就比较好的保存下来,因此月球地质年代的某些主要划分可参照用于地球的冥古宙划代。
冥古宙的最后一个代对应为月球地质年代中的早雨海世,以月球的东海撞击事件为结束时间(约为38。
4亿年),这也是内太阳系的后期重轰击期的结束标志。
零散的锆石结晶沉积在西加拿大和西澳的杰克山中的沉积物里,对锆石的研究发现,液态水必然已存在了有四十四亿年之久,非常接近地球形成的时刻。
2。
气候在形成地球的物质当中,曾经存在过大量的水。
在地球的形成时期,其质量比现在的小,水分子也就更容易挣脱重力.据推测,当时氢气和氦气在大气层中持续不断地逸散,然而,现时大气中高密度的稀有气体却相对缺乏,这表明,在早期大气层中可能发生过什么剧变。
有理论认为,在地球的年轻时期,它的一部分曾受过撞击而分裂,分裂出去的部分后来形成了月球。
然而,在这种说法下,撞击应该会令一到两个大区域融化,现时的组成成份却与完全融化的假设并不相符,事实上也很难将巨大的岩石完全融化并混在一起.不过相当一部分的物质仍被此次撞击所蒸发,在这颗年轻的行星周围形成了一个由岩石蒸汽组成的大气层。
岩石蒸汽在两千年间逐渐凝固,留下了高温的易挥发物,之后有可能形成了一个混有氢气和水蒸气的高密度二氧化碳大气层。
另外,尽管当时表面温度有230℃,但液态的海洋依然能够存在,这得益于CO2大气层带来的高气压。
地球进化史一、冥古宙(地球形成——38亿年前)1.古地理地球从46亿年前形成,从一个炽热的岩浆球逐渐冷却固化(计算表明仅需1亿年),出现原始的海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在41亿年前到38亿年前地球持续遭到了大量小行星与彗星的轰击。
冥古宙在38亿年前结束后,内太阳系不再有大规模撞击事件。
因为这个时期的岩石几乎没有保存到现在的(已知的地球最古老的岩石位于北美地台盖层的艾加斯塔片麻岩及西澳洲那瑞尔片麻岩层的杰克希尔斯部分),所以并没有正式的细分。
但月岩从40多亿年前就比较好的保存下来,因此月球地质年代的某些主要划分可参照用于地球的冥古宙划代。
冥古宙的最后一个代对应为月球地质年代中的早雨海世,以月球的东海撞击事件为结束时间(约为38.4亿年),这也是内太阳系的后期重轰击期的结束标志。
零散的锆石结晶沉积在西加拿大和西澳的杰克山中的沉积物里,对锆石的研究发现,液态水必然已存在了有四十四亿年之久,非常接近地球形成的时刻。
2.气候在形成地球的物质当中,曾经存在过大量的水。
在地球的形成时期,其质量比现在的小,水分子也就更容易挣脱重力。
据推测,当时氢气和氦气在大气层中持续不断地逸散,然而,现时大气中高密度的稀有气体却相对缺乏,这表明,在早期大气层中可能发生过什么剧变。
有理论认为,在地球的年轻时期,它的一部分曾受过撞击而分裂,分裂出去的部分后来形成了月球。
然而,在这种说法下,撞击应该会令一到两个大区域融化,现时的组成成份却与完全融化的假设并不相符,事实上也很难将巨大的岩石完全融化并混在一起。
不过相当一部分的物质仍被此次撞击所蒸发,在这颗年轻的行星周围形成了一个由岩石蒸汽组成的大气层。
岩石蒸汽在两千年间逐渐凝固,留下了高温的易挥发物,之后有可能形成了一个混有氢气和水蒸气的高密度二氧化碳大气层。
另外,尽管当时表面温度有230℃,但液态的海洋依然能够存在,这得益于CO2大气层带来的高气压。
随着冷凝过程继续进行,海水通过溶解作用除去了大气中的大部分CO2,不过其含量水平在新地层和地幔循环出现时产生了激烈的震荡。
二、太古宙(38-25亿年前)1.古地理太古宙起始于内太阳系晚期重轰击期的结束,地球岩石开始稳定存在并可以保留到现在。
太古宙结束于25亿年前的大氧化事件,以甲烷为主的还原性的太古宙原始大气转变为氧气丰富的氧化性的元古宙大气,并导致了持续3亿年的地球第一个冰期——休伦冰期。
太古宙形成的地壳厚度还不大,同时尚未进行充分的分异过程。
由于地壳厚度较小,幔源物质容易沿裂隙上行,常有大规模的超基性、基性断裂喷溢活动。
此外,也有频繁的中酸性岩浆活动和火山活动。
多次的岩浆活动、构造运动使岩石变质很深,再加上缺少生物化石,给恢复古地理面貌和沉积环境造成很大困难。
在当今大陆壳的范围内,长期处于活动不稳定状态,陆表海占绝对优势。
在太古代中晚期,随着陆壳某些部分开始固结硬化,终于形成了稳定的基底地块——陆核。
陆核的形成标志着地壳构造发展的第一大阶段的结束。
太古宙有多少次构造运动,目前研究的很不清楚。
在世界范围内可能有3次主要的构造运动,在中国比较确认的是太古宙晚期的阜平运动。
大约在30亿年前,出现了目前已知最早的大陆——乌尔大陆(Ur),它可能是当时地表上面积最大的大陆,甚至是唯一的大陆,但其面积可能比今日的澳洲大陆还小。
其名称是以希腊神话中的乌拉诺斯(Uranus)为名。
乌尔大陆后来分裂成Nena大陆与Atlantica大陆,经过长期演变后,这些大陆在10亿年前形成新的超大陆,罗迪尼亚大陆。
乌尔大陆的残余部份经历长时间的演变,仍可在斯堪地那维亚、非洲、印度、马达加斯加、澳洲等地,找到找到昔日乌尔大陆的岩石。
而超大陆瓦巴拉大陆则存在于约36亿至28亿年前。
再往后的超大陆叫凯诺兰大陆,存在于约27亿至21亿年前。
2.气候在太古宙,海水中所含的盐分比现在要低,富含氯化物。
大气成分以水蒸气、二氧化碳、硫化氢、氨、甲烷、氯化氢等为主,处于缺氧的还原状态,由此在太古宙地层中形成了丰富的普遍由低价铁沉积而成的铁矿。
3.生物研究者认为最早的生命诞生于距今约36亿年前,但已知最古老的化石在南非发现的32亿年前的超微化石——古杆菌和巴贝通球藻。
这是最原始的原核生物。
在南非的布拉维群灰岩中,还发现了31亿年前的蓝绿藻类形成的大型化石叠层石。
三、元古宙(25——5.4亿年前)1.地台的形成通过元古宙的两次主要的构造运动,陆核进一步扩大,形成规模较大的稳定地区,成为原地台。
到中元古代晚期,原地台进一步扩大,在世界上终于出现了若干大规模稳定的古地台。
由陆核到原地台和古地台,是陆壳构造发展的第二个阶段。
2.哥伦比亚大陆的形成新的超大陆哥伦比亚大陆(Columbia supercontinent,或称为Nuna、Hudsonland)一般认为存在于古元古代的15到18亿年前。
该大陆由许多后来形成劳伦大陆、波罗地大陆、乌克兰地盾、亚马逊克拉通、澳洲大陆,可能还包含西伯利亚大陆、华北陆块、喀拉哈里克拉通的许多原始克拉通组成。
哥伦比亚大陆目前是依照古地磁资料证明其存在。
([注]克拉通:地台和地盾的统称,仅在大陆使用。
)哥伦比亚大陆预测从北到南跨越12900公里,从东到西最宽处4800公里。
今日印度东岸与北美洲西岸相连,而澳洲大陆南部与今日加拿大西部相连。
南美洲因为旋转的关系,今日巴西的西缘和北美洲东部排在一起,形成了延伸至今日斯堪地纳维亚的大陆边缘。
哥伦比亚大陆于16亿年前开始分裂。
相关的大陆漂移有沿着劳伦大陆西缘(荷贝尔特—普尔瑟尔超群)、印度东部(默哈讷迪与哥达瓦里)、波罗地大陆南缘(泰勒马克超群)、西伯利亚东南缘(里菲超群)、南非东北缘(喀拉哈里铜矿带)与华北陆块北缘(渣尔泰-白云鄂博带)。
分裂原因一般认为是非造山的岩浆活动相当普遍。
分裂的各陆块则在约5亿年后形成罗迪尼亚大陆。
3.罗迪尼亚大陆的形成罗迪尼亚大陆(Rodinia,来自俄语родина,祖国)是古代地球曾经存在的超大陆。
根据板块重构,罗迪尼亚大陆存在于新元古代(11.5亿到7亿年前)。
罗迪尼亚大陆的分布可能以赤道以南为中心。
而罗迪尼亚大陆的中心一般认为是北美洲克拉通,在东南侧则是东欧克拉通(之后形成波罗地大陆)、亚马逊克拉通和西非克拉通环绕。
在南边则是拉普拉塔克拉通和圣法兰西斯科克拉通;在西南则是刚果克拉通和喀拉哈里克拉通;在东北则是澳洲大陆、印度次大陆和东南极克拉通。
北边则是西伯利亚大陆、华北陆块、华南陆块,但确定位置还难以判定。
罗迪尼亚大陆形成前的古地理所知甚少,古地磁和地质资料仅能让我们完整重构罗迪尼亚大陆分裂之后的状态。
目前能确定的是罗迪尼亚大陆大约在11到10亿年前形成,7亿5千万年前分裂。
罗迪尼亚大陆则是由超级海洋米洛维亚(来自俄语мировой,全球的)环绕。
4.气候由于藻类植物日益繁盛,它们通过光合作用不断吸收大气中的CO2,放出O2,从中元古代开始,地层开始有含铁紫红色石英砂岩及赤铁矿层形成,说明当时大气中已含有相当多的游离氧。
大气及水体中氧的增多,给生物的发展和演化准备了物质条件。
5.从原核生物到真核生物、从单细胞到多细胞太古宙出现的菌类和蓝绿藻类,到元古宙得到进一步发展,蓝绿藻群体活动所形成的叠层石在岩层中广泛分布。
近年在中国北部中元古代地层发现了最古老的真核细胞生物化石丘阿尔藻,距今16-17亿年。
而在新元古代,则出现了最早的多细胞宏观藻类植物群。
(一)成冰纪(Cryogenian,符号NP2)(8.5——6.3亿年前)1.大冰期的到来前寒武纪晚期的地球气候是非常寒冷的。
我们可以在所有邻近大陆上找到冰河的证据,但是为什么严寒的气候如此广泛地分布各地,至今仍困惑着地质学家们,曾经有很多假设被提出来,却一一都被否定。
其中一个假设认为:地球曾经倾斜到北极一侧向着太阳,而南极一侧则背对着太阳,这样的情形导致地球有一半会受到太阳持续烧烤6个月,而另一半的地球则有6个月冷到结冰。
虽然可能,但是并没有任何一种机制可以说明地球的自转轴可以倾斜到如此极端的状况。
另一个不尽相同的假设认为地球曾经被由岩石或冰所组成的"环"所围绕,就像今天的土星和海王星一样,这个"环"造成了地球上的阴影,冷却了地球上的气候。
然而并没有任何有关这个环的遗迹曾经被发现过。
而目前最受认同的假设则是认为,当时整个地球的海洋都被冰冻,成为一个巨大的雪球,这个雪球假说(Snowball Earth)同时可以解释表层岩石中,同位素异常的特征。
现在我们知道在前寒武纪的晚期其实并没有不寻常的现象进行,这三个假说由于没有把当时古地理图分析仔细,而显得有些解释得太过头,对于前寒武纪"冰室世界"的神秘,我们今天已经能够加以解释,那是因为当时大陆的碰撞与超大陆的形成,许多大陆不是紧邻北极就是南极,导致全世界进入一个全球的"冰室"(就像今天的世界),不过当时位于赤道附近的澳洲却出现冰的遗迹,则是个很有趣的例外。
2.罗迪尼亚大陆的分裂早在8亿到8.5亿年前,,一道断裂带在今日的澳洲大陆、南极洲东部、印度、刚果克拉通、喀拉哈里克拉通之间形成,之后在劳伦大陆、波罗地大陆、亚马逊克拉通、西非克拉通、圣弗朗西斯科克拉通也形成断裂带,断裂后形成埃迪卡拉纪的阿达马斯托洋。
大约7.5亿年前,罗迪尼亚大陆分裂成原劳亚大陆、刚果克拉通、原冈瓦那大陆(冈瓦那大陆除去刚果地盾与南极洲)。
原劳亚大陆进一步分裂,朝南极移动。
原冈瓦纳大陆逆时针反转。
在6亿年前,刚果克拉通位于原劳亚大陆各大陆与原冈瓦那大陆之间,三者聚合成潘诺西亚大陆。
(二)埃迪卡拉纪(Ediacaran)又称震旦纪(6.2——5.4亿年前)1.潘诺西亚大陆的形成与分裂潘诺西亚大陆(Pannotia)是个理论上的史前超大陆,形成于6亿年前的泛非造山作用,并在5亿4000万年前的前寒武纪分裂。
潘诺西亚大陆的大部分位于极区之内,而证据显示这个时代有大面积的冰河覆盖者,远大于地质时代的任何时期。
潘诺西亚大陆的形状类似V字形,开口往东北。
开口内侧为泛大洋,海底有中洋脊,是今日太平洋的前身。
潘诺西亚大陆的外侧环绕者泛非洋。
潘诺西亚大陆的存在时间很短。
组合潘诺西亚的各大陆,是以错动方式聚合。
在5.4亿年前,或潘诺西亚大陆形成的6000万年后,潘诺西亚大陆分裂成四个大陆:劳伦大陆、波罗地大陆、西伯利亚大陆、冈瓦那大陆。
2.最早的动物出现最古老的动物遗迹可追溯至十亿年前,但最早的动物化石出现于约六亿年前的埃迪卡拉纪。
埃迪卡拉动物群因为发现于南澳的埃迪卡拉山而得名。
埃迪卡拉动物和今天的大多数动物不同,它们既没头、尾、四肢,又没嘴巴和消化器官,因此它们大概只能从水中摄取养份。