现代控制技术基础习题与答案
- 格式:doc
- 大小:496.00 KB
- 文档页数:20
1、我国人民哪些发明属于在经典控制理论萌芽阶段的发明?(AB)A 指南车B 水运仪象台C 指南针D 印刷术2、经典控制理论也可以称为(BD)A 现代控制理论B 自动控制理论C 近代控制理论D 古典控制理论3、以下哪些内容属于现代控制理论基础的内容?(AB)A 李雅普诺夫稳定性理论B 极小值原理C 频率响应法D 根轨迹法4 、传递函数模型假设模型初值不为零。
(✖)5 、传递函数描述的是单输入单输出的外部描述模型。
(✖)6 、线性系统理论属于现代控制理论的知识体系中数学模型部份。
(✔)7 、最优控制理论属于现代控制理论的知识体系中估计方法部份。
(✖)8、控制科学的意义下,现代控制理论主要研究(数学建模)和(控制理论方法) 的科学问题。
9 、现代控制理论在整个控制理论发展中起到了(承上起下)的作用。
10、除了稳定性外,现代控制理论基础还考虑系统(能控性)和(能观测性)两个内部特性。
一、现代控制理论作为一门科学技术,已经得到了广泛的运用。
你还知道现代控制理论具体应用到哪些具体实际的例子么?1、关于输出方程,下列哪些说法是正确的?(BD)A 输出方程中状态变量必须是一阶的B 输出方程中不含输入的任何阶倒数C 输出方程中输入变量可以是任意阶的D 输出方程中不含状态变量的任何阶倒数2、关于系统的动态方程,下列哪些说法是正确的?(AB)A 系统的状态方程的状态变量的个数是惟一的B 系统输出方程的输入输出变量是惟一的C 系统输出方程的输入输出变量是不惟一的D 系统的状态方程的状态变量是惟一的3、对于一个有多个动态方程表示的系统,下列说法正确的是?(AC)A 这些动态方程一定是等价的B 这些动态方程经过线性变化后,不能转化为一个动态方程C 这些动态方程经过线性变化后,可以转化为一个动态方程D 这些动态方程不一定是等价的4、选取的状态向量是线性相关的(✖)5、状态向量的选取是不惟一的(✔)6、状态向量的个数是不惟一的(✖)7、输出方程的选取是不惟一的(✔)8、(系统的输出量与状态变量、输入变量关系的数学表达式)称为输出方程。
《现代控制技术基础》一、单选题1. 自动控制系统按输入量变化与否来分类,可分为( A )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统中信号的特点来分类,可分为( C )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是( C )A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反馈的测量元器件的精度对闭环控制系统的精度影响( B)A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有( A )A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进行比例负反馈,则变为( D )A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是( A )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是( B )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是( D )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是( C )A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)(11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持( C )A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f (t )=0.5t +1,则L [f (t )]=( B )A 、s s 15.02+ B 、s s 1212+C 、25.0sD 、s s +22113. f (t )=2t +1,则L [f (t )]=( B )A 、s s 122+B 、s s 122+C 、22sD 、s s +22114. 通常把反馈信号与偏差信号的拉普拉斯变换式之比,定义为( C )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为( A )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为( B )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为( A )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为( C )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于( D )A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统达到稳态后,稳态响应的期望值与实际值之间的误差,称为(B )A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差范围取2%时,调整时间为( A )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差范围取5%时,调整时间为( B )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的( C )A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为( B )A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(A ) A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(B ) A 、符号改变的次数 B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为( C )A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的( A )A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为( C )A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξωD 、022=++n n s s ωξω30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的( C )A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是( A )A 、1250+sB 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是( C )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是( D )A 、1020+s B 、20500+sC 、11010502++s sD 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为( B )A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是( D )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 下列传递函数中不是..最小相位系统的是( C )A 、1020+s B 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是( D)A 、12100+sB 、5500+sC 、250+s D 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是( B )A 、1220+sB 、20500+sC 、12050+s D 、110+s39. 系统的截止频率愈大,则( B )A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进行频率特性分析时,对系统的输入信号为( B )A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为( A )A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为( B )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有相同幅频特性的情况下,相角变化范围最小的是( C )A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为( B )A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为( A )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=sT s T s G c ,若其为滞后校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 若在系统的前向通路上串联比例-微分(PD )校正装置,可使( A) A 、相位超前 B 、相位滞后C 、相位不变D 、快速性变差48. 硬反馈指的是反馈校正装置的主体是( C )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,若其为超前校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 若在系统的前向通路上串联比例-积分(PI )校正装置,可使( B )A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反馈指的是反馈校正装置的主体是( D )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是( A ) A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分(PI )校正能够改善系统的( C )A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反馈在系统的动态和稳态过程中都起( D )A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反馈校正作用55. PD 校正器又称为( B )A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的( D )A 、左半平面B 、右半平面C 、单位圆外D 、单位圆内57. 采样控制系统中增加的特殊部件是( A )A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆内的正实轴上,则其暂态分量( B )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是( C )A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为( A )A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆内的负实轴上,则其暂态分量( A )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是( A )A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度( B )A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比较满意的暂态响应性能,闭环极点最好分布在( D )A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆内的左半部D 、单位圆内的右半部65. 在工程实际中,为了保证采样过程有足够的精确度,常取ωs 为( C )A 、2~4ωmaxB 、3~5ωmaxC 、5~10ωmaxD 、8~12ωmax66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统( D )A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、内部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为( C )A 、零点B 、开环极点C 、系统特征根D 、各部分分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为( D )A 、全部变量描述法B 、外部描述法C 、线性描述法D 、内部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统( C )A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、内部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说法正确的是( A )A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如图所示系统的微分方程,图中x(t)为输入位移,y(t)为输出位移。
《现代控制系统》《现代控制系统》是一本经典的控制理论教材,由Richard C. Dorf与Robert H. Bishop合著。
本书立足于现代控制系统的基础理论与实际应用,旨在培养控制工程师的专业素养和实践能力。
该书共分为13章,内容涵盖了控制系统的基本概念、数学模型与传递函数、状态空间分析与设计、频域分析与设计等多个方面。
每一章的内容都非常详细,讲解了控制系统的基本原理和相关应用技术。
下面将重点梳理其中的几个章节。
第一章介绍了控制系统的基本概念,包括控制系统的分类、描述和基本组成部分。
作者详细解释了反馈控制系统、前馈控制系统和组合控制系统的原理,并剖析了它们的特点和适用范围。
第二章介绍了数学模型与传递函数的概念。
该章节从线性时不变系统入手,详细介绍了微分方程和差分方程的建模方法,以及系统的传递函数表示。
作者还在此基础上介绍了系统的零极点分析方法,使读者能够更好地理解和分析控制系统。
第三章和第四章分别讲述了控制系统的频域分析和传统经验设计方法。
其中,第三章详细讲解了频域分析的方法,从频率响应、频率特性和稳定性等角度出发,全面分析了控制系统在频域下的性能。
第四章重点介绍了根轨迹法和频域经验规范法,这两种方法是经典控制理论的重要工具,被广泛应用于控制系统的设计与调试。
第六章到第九章则重点讲述了现代控制理论与设计方法。
作者首先介绍了状态空间表达和分析方法,在此基础上讲解了极点配置和状态反馈控制的设计。
同时,还介绍了输出反馈控制技术和模态观测器设计方法,在多变量系统中得到了广泛应用。
除了上述内容外,本书还深入介绍了数字控制系统、随机控制系统、自适应控制系统等新兴领域的相关知识。
每一章都配备了大量的案例和习题,便于读者巩固理论知识,并锻炼解决实际问题的能力。
总结而言,《现代控制系统》是一本系统性强、内容广泛的控制理论教材。
本书既具备基础理论知识的讲解,又注重应用与实践,能够帮助读者全面了解和掌握现代控制系统的原理和方法。
现代电气控制及PLC应用技术习题(第2版)编著:王永华第1章、《电器控制系统常用器件》思考题与练习题1.01、电磁式电器主要由哪几部分组成?各部分的作用是什么?答:电磁式的低压电器。
就其结构而言,大都由三个主要部分组成,即触头、灭弧装置和电磁机构。
触头:触头是一切有触点电器的执行部件。
电器通过触头的动作来接通或断开被控制电路。
触头通常由动、静触点组合而成。
灭弧装置:保护触头系统,降低损伤,提高分断能力,保证电器工作安全可靠。
电磁机构:电磁机构是电磁式低压电器的感测部件,它的作用是将电磁能量转换成机械能量,带动触头动作使之闭合或断开,从而实现电路的接通或分断。
1.02、何谓电磁机构的吸力特性与反力特性?吸力特性与反力特性之间应满足怎样的配合关系?答:电磁机构的工作原理常用吸力特性和反力特性来表征。
吸力特性:电磁机构使衔铁吸合的力与气隙长度的关系曲线称做吸力特性;反力特性:电磁机构使衔铁释放(复位)的力与气隙长度的关系曲线称做反力特性。
电磁机构欲使衔铁吸合,在整个吸合过程中,吸力都必须大于反力。
但也不能过大,否则衔铁吸合时运动速度过大,会产生很大的冲击力,使衔铁与铁芯柱端面造成严重的机械磨损。
此外,过大的冲击力有可能使触点产生弹跳现象,导致触点的熔焊或磨损,降低触点的使用寿命。
反映在特性图上就是要保持吸力特性在反力特性的上方且彼此靠近,如图1-8所示。
1、直流电磁机构吸力特性;2、交流电磁机构吸力特性;3、反力特性;4、剩磁吸力特性1-8吸力特性和反力特性对于直流电磁机构,当切断激磁电流以释放衔铁时,其反力特性必须大于剩磁吸力,才能保证衔铁可靠释放。
1.03、单相交流电磁铁的短路环断裂或脱落后,在工作中会出现什么现象?为什么?答:短路环的作用是把铁芯中的磁通分为两部分,即不穿过短路环的Φ1和穿过短路环的Φ2,Φ2为原磁通与短路环中感生电流产生的磁通的叠加,且相位上也滞后Φ1,电磁机构的吸力F为它们产生的吸力F1、F2的合力。
现代控制技术基础复习题参考答案一、单项选择题1. C2. A3. D4.D5. C6. A7. A8. B9.B 10. C 11.A 12. C 13. D 14.B 15. B16. A 17. B 18. C 19.B 20. C 21. B 22. D 23. A 24. C 25. B 26. C 27. B 28. A 29. C 30. A二、判断改错题1. 正确。
2. 错误,改为:闭环传递函数是输出信号与输入信号的拉普拉斯变换之比。
3. 正确。
4. 错误,改为:0型系统开环对数幅频渐近特性的低频段斜率为0。
5. 正确。
6. 正确。
7. 错误,改为:G1(S)和G2(S)为串联连接则等效后的结构为G1(S)·G2(S)。
8. 错误,改为:系统的稳态误差与输入信号有关。
三、名词解释题1.答:通过对系统输入的操作使得输出达到指定的目标。
2.答:一个稳定的系统对正弦输入信号的稳态响应特性。
3.答:主反馈信号与输出量相等的系统。
4.答:检测系统输出并参与系统控制的元件。
5.答:控制系统在典型输入信号作用下,输出量随时间变化的情况。
6.答:以二阶微分方程或传递函数分母中s的最高次幂为2的系统。
三、简答题1. 答:画框图及标出各环节2. 答:暂态响应;稳态响应。
3. 答:系统闭环特征方程的全部根必须都位于s平面左半部;或者全部闭环特征根具有负实部。
4. 答:对被控对象的数学模型要求不高;调节方便;适用面广。
5. 答:系统极点实部为正实数根的数目等于劳斯表中第一列的系数符号改变的次数,系统稳定的充分必要条件是特征方程各项系数全部为正值,并且劳斯表的第一列都为正。
6. 答:离散系统所有闭环极点均分布在z 平面上以原点为圆心的单位圆内。
或离散系统所有特征根的模均小于1。
五. 计算题1. 解:列出劳斯表:3s 1 5 2s 6 K1s630K- 0s K根据劳斯判据有:0,030>>-K K , 所以有030>>K 。
现代控制技术根底?一、单项选择题1. 自动控制系统按输入量变化与否来分类,可分为〔A 〕A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统号的特点来分类,可分为〔C 〕A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是〔C 〕A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反应的测量元器件的精度对闭环控制系统的精度影响〔B 〕A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有〔A 〕A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进展比例负反应,则变为〔D 〕A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是〔A 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是〔B 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是〔D 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是〔C 〕A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)( 11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持〔C 〕A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f 〔t 〕=0.5t +1,则L [f 〔t 〕]=〔B 〕A 、s s 15.02+B 、s s1212+ C 、25.0s D 、s s +221 13. f 〔t 〕=2t +1,则L [f 〔t 〕]=〔B 〕A 、s s 122+B 、s s122+ C 、22s D 、s s +221 14. 通常把反应信号与偏差信号的拉普拉斯变换式之比,定义为〔C 〕A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为〔A 〕A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为〔B 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为〔A 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为〔C 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于〔D 〕A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统到达稳态后,稳态响应的期望值与实际值之间的误差,称为〔B 〕A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差围取2%时,调整时间为〔A 〕A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差围取5%时,调整时间为〔B 〕A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的〔C 〕A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为〔B 〕A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素〔A 〕A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素〔B 〕A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为〔C 〕A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的〔A 〕A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为〔C 〕A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξω D 、022=++n n s s ωξω 30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的〔C 〕A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是〔A 〕A 、1250+sB 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是〔C 〕A 、4040+ωjB 、)40(40+ωωj jC 、)101.0(40+ωωj j D 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是〔D 〕A 、1020+s B 、20500+sC 、11010502++s s D 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为〔B 〕A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是〔D 〕A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 以下传递函数中不是..最小相位系统的是〔C 〕A 、1020+sB 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是〔D 〕A 、12100+s B 、5500+sC 、250+sD 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是〔B 〕A 、1220+s B 、20500+sC 、12050+sD 、110+s 39. 系统的截止频率愈大,则〔B 〕A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进展频率特性分析时,对系统的输入信号为〔B 〕A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为〔A 〕A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为〔B 〕A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有一样幅频特性的情况下,相角变化围最小的是〔C 〕A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为〔B 〕A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为〔A 〕A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=s T s T s G c ,假设其为滞后校正,则应该〔B 〕 A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 假设在系统的前向通路上串联比例-微分〔PD 〕校正装置,可使〔A 〕A 、相位超前B 、相位滞后C 、相位不变D 、快速性变差48. 硬反应指的是反应校正装置的主体是〔C 〕A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,假设其为超前校正,则应该〔B 〕 A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 假设在系统的前向通路上串联比例-积分〔PI 〕校正装置,可使〔B 〕A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反应指的是反应校正装置的主体是〔D 〕A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是〔A 〕 A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分〔PI 〕校正能够改善系统的〔C 〕A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反应在系统的动态和稳态过程中都起〔D 〕A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反应校正作用55. PD 校正器又称为〔B 〕A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的〔D 〕A 、左半平面B 、右半平面C 、单位圆外D 、单位圆57. 采样控制系统中增加的特殊部件是〔A 〕A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆的正实轴上,则其暂态分量〔B 〕A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是〔C 〕A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为〔A 〕A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆的负实轴上,则其暂态分量〔A 〕A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是〔A 〕A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度〔B 〕A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比拟满意的暂态响应性能,闭环极点最好分布在〔D 〕A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆的左半部D 、单位圆的右半部65. 在工程实际中,为了保证采样过程有足够的准确度,常取ωs 为〔C 〕A 、2~4ωma*B 、3~5ωma*C 、5~10ωma*D 、8~12ωma*66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统〔D 〕A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为〔C 〕A 、零点B 、开环极点C 、系统特征根D 、各局部分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为〔D 〕A 、全部变量描述法B 、外部描述法C 、线性描述法D 、部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的〔B 〕A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统〔C 〕A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的〔B 〕A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说确的是〔A 〕A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如下图系统的微分方程,图中*(t)为输入位移,y(t)为输出位移。
现代控制理论刘豹课后习题答案现代控制理论刘豹课后习题答案现代控制理论是控制工程中的重要学科,它研究了如何通过数学模型和控制算法来实现对系统的稳定性、响应速度和鲁棒性等性能指标的优化。
刘豹是现代控制理论领域的著名学者,他的课后习题是学习该学科的重要组成部分。
本文将为大家提供一些现代控制理论刘豹课后习题的答案,希望能帮助读者更好地理解和掌握这门学科。
1. 请简述现代控制理论的基本概念和主要内容。
现代控制理论是在传统控制理论的基础上发展起来的,它采用了更加先进的数学模型和控制算法,旨在提高系统的控制性能。
其基本概念包括状态空间模型、传递函数和控制器设计等。
主要内容包括系统建模、系统分析和系统设计等方面。
2. 什么是状态空间模型?请简要介绍其基本形式和特点。
状态空间模型是现代控制理论中常用的一种数学模型,它通过描述系统的状态变量和输入输出关系来表示系统的动态行为。
其基本形式为:x(t+1) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)为系统的状态向量,u(t)为系统的输入向量,y(t)为系统的输出向量,A、B、C和D为系统的参数矩阵。
状态空间模型具有直观、灵活和适用于复杂系统的特点。
3. 请简述传递函数的定义和性质。
传递函数是描述系统输入输出关系的一种数学表达式,它是输出变量与输入变量的比值。
传递函数的定义为:G(s) = Y(s) / U(s)其中,G(s)为传递函数,Y(s)为系统的输出变量的拉普拉斯变换,U(s)为系统的输入变量的拉普拉斯变换。
传递函数具有线性、时不变和因果性等性质。
4. 请简述控制器设计的基本原则和方法。
控制器设计的基本原则是通过调节系统的输入信号来实现对系统的稳定性和性能的优化。
常用的控制器设计方法包括比例控制、积分控制和微分控制等。
其中,比例控制通过调节输入信号与误差之间的比例关系来实现对系统的稳定性和响应速度的调节;积分控制通过调节输入信号与误差的积分关系来消除系统的稳态误差;微分控制通过调节输入信号与误差的微分关系来提高系统的响应速度和鲁棒性。
四川省2012年10月高等教冇门学考试现代控制技术基础试卷(课程代码03206)本试卷共贡.满分分!考试时间分钟.一.单项选择fi (本大K 共20小題,每小題1分・共20分) 衽每小题列出的四个备选项中只有一个是睜合題目姜求的, ««其代码填写在題后的括号内.《选、多选或未选均无分.1. 形甌怏的测W 元、器件的帖度对闭环控制系统的粘度影响A. ?!「•零 C.很小2. 门动控制系统需耍分析的问题上耍仃A.稳定性、吃态响应、背态响应 C.总定件、快速件、fill;3. / (/)=力4|.刚上|/") 1=A ・ 0.55=+-5B. }iiA-【)•吋W 忽略B.快速件.连级:件•常态响应 D.准确件・tiil >稳态响应C. 0・5”D ・ _ + S2f4. 微分环W 的传递諂数圧A.伽 C. G(M7(ru5. 通第把输;川;;兮A/偏签倍号的抑淬拉斯空瓠?式ZL 匕定义为D ・ 伽KG($) •A.询向通道传递幣& R.闭环传递曲数C.幵坏U •递旳数D.祝苏传递函数 6. 单.位斜坡C :号的拉氏变换为A ・ II 1(/)1= IAC Zlz- I")卜血B ・歸叭”円 D.15・ 对••阶系统当Ov/v 1时・梵力I1A.过阳尼系统 B 欠阻尼系统C ・零阻尼系统D. 牆界阴尼系统根《5芳斯憶定刘据.系统n 仃疋实部极点的个数应等丁唠斯我中第1列元索rA.符号A 变的次数 B, 为负ffi 的个数1JC-为正值的个数D 为*的次《们徳国低频段渐近线丿亡20dB 的水平n 线. 传递曲数是[J100500A. ----------B-2x1$+5d 5010C.—— 0.■? + 2 £+10)=20 rad/s 处・相角滞病45。
的传递函数址 I120500A, -------B.25+1 5+205010C. -------- !>20v + 1 A-+1系统的截止倾率竝大,則[1A.对ffl 频咙声滤除性能愈好B. 1:开时间虫小C.快速性愆茶D. 直态茶愈小fe 止装?i 的传递函数是° Z •该校止是(10.0k+1A.比例锻分校直B. 近似比例积分微分校止C.比例枳分校止|》・比例枳分微分校止比例一枳分<pn 校止睫^^改善系统的[1A.快速性B. 动态性能C.椅态性葩D. IH 对税定性峽反饿在系统的动态和稳态过榨中都起I]A.趙询校疋作川D. 滞斤校lEfUljC.滞后一趙河fell 出用 D ・反锻校疋作川单位脉冲函数的Z 变换是[IA ・1B ・1 S4*Z-IC. *DZ- 127. 8. 9. 10. IL 13. 14. 2四川自考 wMfw. tfiikao. coft复ts 总分24.25- 刪矽械卷瞬的忆坏脉冲传逆函数的扱点匹Z 平® M 标廉点越近•则克碱速度A.越煨B ・赵快 C.变化越囊 D.变化越快17为了使采样控制系统乩有比牧済S 的暂念响应性能・闭坏楼点绘好分布在19. 能观标准S 的锭出矩阵是能控标推空控制矩殊的\对称矩:阵B.逆薜 U 痕I 〉.单他莓 20. 线性定常系统状态完仝能规的充分和必要条件思,R 能观性矩阵的A.行数为HB.秩为《C.列数为"D •行列成值为并二 多项选择题(本大题共5小题,每小题2分.共10分) 衽毎小題列出的五个备选项中至少有两个a 符合题目要求 轨 请将其代码填写在题后的捂号内.错选、多选.少选 或未选均无分,用状态模型描述控制系绫时,会选乳的M 题是 A. ^21定性B.快速性 D. ff&观性E.准确性2单位関外的左宇部C.单位10内的左孑部 IX 系统状态变堆的个致等P 系统A-全祁变柚的个数C.独*变址的个数ir !D. 单付関夕'的右丫部单付脚内的右•丫部 外讯变垃的个数内部变a 的个数 21. 0立口动控制系统的数啓模別的方法有 A.疑小•乘法B-机浬分析法 □.微小強#法E.干扰分析広22. -阶系统抜照阻尼比的不同戟值分为A.等阴尼状态 D ・临男阻尼状态 常用的馥域性旋指标右A.蔵止频率和带邀D.軒損赖率反協校止的主2?方式有A.比例税分校lE D ・无源校疋C.实验辨识法23. B. E. B,欠祖尼状态 零爼尼状态 [C-过:爼尼状态C.B.比例5®枝也 E ・仃裸检疋C. 微分反饺校止C. 能控性三、简答题(本大题共3小题,每小题6分,共18分)26.什么是系统的传逆凶数?系统的传递函数和输入信号令无关系?27.面述线件系统稳定的充分必要条件。
《现代控制技术基础》一、单选题1. 自动控制系统按输入量变化与否来分类,可分为( A )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统中信号的特点来分类,可分为( C )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是( C )A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反馈的测量元器件的精度对闭环控制系统的精度影响( B)A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有( A )A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进行比例负反馈,则变为( D )A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是( A )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是( B )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是( D )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是( C )A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)(11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持( C )A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f (t )=0.5t +1,则L [f (t )]=( B )A 、s s 15.02+ B 、s s 1212+C 、25.0sD 、s s +22113. f (t )=2t +1,则L [f (t )]=( B )A 、s s 122+B 、s s 122+C 、22sD 、s s +22114. 通常把反馈信号与偏差信号的拉普拉斯变换式之比,定义为( C )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为( A )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为( B )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为( A )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为( C )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于( D )A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统达到稳态后,稳态响应的期望值与实际值之间的误差,称为(B )A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差范围取2%时,调整时间为( A )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差范围取5%时,调整时间为( B )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的( C )A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为( B )A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(A ) A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(B )A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为( C )A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的( A )A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为( C )A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξωD 、022=++n n s s ωξω30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的( C )A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是( A )A 、1250+s B 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是( C )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是( D )A 、1020+s B 、20500+sC 、11010502++s s D 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为( B )A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是( D )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 下列传递函数中不是..最小相位系统的是( C )A 、1020+s B 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是( D) A 、12100+s B 、5500+sC 、250+s D 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是( B )A 、1220+s B 、20500+sC 、12050+s D 、110+s39. 系统的截止频率愈大,则( B )A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进行频率特性分析时,对系统的输入信号为( B )A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为( A )A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为( B )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有相同幅频特性的情况下,相角变化范围最小的是( C )A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为( B )A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为( A )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=s T s T s G c ,若其为滞后校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 若在系统的前向通路上串联比例-微分(PD )校正装置,可使( A) A 、相位超前 B 、相位滞后C 、相位不变D 、快速性变差48. 硬反馈指的是反馈校正装置的主体是( C )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,若其为超前校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 若在系统的前向通路上串联比例-积分(PI )校正装置,可使( B )A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反馈指的是反馈校正装置的主体是( D )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是( A ) A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分(PI )校正能够改善系统的( C )A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反馈在系统的动态和稳态过程中都起( D )A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反馈校正作用55. PD 校正器又称为( B )A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的( D )A 、左半平面B 、右半平面C 、单位圆外D 、单位圆内57. 采样控制系统中增加的特殊部件是( A )A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆内的正实轴上,则其暂态分量( B )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是( C )A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为( A )A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆内的负实轴上,则其暂态分量( A )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是( A )A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度( B )A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比较满意的暂态响应性能,闭环极点最好分布在( D )A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆内的左半部D 、单位圆内的右半部65. 在工程实际中,为了保证采样过程有足够的精确度,常取ωs 为( C )A 、2~4ωmaxB 、3~5ωmaxC 、5~10ωmaxD 、8~12ωmax66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统( D )A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、内部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为( C )A 、零点B 、开环极点C 、系统特征根D 、各部分分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为( D )A 、全部变量描述法B 、外部描述法C 、线性描述法D 、内部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统( C )A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、内部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说法正确的是( A )A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如图所示系统的微分方程,图中x(t)为输入位移,y(t)为输出位移。