arcgis使用说明
- 格式:docx
- 大小:11.29 KB
- 文档页数:4
Field Calculator 的使用Field Calculator 工具可以在属性表字段点击右键,选择“Field Calculator ”,或者Data Management Tools->fields-> Calculate Field打开。
1.基本函数针对数值型:Abs:求绝对值Atn:求反正切值Cos:求余弦值Exp:求反对数值Fix:取整数部分,与Int 函数有区别的Int:取整数部分Int 和Fix 函数的区别在于如果number 参数为负数时,Int 函数返回小于或等于number 的第一个负整数,而Fix 函数返回大于或等于number 参数的第一个负整数。
MyNumber = Int(99.8) ' 返回99。
MyNumber = Fix(99.2) ' 返回99。
MyNumber = Int(‐99.8) ' 返回‐100。
MyNumber = Fix(‐99.8) ' 返回‐99。
MyNumber = Int(‐99.2) ' 返回‐100。
MyNumber = Fix(‐99.2) ' 返回‐99。
Log:求对数值Sin:求正弦值Sqr:开方Tan:求正切针对字符串型:Asc:返回与字符串的第一个字母对应的ANSI 字符代码Chr:将一个ASCII 码转为相应的字符,与它对应的是ASC()函数Format:返回根据格式String 表达式中包含的指令设置格式的字符串,例如Format(13.3,"0.00")=13.30Instr:返回某字符串在另一字符串中第一次出现的位置LCase:返回字符串的小写格式,例如LCase("ARCGIS")="arcgis" Left:返回字符串左边的内容,例如Left("arcgis",2)="ar" ,把[A]字段的前2个字符赋给[B]Len:返回字符串的长度,例如Len("arcgis")=6LTrim:去掉字符串左边的空格,例如LTrim(" arcgis")="arcgis" Mid:取出字符串中间的内容,例如Mid("arcgis",2,1)="r" 在name 字段前四个字符后面加一个空格,left([name],4) & " " & mid([name],5) QBColor:返回一个Integer 值,该值表示对应于指定的颜色编号的RGB 颜色代码Right:返回字符串右边的内容,例如Right("arcgis",2)="is" RTrim:去掉字符串右边的空格,例如RTim("arcgis ")="arcgis"Space:返回由指定数量空格组成的字符串,例如MyString = "Hello" & Space(10) & "World" ' 在两个字符串之间插入10 个空格。
arcgis enterprise sdk java 使用说明ArcGIS Enterprise是一套完整的地理信息系统平台,用于创建、管理和共享地理空间数据和地图服务。
ArcGIS Enterprise SDK Java是为了方便开发者在Java环境下使用ArcGIS Enterprise平台而提供的软件开发工具包。
使用ArcGIS Enterprise SDK Java,您可以轻松地构建自己的地理信息应用程序。
下面是一些使用说明,帮助您入门和使用该SDK:1. 环境准备:首先,确保您的计算机上已安装Java开发工具包(JDK)和Eclipse或其他Java开发环境。
然后,下载并安装ArcGIS Enterprise SDK Java。
2. 导入SDK:在您的Java开发环境中,导入ArcGIS Enterprise SDK Java。
可以通过在Eclipse中选择“File -> Import -> Existing Maven Projects”来导入SDK。
3. 设置依赖关系:在您的Java项目中,将ArcGIS Enterprise SDK Java的依赖关系添加到您的项目配置文件中(如pom.xml)。
这样可以确保您可以访问SDK提供的所有功能和类库。
4. 连接到ArcGIS Enterprise:使用ArcGIS Enterprise SDK Java,您可以连接到ArcGIS Enterprise服务并获取地图数据、图层信息等。
通过提供正确的URL、用户名和密码,您可以建立与ArcGIS Enterprise的连接并开始使用它的功能。
5. 创建地图应用程序:使用SDK提供的类库,您可以构建自己的地图应用程序。
您可以加载地图、添加图层、执行空间查询等操作。
通过使用SDK提供的控件和API,您可以定制和扩展您的地图应用程序。
6. 与其他系统集成:ArcGIS Enterprise SDK Java支持与其他系统的集成。
矿产资源规划符号库 (ArcGIS)使用说明目录一、符号库使用说明 (1)(一)符号库主要编制依据 (1)(二)符号库对照表参数说明 (1)(三)符号库安装 (2)二、基础地理:1:250001:500001:100000地形图符号库对照表 (3)三、基础地理:1:2500001:5000001:1000000地形图符号库对照表 (33)四、基础地质符号库对照表 (52)五、矿产资源规划符号库对照表... ..................... (143)一、矿产资源规划ArcGIS符号库使用说明(一)符号库主要编制依据1.基础地理GB/T20257.3-2006《国家基本比例尺地图图式第 3 部分:1:25000 1:50000 1:100000 地形图图式》GB/T 20257.4—2007《国家基本比例尺地图图式第 4 部分:1:250000 1:500000 1:1000000 地形图图式》2.基础地质GB958-99《区域地质图图例(1:50000)》3.矿产资源规划专题《矿产资源规划数据库标准》(2015年修订)《矿产资源规划数据图示图例》(2015年修订)(二)符号库对照表参数说明1.符号库对照表中“符号编码”是指ArcGis符号库(STYLE)中的符号“名称”,其中:红色为子图符号的名称绿色为线型符号的名称蓝色为填充图案的名称品红为注记符号的名称2.基础地质符号库对照表中除矿区(床)以外,其符号编码由“编号_符号名称”组合形成。
例:下表中的符号编码为 0203034_推测主要复合断层3.符号库在使用时按符号编码选择对应的符号,使用符号库中设定的默认参数即可。
(三)符号库安装1.符号库名称地形图图示符号库-第3部分. style地形图图示符号库-第4部分.style矿产规划专题.style区域地质图图例(GB958-99).style2.字库的安装将TIF文件夹下的“矿规字库1.ttf、矿规字库2.ttf、矿规字库3.ttf、矿规字库4.ttf、DZ-GB958-99(修订).TTF”5个字体文件拷贝至C:\WINDOWS\Fonts 目录下,符号库方可正常使用。
arcgis中加权叠加赋值和权重概述说明1. 引言1.1 概述在地理信息系统(GIS) 中,加权叠加赋值和权重是一种常用的空间分析方法。
该方法通过对不同属性或者空间数据进行加权处理,将多个图层叠加到一起,并根据各属性的重要性或者空间特征的影响程度,给予不同权重值进行综合评价或者分析。
通过加权叠加赋值和权重分析,我们可以对地理现象进行深入研究,提取有用的信息并做出合理的决策。
1.2 文章结构本文将从以下几个方面来介绍ArcGIS中的加权叠加赋值和权重分析方法。
首先,在第2节中我们会详细讲解加权叠加赋值的定义以及如何使用ArcGIS中的工具进行操作。
其次,在第3节中我们将介绍基于属性数据和基于空间数据两种不同的加权叠加赋值方法,并探讨选择合适的权重分析方法应用于不同场景的指导原则。
然后,在第4节中我们会借助实例和案例研究来展示应用实践过程,并探讨在土地利用规划、环境风险评估以及城市规划等领域中如何应用加权叠加赋值和权重分析方法。
最后,在第5节中我们将对全文进行总结,归纳主要发现结果,并展望未来的研究方向和发展趋势。
1.3 目的本文的目的是介绍ArcGIS中加权叠加赋值和权重分析方法,探讨该方法在地理信息系统应用中的意义和作用。
通过本文的阐述,读者将能够了解到加权叠加赋值的概念、ArcGIS工具的使用以及权重在分析过程中的重要性。
同时,本文还旨在帮助读者理解基于属性数据和基于空间数据两种不同的加权叠加赋值方法,并引导读者选择合适的权重分析方法以应用于不同场景。
最后,通过实例应用与案例研究,本文将进一步展示加权叠加赋值和权重分析方法在土地利用规划、环境风险评估以及城市规划等领域中的具体应用价值。
2. 加权叠加赋值和权重2.1 加权叠加赋值的定义在地理信息系统(GIS)中,加权叠加赋值是一种用于分析多个输入数据层的方法。
它通过为每个输入数据层分配一个权重,并根据这些权重对不同输入数据的像元进行组合,生成最终的输出结果。
矿产资源规划符号库 (ArcGIS)使用说明目录一、符号库使用说明 (1)(一)符号库主要编制依据 (1)(二)符号库对照表参数说明 (1)(三)符号库安装 (2)二、基础地理:1:250001:500001:100000地形图符号库对照表 (3)三、基础地理:1:2500001:5000001:1000000地形图符号库对照表 (33)四、基础地质符号库对照表 (52)五、矿产资源规划符号库对照表... ..................... (143)一、矿产资源规划ArcGIS符号库使用说明(一)符号库主要编制依据1.基础地理GB/T20257.3-2006《国家基本比例尺地图图式第 3 部分:1:25000 1:50000 1:100000 地形图图式》GB/T 20257.4—2007《国家基本比例尺地图图式第 4 部分:1:250000 1:500000 1:1000000 地形图图式》2.基础地质GB958-99《区域地质图图例(1:50000)》3.矿产资源规划专题《矿产资源规划数据库标准》(2015年修订)《矿产资源规划数据图示图例》(2015年修订)(二)符号库对照表参数说明1.符号库对照表中“符号编码”是指ArcGis符号库(STYLE)中的符号“名称”,其中:红色为子图符号的名称绿色为线型符号的名称蓝色为填充图案的名称品红为注记符号的名称2.基础地质符号库对照表中除矿区(床)以外,其符号编码由“编号_符号名称”组合形成。
例:下表中的符号编码为 0203034_推测主要复合断层3.符号库在使用时按符号编码选择对应的符号,使用符号库中设定的默认参数即可。
(三)符号库安装1.符号库名称地形图图示符号库-第3部分. style地形图图示符号库-第4部分.style矿产规划专题.style区域地质图图例(GB958-99).style2.字库的安装将TIF文件夹下的“矿规字库1.ttf、矿规字库2.ttf、矿规字库3.ttf、矿规字库4.ttf、DZ-GB958-99(修订).TTF”5个字体文件拷贝至C:\WINDOWS\Fonts 目录下,符号库方可正常使用。
数据处理基本练习1 、将当前的数据图层调整成为用户所需要得特定几个图层。
练习:将无棣的数据图层,进行整合归并,统一到POI 兴趣点的组中。
不需要的可以删除,尽量保留已有的数据,可以使数据显得饱满。
具体步骤:作为兴趣点,不需要进行特殊详细的分层,因此可以将相近的图层进行合并,比如购物服务、餐饮服务、生活服务、住宿服务等均位于道路两侧,因此可以归并到沿街商铺中。
操作方法:任意选择某一个图层,开始编辑,比如选择购物服务,将其他的几个图层数据全部复制到该图层即可。
右键打开餐饮服务、生活服务等图层的属性表,然后选择全部,将鼠标放到地图中选中的某兴趣点上面点击右键,选择复制,然后释放所有选择,粘贴,即完成为了一个图层归并的操作。
最后,所有的图层都归并结束后,进行地图符号的设置和配置、颜色的选择等。
2 、将用户部件普查后的数据DWG 格式的数据,导入到ArcGIS中,并进行分层显示。
练习:现有无棣老城区CAD 图形两幅,将其转换成shp 格式,跟现有的地图进行配准,然后根据不同的refname 确定部件属于哪种部件,分别将其在对应的图层中显示,并配置好符号。
具体步骤:1) 利用arcToolbox 中Conversion Tools 中的To Shapefile 功能项将现有的CAD图转换成shp 格式的。
2) 将转换后的shp 数据加载到当前的mxd 文档地图中。
3) 进行矢量配准。
在工具栏的空白处右键,选择Spatial Adjustment 工具条。
首先选择Set Adjust data,选择需要进行配准的图层,这里选择所有的CAD 转换后图层即可。
然后通过两幅图的对照,找到4 个相应点,利用工具进行相应点纠正。
打开列表查看纠正的误差,均小于0.00001 为佳,若某个误差较大,则需要进行调整。
最后选择Adjust 进行纠正,即完成矢量配置工作。
4) 利用ArcCatalog 新建需要添加的部件图层,比如上水井盖图层,设置其坐标系与现有的兴趣点一致,图层属性字段设计好,填写完整。
Apply 3D Analysis Tools in ArcGIS Pro380 New York StreetRedlands, California 92373 – 8100 USACopyright © 2019 EsriAll rights reserved.Printed in the United States of America.The information contained in this document is the exclusive property of Esri. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by Esri. All requests should be sent to Attention: Contracts and Legal Services Manager, Esri, 380 New York Street, Redlands, CA 92373-8100 USA.The information contained in this document is subject to change without notice.Using 3D thematic symbology to display features in a sceneTime: 40 minutesOverviewThe ArcGIS 3D Analyst extension contains a powerful set of tools for understanding how the local terrain and other 3D features can obstruct the line of sight, or viewshed, between an observer and a target. However, sometimes you wish to quickly explore visibility scenarios in 3D without a lot of data preparation.The content used in this lesson contains a mix of small-, medium-, and large-scale urban environments. All the analysis tasks in this lesson are done interactively and incorporate the currently visible layers in the scene–if you turn a layer on or off, your analysis changes in real time. These tools can be useful for a quick visual check or exploration of a scenario before conducting more rigorous visibility studies.If you have some time left after using the Exploratory Analysis tools, you can spend a few minutes reviewing the exploratory tools–the Range and Time sliders in ArcGIS Pro–to discover meaningful patterns within a 3D space time cube.In this lesson, you will learn to do the following:•Use the 3D Exploratory Analysis tools in ArcGIS Pro•Use the line of sight and viewshed tools to observe the effects of objects and terrain•Explore spatiotemporal patterns in complex datasets using a 3D space time cubeGetting startedThe analysis scenarios in this lesson are contained in an ArcGIS Pro Project package (.ppkx).1.Download the DisplayAnalytics.zip compressed folder.2.Locate the downloaded file on your computer and extract it to a location you can easily find, suchas your Documents folder.3.From the extract location, double-click the DisplayAnalytics.ppkx project package to launch ArcGISPro and display the package contents.When the project opens, you will find three scenes–two global scenes for Exploratory Analysis and one local scene for Exploring a Space Time Cube. Using the Exploratory Analysis scenes, you will review and use exploratory analysis tools with data for San Francisco and the Esri campus in Redlands, California. In the space time cube scene, you will use a space time cube to explore patterns in water usage in Merced, California.The San Francisco building data used in the lesson is sourced from a scene layer, published on . The original building data used to create the published scene is used with permission from PLW Modelworks (Copyright © 2010-2011 PLW Modelworks, LLC)4.Review the 3D Exploratory Analysis tools used in this lesson. The tools are located on the ribbon, onthe Analysis tab in the 3D Exploratory Analysis group.5.Click the Interactive Analysis drop-down menu and review the available tools.There are four exploratory tools:•Line of Sight, which creates sight lines to determine if one or more targets are visible from a given observer location.•View Dome, which determines the parts of a sphere that are visible from an observer located at the center.•Viewshed, which determines the visible surface area from a given observer location through a defined viewing angle.•Slice, which visually cuts through the view's display to reveal hidden content.6.In the 3D Exploratory Analysis group, make sure to click Clear All before continuing to the nextstep.7.Close the Exploratory Analysis ESRI and Space Time Cube scenes.Building a view domeView domes are spherical “bubbles” of visibility that extend out from an observer location, showing what can and cannot be seen. In this step, you will use a view dome to better understand how “urban canyons” caused by tall buildings in San Francisco can limit your ability to view the sky or other features.1.Reposition the Exploratory Analysis SFC scene within the ArcGIS Pro application. By clicking theyellow square, your scene will expand to fill the view.Your Contents pane may not be visible.2.If necessary, on the ribbon, click the View tab, Windows group, then click Contents to display theContents pane.3.On the ribbon, click the Map tab, Navigate group, Bookmarks, then choose SFC Financial-District.The scene updates to the extent of the San Francisco Financial District.4.On the ribbon, click the Map tab, Navigate group, then click Explore.ing the navigation tools, zoom into and explore the Financial District in San Francisco tofamiliarize yourself with the area.6.When you are done, locate and focus on the area northwest of Market Street.If you are having trouble locating Market Street, use the Market Street bookmark to center yourself in the correct location.7.Continue zooming in to get to a top-down view, closer to street level8.On the ribbon, click the Analysis tab, in the 3D Exploratory Analysis Group, then click the drop-down menu for Interactive Analysis and choose View Dome.The Exploratory Analysis pane appears.9.Select the Interactive Size option.10.Next, click in the middle of an intersection surrounded by buildings. This will start generating the view dome.Now, you will make a second click, away from your first click, to set the radius of your view dome.11.About one city block away from your first click, move your pointer and click.NOTE: If you want to recreate your view dome, you can right-click the center of your first click and click Delete. You can also use your Explore tool to pan your scene to the middle of your screen.In the view dome, obstructed areas are shown in pink, while the uncolored area indicates a clear view of the sky. You can see how the visible areas of the view dome tend to be aligned with the street orientation.12.Next, you’ll change the view dome symbology. In the Exploratory Analysis pane, click Properties.13.Expand the Global Properties group.14.Update the color used for Visible and Not Visible areas to light green and red. In addition, modifythe Wireframe color to dark green.The scene updates and the view dome symbology is easier to interpret.insight into what may be observed and what may be obscured from the origin point of the dome.16.If necessary, click the center of your view dome to activate its handles.e the four handles around the edge of the dome to change its size and see how buildingsintersect.NOTE: You can also move the dome around on the ground by grabbing the blue disc around the observer and dragging it to a new location.The 3D Exploratory Analysis tools work not only with local multipatch and terrain data, but also with hosted scene layers, such as the textured San Francisco buildings, and with 3D symbols.18.When you are done, save the project.19.Close the Exploratory Analysis SFC scene.SliceThe Slice tool allows you to interactively place a clipping surface in a scene that slices through one or more layers. It is useful for exploratory tasks in which you have nested layers that you want to investigate–like cutting into a 3D geologic model to understand how the different strata are organized or internally cut by faults.In this step, you will use a simple 3D map of the Esri headquarters in Redlands, California, to slice different layers and create ad hoc exploratory views of the campus and buildings.1.Click the View tab. In the Windows group, click Catalog Pane.2.From the Catalog pane, expand Maps, and open the Exploratory Analysis ESRI scene.The scene opens to display the buildings and landscape of the Esri campus.3.Navigate to the front of Building Q, the distinctive wood and glass structure at the end of the street.You may need to clear your settings.4.On the ribbon, click the Analysis tab, in the 3D Exploratory Analysis group, then click Clear All toremove all previous analysis settings.5.Click the Interactive Analysis drop-down menu and choose Slice.The Exploratory Analysis pane updates.6.In the Exploratory Analysis pane, choose the Interactive Plane, Vertical.7.In the Exploratory Analysis pane, click Properties.8.Expand the Global Properties pane and update the Wireframe color to green and the Cut Outlinecolor to red.9.In the Exploratory Analysis pane, click Create. Your cursor becomes a crosshair as you hover overthe scene.10.Zoom in to the left front corner of the building.11.Click the ground near the left bottom corner of Building Q, then click another point that’s parallel tothe front facade orientation to set the plane.After the second click, the front of the facade will be removed, showing the interior of the building.ing the light blue anchor points, extend the vertical slice plane to slice through the front of thebuilding.The slice navigator center point, turns into a four-headed arrow when you point to it. Dragging the white arrows within the slice’s center point allows you to move the slice backward or forward.e the move handles to push it back into the building.directions.You can create some interesting interior views with the exterior walls “peeled away”–experiment with different plane orientations and angles.Next, include the ground surface in the slice.15.In the Exploratory Analysis pane, click Properties.16. Expand the Affected Layers group, and check Ground.Now you can see underground, which is useful for subsurface data visualization.Isometric cutaways are a common method for viewing architectural models or drawings.17.In the View tab, in the Scene group, try changing the Drawing Mode from Perspective to Parallel,to see how that alters the scene.18.Change the Drawing Mode back to Perspective when you are ready to continue.19.In the Exploratory Analysis pane, click the red X to close the Slice tool.20.Save the project.ViewshedViewsheds are used to visualize which parts of the environment can be seen from a given observer location. Unlike a view dome, which is a spherical surface of a set size, a viewshed renders on the surface of the terrain and any 3D objects what is visible and what is not visible within a given distance.In this step, you will again use the Exploratory Analysis ESRI scene.1.If necessary, navigate back to the area in front of Building Q.2.In the Contents pane, check all scene layers except the Tree layer.3.In the Contents pane, right-click the Esri CCTV Camera Locations layer and choose Attribute Table.4.Review the Esri CCTV Camera Locations attribute table and note the attribute fields populated withcamera properties such as direction, camera angle, and viewing distances.The viewshed tool can use these parameters to calculate what may or may not be visible based on the horizontal and vertical viewing angle and the minimum and maximum viewing distance of the camera.5.On the Analysis tab, in the 3D Exploratory Analysis group, click the Clear All button to clear anyactive analysis layers, then use the Interactive Analysis drop-down menu to select Viewshed.6.In the Exploratory Analysis pane, select the From Layer creation method.7.For Point layer, choose Esri CCTV Camera Locations.The Initial Viewpoint values for Heading and Tilt are automatically populated with values from the Esri CCTV Camera Locations layer attributes.8.Update the values for Viewshed Angles and Viewshed Distance as follows:•For Viewshed Angles:o For Horizontal, choose Angle_Horizontalo For Vertical, choose Angle_Vertical•For Viewshed Distance:o For Minimum, choose ViewDistance_Maxo For Maximum, choose ViewDistance_Min9.When finished, click Apply to add a viewshed to the scene.ing the 3D navigator, zoom out to visualize what the camera can observe based on its currentparameters.With the camera facing north, all locations visible to it are rendered in green, while locations not visible to the camera are rendered in pink.11.Tilt the scene to see how the 3D building objects and the placement of the camera impact thecalculated viewshed.Many of the buildings obscure the visibility of the camera, and it appears to be most effective at observing the street and parking spaces in front of the camera. However, we have the trees layer turned off and the viewshed is currently not including trees in its computation of visibility.12.In the Contents pane, check the Tree layer.With the Tree layer turned on, the viewshed is recalculated and the impact of the trees is notable, as trees certainly impact visibility.ing the 3D navigator, place yourself in the same northerly direction that the camera is facing.Notice how visibility is now largely confined to the street corridor and a few smaller paths between the tree canopy.14.Zoom in and notice how the south-facing parts of trees are also visible to the camera.Trees have a big impact on viewsheds–without vegetation, about half of the campus was visible. With trees added, the viewshed was reduced to a narrow strip along New York Street. The exploratory analysis tools in ArcGIS Pro allow you to quickly understand and test a variety of visibility scenarios.15.On the Analysis tab, in the 3D Exploratory Analysis group, click the Clear All button to clear anyactive analysis layers16.Close the Exploratory Analysis ESRI scene.In the next step, you will explore complex spatiotemporal data using the space time cube.Space Time CubeThe space time cube is a data visualization approach that analyzes large spatiotemporal datasets by aggregating them into bins across space and time. Within each bin, points are counted, and specific attributes are aggregated. Bins covering the same x,y area share the same location ID. Bins encompassing the same duration share the same time-step ID:In this example, you will use a space time cube to explore patterns in water consumption over a 12-year period in central California.1.In the Catalog pane, expand Maps and 0pen the Space Time Cube scene.The scene opens to display a space time cube using 1-mile x 1-mile bins to highlight areas of high water consumption from August 2002 to August 2013.In this scene, the Range slider and Time slider are both enabled for the visible layers to allow for the filtering of visible attributes and time slides.Let’s explore the Time slider setup.2.On the ribbon, under the Map tab, click the Time tab.3.In the Full Extent group, note the Start date set to 8/31/2002 12:00:01 AM and the End dateset to 8/31/2013 12:00:01 AM.These dates represent the 12-year period of water consumption visualized in this Space Time Cube.Note that the Step Interval is set to 1 Year, meaning that the Start and End time will be offset by one year.4.In the initial scene, the Time slider control is hidden; hover over the control to activate.5.On the Time slider control, click the auto-play button in the middle, or you can use the single-step button to the right to initiate stepping through the time range in one-year increments.As you interact with the Time slider, it will filter the 2D and 3D data to display the current active time range.6.On your own, step through the time series a couple of times–do you see a visual change inwater consumption in certain years over other years?Before proceeding, disable the Time slider to display the full data range.7.On the Time slider control, click the globe symbol to disable the control.Next, you’ll investigate the Range slider on the right edge of the scene. It is configured to display a subset of the total z-score range of each cube bin.(Image rotated -90)In this example, the z-score is a standard deviation measure of water consumption.If a bin has a z-score of 2.5, you would say that the result represents 2.5 standard deviations. A bin with a very high or very low (negative) z-score indicates that it is highly unlikely that the observed spatial pattern reflects a theoretically random pattern.8.On the ribbon, click the Map tab, then click the Range tab.9.In the Full Extent group, note the Max and Min range.Notice that the z-score ranges from a Max of 9.9 to a Min of -8.3.10.In the scene, drag the active range span down to show the negative z-score values. The cubesymbology will change from orange/red (positive) to a blue (negative) color gradient.11.On the Range tab, in the Current range group, update the upper end of visible range span bysetting the maximum (negative) z-score incrementally to -1.65, -1.96, and -2.58.These values represent 90 percent, 95 percent, and 99 percent confidence levels, respectively.You can also make these settings manually on the Range slider control if you choose.12.On the Range slider control, drag the range slider back up to show positive z-values above 1.65,1.96, and2.58, and look at bins that represent 90 percent, 95 percent, and 99 percentconfidence levels, respectively.13.Save the project.For more information on how to create your own space time cube, refer to the ArcGIS Pro online documentation.SummaryIn this lesson, you used the 3D Exploratory Analysis tools to conduct real-time visibility studies at the city and campus scale–employing the view dome, slice, and viewshed tools. Using these tools, you learned how to conduct line-of-sight studies by placing observer locations interactively in the scene, and by loading observer locations from a predefined layer’s attributes. Finally, you learned how to interact with the space time cube to filter out and discover statistically significant patterns of water usage with the Range slider and Time slider functionality in ArcGIS Pro.。
Arcgis绘制地图的方法步骤与认知一、前期设计与准备以Arcgis10.0软件为准,进行制图介绍1.地图文档创建第一步:创建地图文档第二步:设置地图文档相对保存路径说明:要特别注意地图文档和数据的存储位置,不同于AutoCAD 将所有信息存储在所有文件夹下,Arcgis的数据可能会存放在多个文件或多个数据库中,且地图文档也是独立于数据单独存在的。
第三步:选择地图文档保存路径2、加载基础地形数据第四步:连接到工作目录,建立指向工作目录的连接;第五步:加载地形图:【添加数据】——【文件夹连接】地形图;3、创建GIS数据第六步:预先设想Geodatabase(个人地理数据库)应包含的内容:要素集-要素类-对象类;第七步:工作目录下新建空的Geodatabase个人地理数据库;第八步:新建要素数据集;新建要素类;二、数据编辑(一)几何数据编辑第九步:调整图层显示顺序,使用绘图工具,开始编辑要素类,绘制几何图形,第十步:边绘边输入属性第十一步:停止编辑并保存编辑第十二步:编辑效果的可视化其一,【通过设置图层透明度】解决现状地块遮挡影像图和地形图的问题;其二,【用颜色区分地块的用地性质】:符号化步骤1:右键单击【现状地图】图层,属性-图层属性-符号系统步骤2:设置符号化类型:【添加值】-【新值】步骤3:设置符号:双击符号化列表框中的色块可以更改其符号样式。
【使用绘图模板更高效的绘图】:按着上述步骤对图层设置了专题符号后,我们可以把每一类符号变成一个绘图模板,该模板类似于一个绘图工具,按照该模板绘制的要素就自动拥有了符号对应的属性值和图形样式,这样可以省去一边绘图,一边还要输属性的繁琐。
步骤1:显示【组织要素模板】对话框:右键单击【现状地图】图层-【编辑要素】-【组织要素模板】;步骤2:创建模板:点击创建模板-【创建新模板向导】-勾选【现状地块】图层,点击下一步,勾选【现状地块】图层下的所有分类,点完成。
步骤3:此时处于【开始编辑】状态,选择任意模板绘图,这事地图窗口中绘制出来的要素都会具有该模板定义的用地性质属性值。
ArcGIS 10 许可使用手册ESRI(中国)北京有限公司2013/8/19II.目录II.简介 (1)III.安装和配置ArcGIS 10 License Server Administrator (2)一、冲突检测 (2)二、安装ArcGIS License Server Administrator (3)IV.ArcGIS Desktop许可授权 (8)一、ArcGIS Desktop浮动版许可的授权过程 (10)A.使用Internet来获得授权(默认授权方式) (10)B.访问网站/Email来获得授权 (17)二、ArcGIS Desktop单机版许可的授权过程 (24)三、ArcGIS Desktop浮动许可的借出功能 (26)四、ArcGIS Desktop浮动许可的转移 (32)五、许可解除授权过程 (37)A.使用Internet来解除授权(默认) (38)B.访问网站/Email来解除授权 (41)V.ArcGIS Engine许可授权 (48)一、Engine浮动版许可的授权过程 (49)二、Engine单机版许可的授权过程 (50)VI.ArcGIS Server许可授权 (56)A.使用Internet来获得授权(默认) (57)B.访问网站/Email来完成授权 (62)VII.许可授权常见问题解决方案 (67)1.新版本下的许可使用需要注意的地方有哪些? (67)2.如何使用Provisioning文件进行授权? (67)3.Provisioning文件与.elf9文件的区别? (68)4.环境不允许上网,如何对桌面软件授权? (69)5.双击运行返回的Resps文件,为何提示未发现有效的功能? (70)6.能否在多台机器上同时安装浮动许可的license server? (71)7.许可转移时,能否实现本机迁移本机许可? (71)8.需要用新的机器来替换安装有license Server的机器,如何授权? (72)9.机器升级是否会影响到许可文件? (72)10.许可借出的机制? (72)11.管理员能设置允许借出许可的个数么? (73)12.许可借出的次数的限制? (73)13.管理员能否强制归还许可? (73)14.如果在项目中,借出许可的机器崩溃,急需许可来继续工程,怎么办? (73)15.如果机器借出许可后去了外地,在项目进行中突然发现许可过期了,环境不允许上网,但是急需许可来继续工程,怎么办? (74)16.如果在借出许可后,电脑被盗,怎么处理? (74)17.9.x版本的桌面客户端能否使用版本10的license server? (74)18.在没有归还许可的情况下重装ArcGIS Desktop产品,许可是否仍然有效? (74)19.在没有归还许可的情况下重装操作系统,许可是否仍然有效? (74)II.简介欢迎使用ArcGIS 10版本软件。
arcgis数据框转换坐标系概述说明1. 引言1.1 概述本文旨在介绍如何使用ArcGIS软件进行数据框的坐标系转换。
坐标系转换是地理信息系统中非常常见和重要的操作,它可以将数据从一个坐标系转换到另一个坐标系,以便在不同的地图投影或空间参考系统下进行分析和可视化。
我们将首先对ArcGIS软件进行简要介绍,然后解释什么是坐标系统,并探讨为什么需要进行坐标系转换。
接着,将详细说明数据框转换坐标系的方法,并提供实际操作步骤以帮助读者更好地理解和应用该技术。
此外,在文章的后半部分,我们还会针对常见问题和注意事项进行讨论。
这些问题包括坐标系转换精度、数据丢失和重采样问题以及处理属性表数据的方法。
通过了解这些问题并采取相应措施,读者将更加熟悉并能够克服在实际应用中可能遇到的挑战。
最后,在结论与展望部分,我们将对本文所介绍的内容进行总结,并展望未来该技术在各个领域的应用前景。
通过阅读本文,读者将能够掌握ArcGIS软件中数据框转换坐标系的基本原理和操作方法,从而在地理信息数据处理和分析中能够更加灵活和高效地应用该技术。
2. 数据框转换坐标系:2.1 ArcGIS软件介绍:在介绍数据框转换坐标系之前,首先需要了解ArcGIS软件。
ArcGIS是一款专业的地理信息系统(GIS)软件,可用于创建、编辑、分析和可视化地理数据。
它提供了强大的空间分析功能和丰富的地图制作工具。
2.2 坐标系统概念解释:在使用ArcGIS进行数据处理时,我们必须了解坐标系统的概念。
坐标系统是一种描述地球或其他天体表面位置的数学模型。
它由两个主要组成部分组成:地理参考系统(Geographic Coordinate System,GCS)和投影参考系统(Projected Coordinate System,PCS)。
GCS采用经度和纬度来描述位置,而PCS则使用直角坐标系来表示位置。
2.3 数据框转换坐标系方法说明:数据框转换坐标系是指将一个数据框中的要素集合从一个坐标系转换为另一个坐标系。
arcgis使用说明
ArcGIS 使用说明
1、简介
ArcGIS 是由 Esri 公司开发的一套地理信息系统软件,用于处理、分析和展示空间数据。
本文档旨在提供一个详细的使用指南,帮助用户快速上手并掌握 ArcGIS 的各项功能。
2、安装
2.1 系统要求
在安装 ArcGIS 之前,确保您的计算机符合以下最低要求:
- 操作系统:Windows 10/8/7
- 处理器.64位双核处理器
- 内存.8GB
- 硬盘空间:至少10GB空闲空间
2.2 和安装
以下是安装 ArcGIS 的步骤:
1、访问 Esri 官方网站并 ArcGIS 安装文件。
2、运行安装文件,并按照提示完成安装向导。
3、在安装过程中,选择您需要安装的组件和功能。
3、ArcMap
3.1 界面介绍
ArcMap 是 ArcGIS 的主要组件之一,它提供了一个交互式的地图编辑和分析环境。
下面是 ArcMap 的主要界面元素:
- 菜单栏:包含各种操作和功能的菜单选项。
- 工具栏:提供了常用工具的快捷方式。
- 目录窗格:显示各个图层和数据框。
- 地图视图:用于显示和编辑地图数据的主要区域。
- 属性表:用于查看和编辑地图图层的属性数据。
3.2 地图创建与编辑
在 ArcMap 中创建和编辑地图的步骤如下:
1、菜单栏中的“文件”,选择“新建地图”。
2、在地图视图中选择合适的数据框范围。
3、添加地图图层,可以从本地文件或远程数据源中导入。
4、使用绘画工具在地图视图中绘制地理要素。
5、调整图层顺序和样式,可以对图层进行符号化操作。
4、地理分析
4.1 空间查询
ArcGIS 通过空间查询功能提供了强大的地理分析能力。
您可以执行以下空间查询操作:
- 属性查询:根据属性条件选择要素。
- 空间查询:根据空间关系选择要素。
- 缓冲区分析:通过指定一定的缓冲区距离来选择要素。
4.2 地理处理
ArcGIS 提供了丰富的地理处理工具,用于执行各种地理数据操作和分析。
以下是常用的地理处理操作:
- 裁剪:根据指定的边界区域裁剪地图数据。
- 合并:将多个图层或要素合并成一个。
- 缓冲区分析:根据指定的缓冲区距离创建缓冲区。
5、数据导入与导出
5.1 数据导入
ArcGIS 支持各种数据源的导入,包括矢量数据、栅格数据和表格数据。
您可以通过以下方式导入数据:
- 添加数据:从本地文件夹或远程数据源中导入数据。
- 导入工具:使用特定的导入工具导入数据。
5.2 数据导出
类似地,ArcGIS 也支持将地理数据导出到其他格式,包括矢量数据、栅格数据和表格数据。
以下是常见的导出方式:
- 导出数据:将地图中的图层导出为独立的数据文件。
- 另存为:将整个地图保存为其他格式,如 PDF 或图像文件。
6、附件
本文档涉及的附件可以通过以下进行:[附件]
7、法律名词及注释
- 地理信息系统(GIS):地理信息系统是指用来收集、存储、管理、处理和展示地理空间数据的系统。
它包括软件、硬件和数据三个方面。
- 矢量数据:矢量数据是由离散点、线或面的几何对象组成的地理数据,用于描述具有明确边界和形状的地理要素。
- 栅格数据:栅格数据是以栅格网的形式组织的地理数据,其中每个单元格包含一个数值或属性值。