有效数字及运算规则
- 格式:doc
- 大小:280.00 KB
- 文档页数:4
有效数字的计算法则
有效数字是指在最后一个数字后面的数字都是不确定的数字。
有效数字的计算法则是指在进行数学计算时,应当根据有效数字的规则进行计算以保证结果的准确性。
以下是一些有效数字的计算法则: 1. 加减法:在进行加减法运算时,结果的有效数字应当与被加数或被减数中有效数字最少的那个数相同。
2. 乘法:在进行乘法运算时,结果的有效数字应当与被乘数和乘数中有效数字的总和相同。
3. 除法:在进行除法运算时,结果的有效数字应当与被除数中有效数字的总数相同。
4. 幂运算:在进行幂运算时,结果的有效数字应当与底数中有效数字的总数相同。
5. 对数运算:在进行对数运算时,结果的有效数字应当与真数中有效数字的总数相同。
在进行数学计算时,应当注意有效数字的规则,以保证计算结果的准确性。
同时,应当注意四舍五入的规则,以便得到正确的有效数字。
- 1 -。
§2—3有效数字及其运算规则1. 有效数字的一般概念1) 有效数字的概念 实验中测量的结果都是有误差的,那么测量值如何表达才算合理呢?如用最小分度值为1mm 的尺子测得某物体的长度L =12.46cm ,可否写成12.460cm 或12.4600cm 呢?回答当然是否定的,因为用该米尺测量时毫米以下的一位数字6已经是估计的(即有误差存在),再往下估读已无实际意义。
在大学物理实验中,12.460和12.4600这两个数值与12.46有着不同的含义,即表示它们的误差是不相同的。
在实验测量和近似计算中得到的数据,其末位是有误差的,我们称这种数为有效数字。
所以,有效数字是由若干位准确数字和一位欠准确数字构成的。
上面的举例L=12.46cm ,就是有四位有效数字。
若我们用最小分度为0.02mm 的游标卡尺去测量该物体,得L =12.460cm ;用最小分度为0.0lmm 的螺旋测微器测量该物体,读数为12.4602cm ,则它们分别是五位和六位的有效数字。
由此可见,同一物体,用不同精度的仪器去测量,有效数字的位数是不同的,精度越高,有效位数越多。
当我们用m 或km 作单位时,物理量L =12.46cm 表示为L =0.1246m 或L =0.0001246km ,它们是几位有效数字呢?因为单位换算并没有改变它原来测量的精度,因此仍是四位有效数字,这里的“0”是确定小数点位置的,不是有效数字,也就是说,在非零数字前的“0”不是有效数字。
当“0”不是确定小数点位置,即在非零数字后面时,与其它的字码是有同等地位的,都是有效数字。
例如,1.005cm ,是四位有效数字;1.00m 是三位有效数字。
这里的“0”就不能随便的增或减。
2) 数值的科学表达方式当一个数值很大,但有效数字又不多的情况下,如何来正确表达呢? 这时可以用尾数乘以10的多少次幂的形式表示,即所谓的科学记数法。
例如某号钢的弹性模量为,它有三位有效数字,显然写成197,000,000,000是不妥当的。
有效数字及其运算规则一、测量结果得有效数字1.有效数字得定义及其基本性质测量结果中所有可靠数字加上末位得可疑数字统称为测量结果得有效数字。
有效数字具有以下基本特性:(1)有效数字得位数与仪器精度(最小分度值)有关,也与被测量得大小有关。
对于同一被测量量,如果使用不同精度得仪器进行测量,则测得得有效数字得位数就是不同得。
例如用千分尺(最小分度值,)测量某物体得长度读数为。
其中前三位数字“”就是最小分度值得整数部分,就是可靠数字;末位“"就是在最小分度值内估读得数字,为可疑数字;它与千分尺得在同一数位上,所以该测量值有四位数字、如果改用最小分度值(游标精度)为得游标卡尺来测量,其读数为,测量值就只有三位有效数字。
游标卡尺没有估读数字,其末位数字“"为可疑数字,它与游标卡尺得也就是在同一数位上。
(2)有效数字得位数与小数点得位置无关,单位换算时有效数字得位数不应发生改变。
2、有效数字与不确定度得关系在我们规定不确定度得有效数字只取一位时,任何测量结果,其数值得最后一位应与不确定度所在得那一位对齐、如,测量值得末位“”刚好与不确定度得“"对齐。
由于有效数字得最后一位就是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值得不确定度(或误差限值)。
测量值得有效数字位数越多,测量得相对不确定度越小;有效位数越少,相对不确定度就越大。
3.数值得科学表示法二、有效数字得运算规则1.数值得舍入修约原则测量值得数字得舍入,首先要确定需要保留得有效数字与位数,保留数字得位数确定以后,后面多余得数字就应予以舍入修约,其规则如下:(1)拟舍弃数字得最左一位数字小于5时,则舍去,即保留得各位数字不变。
(2)拟舍弃数字得最左一位数字大于5,或者就是5而其后跟有并非0得数字时,则进1,即保留得末位数字加1。
(3)拟舍弃数字得最左一位数字为5,而5得右边无数字或皆为0时,若所保留得末位数字为奇数则进1,为偶数或0则舍去,即“单进双不进”。
有效数字及其运算规则一、测量结果的有效数字1.有效数字的定义及其基本性质测量结果中所有可靠数字加上末位的可疑数字统称为测量结果的有效数字。
有效数字具有以下基本特性:有效数字具有以下基本特性:(1)有效数字的位数与仪器精度(最小分度值)有关,也与被测量的大小有关。
)有效数字的位数与仪器精度(最小分度值)有关,也与被测量的大小有关。
对于同一被测量量,如果使用不同精度的仪器进行测量,则测得的有效数字的位数是不同的。
例如用千分尺(最小分度值00.011m m ,0.004m mD =仪)测量某物体的长度读数为84.8334m m 。
其中前三位数字“483”是最小分度值的整数部分,是可靠数字;末位“4”是在最小分度值内估读的数字,为可疑数字;它与千分尺的D 仪在同一数位上,所以该测量值有四位数字。
如果改用最小分度值(游标精度)为00.022m m 的游标卡尺来测量,其读数为84.844m m ,测量值就只有三位有效数字。
游标卡尺没有估读数字,其末位数字“4”为可疑数字,它与游标卡尺的0.02m m D 仪=也是在同一数位上。
也是在同一数位上。
(2)有效数字的位数与小数点的位置无关,单位换算时有效数字的位数不应发生改变。
2.有效数字与不确定度的关系在我们规定不确定度的有效数字只取一位时,任何测量结果,其数值的最后一位应与不确定度所在的那一位对齐。
如39(8.922700.0005)/g c m r =±,测量值的末位“7”刚好与不确定度00.0005的“5”对齐。
”对齐。
由于有效数字的最后一位是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值的不确定度(或误差限值)。
测量值的有效数字位数越多,测量的相对不确定度越小;有效位数越少,相对不确定度就越大。
越小;有效位数越少,相对不确定度就越大。
3.数值的科学表示法二、有效数字的运算规则1.数值的舍入修约原则测量值的数字的舍入,首先要确定需要保留的有效数字和位数,保留数字的位数确定以222()()()A B C D +D +D 2222()()0.300.088A C D +D +2222()()0.0402483.751.2R T RTD D æöæöæöæ+´=+´ç÷ç÷ç÷çèøèøèøè2。
有效数字及运算规则1.4.1 有效数字的基本概念任何测量结果都存在不确定度,测量值的位数不能任意的取舍,要由不确定度来决定,即测量值的末位数要与不确定度的末位数对齐。
如体积的测量值3cm 961.5=V ,其不确定度3cm 04.0=V U ,由不确定度的定义及V U 的数值可知,测量值在小数点后的百分位上已经出现误差,因此961.5=V 中的“6”已是有误差的欠准确数,其后面一位“1”已无保留的意义,所以测量结果应写为3cm 04.096.5±=V 。
另外,数据计算都有一定的近似性,计算时既不必超过原有测量准确度而取位过多,也不能降低原测量准确度,即计算的准确性和测量的准确性要相适应。
所以在数据记录、计算以及书写测量结果时,必须按有效数字及其运算法则来处理。
熟练地掌握这些知识,是普通物理实验的基本要求之一,也为将来科学处理数据打下基础。
测量值一般只保留一位欠准确数,其余均为准确数。
所谓有效数字是由所有准确数字和一位欠准确数字构成的,这些数字的总位数称为有效位数。
一个物理量的数值与数学上的数有着不同的含义。
例如,在数学意义上600.460.4=,但在物理测量中(如长度测量),cm 600.4cm 60.4≠,因为cm 60.4中的前两位“4”和“6”是准确数,最后一位“0”是欠准确数,共有三位有效数字。
而cm 600.4则有四位有效数字。
实际上这两种写法表示了两种不同精度的测量结果,所以在记录实验测量数据时,有效数字的位数不能随意增减。
1.4.2 直接测量的读数原则直接测量读数应反映出有效数字,一般应估读到测量器具最小分度值的10/1。
但由于某些仪表的分度较窄、指针较粗或测量基准较不可靠等,可估读5/1或2/1分度。
对于数字式仪表,所显示的数字均为有效数字,无需估读,误差一般出现在最末一位。
例如:用毫米刻度的米尺测量长度,如图1-4-1(a )所示,cm 67.1=L 。
“6.1”是从米尺上读出的“准确”数,“7”是从米尺上估读的“欠准确”数,但是有效的,所以读出的是三位有效数字。
§1、4有效数字及其运算规则一、有效数字得一般概念1、有效数字任何一个物理量,其测量结果必然存在误差。
因此,表示一个物理量测量结果得数字取值就是有限得。
我们把测量结果中可靠得几位数字,加上可疑得一位数字,统称为测量结果得有效数字。
例如,2、78得有效数字就是三位,2、7就是可靠数字,尾位“8”就是可疑数字。
这一位数字虽然就是可疑得,但它在一定程度上反映了客观实际,因此它也就是有效得。
2、确定测量结果有效数字得基本方法(1)仪器得正确测读仪器正确测读得原则就是:读出有效数字中可靠数部分就是由被测量得大小与所用仪器得最小分度来决定。
可疑数字由介于两个最小分度之间得数值进行估读,估读取数一位(这一位就是有误差得)。
例如,用分度值为1mm得米尺测量一物体得长度,物体得一端正好与米尺零刻度线对齐,另一端如图1-1。
此时物体长度得测量值应记为L=83.87cm。
其中,83、8就是可靠数,尾数“7”就是可疑数,有效数字为四位。
(2)对于标明误差得仪器,应根据仪器得误差来确定测量值中可疑数所以用该电压表测量时,其电压值只需读到小数点后第一位。
如某测量值为12、3V,若读出:12、32V,则尾数“2”无意义,因为它前面一位“3”本身就就是可疑数字。
(3)测量结果得有效数字由误差确定。
不论就是直接测量还就是间接测量,其结果得误差一般只取一位。
测量结果有效数字得最后一位与误差所在得一位对齐。
如L=(83、87±0、02)cm就是正确得,而L=(83、868±0、02)cm与L=(83、9±0、02)cm都就是错误得。
3、关于“0”得问题有效数字得位数与十进制得单位变换无关。
末位“0”与数字中间得“0”均属于有效数字。
如23、 20cm;10、2V等,其中出现得“0”都就是有效数字。
小数点前面出现得“0”与它之后紧接着得“0”都不就是有效数字。
如0.25cm或0.045kg中得“0”都不就是有效数字,这两个数值都只有两位有效数字。
有效数字的计算法则
有效数字是指一个数值中有意义的数字,即不包括末位的零和前导零。
在进行计算时,需要遵守一些有效数字的计算法则,以保证最终结果的准确性。
1. 加减法计算:在进行加减法计算时,结果的有效数字位数应与参与计算的数中最小的有效数字位数相同。
例如,计算4.31 + 2.1时,最小有效数字位数为2,因此结果应该保留两位有效数字,即6.4。
2. 乘除法计算:在进行乘除法计算时,结果的有效数字位数应与参与计算的数中有效数字位数之和的最小值相同。
例如,计算2.3 × 1.56时,有效数字位数之和为3,因此结果应该保留三位有效数字,即3.6。
3. 科学计数法计算:在进行科学计数法的加减乘除法运算时,应将指数相同的数值相加减或相乘除,并将结果表示为科学计数法的形式。
例如,计算(3.2 × 10^4) + (1.8 × 10^3)时,应将指数相同的数值相加,得到3.38 × 10^4的结果。
4. 近似值计算:当无法得到精确结果时,可以使用近似值进行计算,并用适当的有效数字进行结果的表示。
例如,计算π的值时,可以使用3.14作为近似值,并用三位有效数字表示结果。
总之,遵守有效数字的计算法则可以保证计算结果的准确性和
可靠性。
有效数字运算规则是什么
有效数字是在整个计算过程中⼤致维持重要性的近似规则。
下⾯是由店铺编辑为⼤家整理的“有效数字运算规则是什么”,仅供参考,欢迎⼤家阅读本⽂。
有效数字
具体地说,是指在分析⼯作中实际能够测量到的数字。
能够测量到的是包括最后⼀位估计的,不确定的数字。
我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。
把测量结果中能够反映被测量⼤⼩的带有⼀位存疑数字的全部数字叫有效数字。
数据记录时,我们记录的数据和实验结果真值⼀致的数据位便是有效数字。
规定有效数字是为了体现测量值和计算结果实际达到的准确度。
有效数字运算规则
1.加减法:先按⼩数点后位数最少的数据,保留其它各数的位数,再进⾏加减计算,计算结果也使⼩数点后保留相同的位数。
2.乘除法:先按有效数字最少的数据保留其它各数,再进⾏乘除运算,计算结果仍保留相同有效数字。
有效数字的舍⼊规则
1、当保留n位有效数字,若后⾯的数字⼩于第n位单位数字的0.5就舍掉。
2、当保留n位有效数字,若后⾯的数字⼤于第n位单位数字的0.5 ,则第位数字进1。
3、当保留n位有效数字,若后⾯的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后⾯的数字,若第n位数字为奇数加1。
有效数字及运算规则
1.4.1 有效数字的基本概念
任何测量结果都存在不确定度,测量值的位数不能任意的取舍,要由不确定度来决定,即测量值的末位数要与不确定度的末位数对齐。
如体积的测量值3cm 961.5=V ,其不确定度3cm 04.0=V U ,由不确定度的定义及V U 的数值可知,测量值在小数点后的百分位上已经出现误差,因此961.5=V 中的“6”已是有误差的欠准确数,其后面一位“1”已无保留的意义,所以测量结果应写为3cm 04.096.5±=V 。
另外,数据计算都有一定的近似性,计算时既不必超过原有测量准确度而取位过多,也不能降低原测量准确度,即计算的准确性和测量的准确性要相适应。
所以在数据记录、计算以及书写测量结果时,必须按有效数字及其运算法则来处理。
熟练地掌握这些知识,是普通物理实验的基本要求之一,也为将来科学处理数据打下基础。
测量值一般只保留一位欠准确数,其余均为准确数。
所谓有效数字是由所有准确数字和一位欠准确数字构成的,这些数字的总位数称为有效位数。
一个物理量的数值与数学上的数有着不同的含义。
例如,在数学意义上600.460.4=,但在物理测量中(如长度测量),cm 600.4cm 60.4≠,因为cm 60.4中的前两位“4”和“6”是准确数,最后一位“0”是欠准确数,共有三位有效数字。
而cm 600.4则有四位有效数字。
实际上这两种写法表示了两种不同精度的测量结果,所以在记录实验测量数据时,有效数字的位数不能随意增减。
1.4.2 直接测量的读数原则
直接测量读数应反映出有效数
字,一般应估读到测量器具最小分度
值的10/1。
但由于某些仪表的分度较
窄、指针较粗或测量基准较不可靠等,
可估读5/1或2/1分度。
对于数字式
仪表,所显示的数字均为有效数字,
无需估读,误差一般出现在最末一位。
例如:用毫米刻度的米尺测量长度,
如图1-4-1(a )所示,cm 67.1=L 。
“6.1”是从米尺上读出的“准确”
数,“7”是从米尺上估读的“欠准确”
数,但是有效的,所以读出的是三位有效数字。
若如图(b )所示时,cm 00.2=L ,仍是三位有效数字,而不能读写为cm 0.2=L 或cm 2=L ,因为这样表示分别只有两位或一位有效数字。
图1-4-1 直接测量的有效数字
如图(c)所示,cm 70.90=L 有四位有效数字。
若是改用厘米刻度米尺测量该长度时,如图(d )所示,则cm 7.90=L ,只有三位有效数字。
所以,有效数字位数的多少既与使用仪器的精度有关,又与被测量本身的大小有关。
在单位换算或小数点位置变化时,不能改变有效数字位数,而是应该运用科学记数法,把不同单位用10的不同冪次表示。
例如,m 2.1不能写作cm 120、m m 1200或m μ1200000,应记为
m μ102.1mm 102.1cm 102.1m 2.1632⨯=⨯=⨯=
他们都是两位有效数字。
反之,把小单位换成大单位,小数点移位,在数字前出现的“0”不是有效数字,如m 00242.0cm 242.0m m 42.2==,他们都是三位有效数字。
1.4.3 有效数字运算规则
间接测量的计算过程即为有效数字的运算过程,存在不确定度的传递问题。
严格说来,应根据间接测量的不确定度合成结果来确定运算结果的有效数字。
但是在不确定度估算之前,可根据下列的有效数字运算法则粗略地算出结果。
有效数字运算的原则是:运算结果只保留一位欠准确数字。
1.加减运算
根据不确定度合成理论,加减运算结果的不确定度,等于参与运算的各量不确定度平方和的开方,其结果大于参与运算各量中的最大不确定度。
如:
y x N +=
x y x N U U U U >+=22(或y U )
因此,加减运算结果的有效数字的末位应与参与运算的各数据中不确定度最大的末位对齐,即计算结果的欠准确数字与参与运算的各数值中最先出现的欠准确数字对齐。
下面例题中在数字上方加一短线的为欠准确数字。
【例3】235.31.32+和652.19.116-的计算结果各应保留几位数字?
【解】先观察一下具体计算过程:
5
33.35523.31
.32+ 842.115265.19.116-
可见,一个数字与一个欠准确数字相加或相减,其结果必然是欠准确数字。
按照运算结果
保留一位欠准确数字的原则 3.35235.31.32=+ 2.115652.19.116=-
分别为三位有效数字和四位有效数字。
2.乘除运算
乘除运算结果的相对不确定度,等于参与运算各量的相对不确定度平方和的开方,因此运算结果的相对不确定度大于参与运算各量中的最大相对不确定度。
我们知道,有效数字位数越少,其相对不确定度越大。
所以,乘除运算结果的有效数字位数,与参与运算各
量中有效数字位数最少的相同。
【例4】11.11111.1⨯的计算结果应保留几位数字?
【解】计算过程如下:
因为一个数字与一个欠准确数字相乘,其结果必然是欠准确数字。
所以,由上面的运算过程可见,小数点后面第二位的“3”及其后的数字都是欠准确数字,所以
23.111.11111.1=⨯
为三位有效数字。
与上面叙述的乘除运算法则是一致的。
除法是乘法的逆运算,取位法则与乘法相同,这里不再举例说明。
对于一个间接测量,如果它是由几个直接测量值通过相乘除运算而得到的,那么,在进行测量时应考虑各直接测量值的有效数字位数要基本相仿,或者说它们的相对不确定度要比较接近。
如果相差悬殊,那么精度过高的测量就失去意义。
3.乘方、立方、开方运算
运算结果的有效数字位数与底数的有效位数相同。
4.函数运算
有效数字的四则运算规则,是根据不确定度合成理论和有效数字的定义总结出来的。
所以,对于对数、三角函数等函数运算,原则上也要从不确定度传递公式出发来寻找其运算规则。
先看两个例子:
【例5】23068±=a ,求?ln ==a y
【解】按照不确定度传递公式
0007.023068
11=⨯==a y U a U 所以 0288.8ln ==a y
【例6】3060'±'︒=θ,求?sin ==θx
【解】由不确定度传递公式
0004.0180
603|60cos ||cos |=⨯⨯︒==πθθU U x 所以 8660.0060sin ='︒=x
当直接测量的不确定度未给出时,上述过程可简化为通过改变自变量末位的一个单位,观察函数运算结果的变化情况来确定其有效数字。
例如620'︒=α中的“6'”是欠准确数字,由计算器运算结果为 343659695.0620sin ='︒, 343932851.0720sin ='︒,两种结果在小数点后面第四位出现了差异,所以3436.0620sin ='︒。
同理 393590754.6598ln =, 395261598.6599ln =,所以394.6598ln =。
但是,这种方法是较粗糙的,有时与正确
1111.1 11.1⨯ 11111 11111 11111 123332.1
结果会出现明显差异。
5.常数
公式中的常数,如π、e 、2等,它们的有效数字位数是无限的,运算时一般根据需要,比参与运算的其它量多取一位有效数字即可。
例如:
2r S π=,cm 042.6=r ,π取为1416.3,22cm 7.114042.61416.3=⨯=∴S 。
πθ+=3.129,π取为14.3,rad 4.13214.33.129=+=θ。
1.4.4 测量结果数字取舍规则
数字的取舍采用“四舍六入五凑偶”规则,即欲舍去数字的最高位为4或4以下的数,则“舍”;若为6或6以上的数,则“入”;被舍去数字的最高位为5时,前一位数为奇数,则“入”,前一位数为偶数,则“舍”。
其目的在于使“入”和“舍”的机会均等,以避免用“四舍五入”规则处理较多数据时,因入多舍少而引入计算误差。
例如,将下列数据保留到小数点后第二位:
09.80861.8→,08.80845.8→,08.80850.8→,08.80754.8→
通常约定不确定度最多用两位数字表示,且仅当首位为1或2时保留两位。
尾数采用“只进不舍”的原则,在运算过程中只需取两位数字计算即可。
有效数字运算规则和数字取舍规则的采用,目的是保证测量结果的准确度不致因数字取舍不当而受到影响。
同时,也可以避免因保留一些无意义的欠准确数字而做无用功,浪费时间和精力。
现在由于计算器的应用已十分普及,计算过程多取几位数字也并不花费多少精力,不会给计算带来什么困难。
但是,实验结果的正确表达仍然值得重视的,实验者应该能正确判断实验结果是几位有效数字,正确结果该怎么表示。