06第六章 三角函数【讲义】
- 格式:doc
- 大小:404.50 KB
- 文档页数:9
三角函数复习讲义知识要点:一、角的概念与推广:任意角的概念;角限角、终边相同的角; 二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α 的的正切线、正弦线、余弦线。
三、同角三角函数关系:即:平方关系、商数关系、倒数关系。
四、诱导公式:()ααπf n f '±=⎪⎭⎫⎝⎛±2 记忆:单变双不变,符号看象限。
单双:即看πn 中的n 是2π的单倍还是双倍,单倍后面三角函数名变,双不变则三角函数名不变;符号看象限:即把α看成锐角,加上2πn 终边落在第几象限则是第几象限角的符号。
五、有关三角函数单调区间的确定、最小正周期、奇偶性、对称性以及比较三角函数值的大小问题,一般先化简成单角三角函数式。
然后再求解。
六、三角函数的求值、化简、证明问题常用的方法技巧有:1、常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+= 2、配角方法:ββαα-+=)( ()βαβαα-++=)(2 22βαβαβ--+=3、降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
4、()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1c o s s i n ≥+x x6、常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bc C ab S sin 21sin 21sin 21=== (3)、S = 七、三角函图象和性质:(1)正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换象关于轴对称在区间在区间在区间在区间考点一: 求三角函数的定义域、值域和最值、三角函数的性质(包括奇偶性、单调性、周期性)这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换及三角函数的基础知识。
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
知识总结一、角的概念的推广1.角的定义(1)一条射线由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.(2)“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角.第一象限角:{α|k360o π<α<k360o +90o ,k ∈Z }第二象限角:{α|k360o +90o <α<k360o +180o ,k ∈Z }第三象限角:{α|k360o +180o <α<k360o +270o ,k ∈Z }第四象限角:{α|k360o +270o <α<k360o +360o ,k ∈Z }角的终边落在坐标轴上,则此角不属于任何一个象限。
3.终边相同的角所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意以下四点:(1)Z k ∈(2) α是任意角;(3)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二、弧度1、定义用“弧度”做单位来度量角的制度叫做弧度制。
1弧度的角指的是弧长与半径相等的圆弧所对应的圆心角,记作1rad 。
⑴平角=π rad 、周角=2π rad⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶圆心角α的弧度数的绝对值r l =α(l 为弧长,r 为半径) 2.角度制与弧度制的换算:360︒=2πrad180︒=π rad1︒=rad rad 017453.0180≈π 8.447157)180(1'''︒≈︒=πrad 3.两个公式(1)弧长公式:α⋅=r l 180r n l π= 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积(2)扇形面积公式lR S 21=3602R n S π=扇 其中l 是扇形弧长,R 是圆的半径3、任意角的三角函数有向线段MP 为正弦线 有向线段OM 为余弦线有向线段AT 为正切线四、三角函数的基本关系1、平方关系:sin2α+cos2α=1;2、商数关系:五、三角函数的诱导公式口诀:奇变偶不变,正负看象限例题题型一角的集合表示及象限角的判定【例1】(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【例2】已知点P(sin 5π4,cos3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( ) A.一B.二C.三 D.四题型二三角函数的定义【例3】已知角θ的终边上有一点P(x,-1)(x≠0),且tan θ=-x,求sin θ,cos θ.【例4】已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则cos 2θ=().A.-45B.-35C.35D.45三、弧度制的应用【例5】4已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是()A.1或4 B.1C.4 D.8【例6】已知半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.四、三角函数线及其应用【例7】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:(1)sin α≥32;(2)cos α≤-12.【例8】求下列函数的定义域:(1)y=2cos x-1;(2)y=lg(3-4sin2x).题型五、利用诱导公式化简、求值【例9】已知tanθ=2,则sin(π2+θ)-cos(π-θ)sin(π2-θ)-sin(π-θ)=()A. 2B. -2C. 0D. 2 3【例10】已知角α终边上一点P(-4,3),则cos⎝⎛⎭⎪⎫π2+αsin(-π-α)cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α的值为________.题型六、同角三角函数关系的应用【例10】已知tan α=2.求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin2α-3sin αcos α-5cos2α.题型七三角形中的诱导公式【例11】在△ABC中,sin A+cos A=2,3cos A=-2cos(π-B),求△ABC 的三个内角.若将例11的已知条件“sin A+cos A=2”改为“sin(2π-A)=-2sin(π-B)”其余条件不变,求△ABC的三个内角.课下作业一、选择题1.若α=k ·180°+45°(k ∈Z ),则α在().A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限2.下列与9π4的终边相同的角的表达式中正确的是( ).A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )3.已知角α的终边过点(-1,2),则cos α的值为( ).A .-55B.255C .-255 D .-124.若sin α<0且tan α>0,则α是( ).A .第一象限角B .第二象限角C .第三象限角D .第四象限角5.点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ).A .第一象限B .第二象限C .第三象限D .第四象限6.已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12C.32 D .±327.若cos α=13,α∈(-π2,0),则tan α等于 ( )A. -24B. 24C. -22D. 2 28.cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是( ). A. 2 B .- 2 C .0 D.22二、填空题9.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________10.若sin θ=-45,tan θ>0,则cos θ=________.11.在直径为10 cm 的轮上有一长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为________.三、计算题12、已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.13、已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.14、若sin θ,cos θ是关于x的方程5x2-x+a=0(a是常数)的两根,θ∈(0,π),求cos 2θ的值.15、已知sin θ+cos θ=713,θ∈(0,π),求tan θ.。
三角函数讲义任意角的三角函数及同角三角函数的关系知识点知识点一三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 知识点二正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .作用:可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.体现了三角函数的周期性。
知识点四三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R且x ≠k π+π2,k ∈Z }.知识点五三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .知识点六同角三角函数的基本关系1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ). 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一三角函数定义的应用【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;2.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .5题型二三角函数符号的判断【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【例2】若tan x <0,且sin x -cos x <0,则角x 的终边在() A .第一象限 B .第二象限C .第三象限D .第四象限【过关练习】1.若sin θ<0且tan θ<0,则θ是第象限的角.2.使得lg(cos αtan α)有意义的角α是第象限角.题型三诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin -11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan -15π4;(2)sin 810°+tan 765°-cos 360°.2.sin(-1 380°)的值为( )A .-12 B.12 C .-32D.323.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四利用三角函数线求角、解不等式【例1】根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1) sin θ≥32;(2)-12≤cos θ<32.【例3】当α∈0,π2时,求证:sin α<α<="">【过关练习】1.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<="" αB .tan α<="" αC .si n α<="" αD .cos α<="" α2.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.0,π6 B.π6,5π6 C.π6,2π3D.5π6,π题型五求三角函数定义域【例1】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1. 求函数f (x )=1-2cos x +lnsin x -22的定义域.2.函数y =tanx -π3的定义域为( ) A.x |x ≠π3,x ∈R B.?x |x ≠k π+π6,k ∈Z C.x |x ≠k π+5π6,k ∈Z D.x |x ≠k π-5π6,k ∈Z题型六三角函数知一求二【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.35题型七三角函数平方关系及其应用【例1】已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【例2】已知sin α+cos α=m ,求sin 3α+cos 3α的值.【过关练习】1.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cosA -7的值.3.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43 题型八三角函数的化简证明【例1】已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.【例2】证明三角恒等式cos α1-sin α=1+sin αcos α【例3】已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b 2n 2=1.【过关练习】1.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.2.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.3.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.4.函数y =lg cos x 的定义域为________________.5.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.6.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.【巩固练习】1.已知角α的终边上一点的坐标为?sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π62.如果3π4<θ<π,那么下列各式中正确的是( ) A .co s θ<="" θB .sin θ<="" θC .tan θ<="" θD .cos θ<="" θ3.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π) 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3105.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为.6.函数f (x )=cos 2x -sin 2x 的定义域为________________.7.化简sin 2β+cos 4β+sin 2βcos 2β的结果是.8.已知sin α=15,求cos α,tan α.9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan-23π4;(3)sin (cos θ)cos (sin θ)(θ为第二象限角).10.求证:tan θ·sin θtan θ-si n θ=1+cos θsin θ.【拔高练习】1.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-34π<="">π,k ∈Z } B .{x |2k π+π4<="">π,k ∈Z } C .{x |k π-π4<="">,k ∈Z } D .{x |k π+π4<="">π,k ∈Z } 2.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .3.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是. 4.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为. 5.在△ABC 中,2sin A = 3cos A ,则角A = .6.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.7.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).8.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;。
板块一 基础知识一、锐角三角函数的定义1. 锐角A 的正弦、余弦、正切、余切都叫做A ∠的锐角三角函数.2. 正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a A c =.3. 余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =.4. 正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =.5. 余切:Rt ABC ∆中,锐角A 的邻边与对边的比叫做A ∠的余切,记作cot A ,即cot b A a=. 从定义中可以看出,① 正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 、cot A 分别是正弦、余弦、正切、余切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 、cot 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切、余切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数这些特殊角的三角函数值一定要牢牢记住.三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又s i n a A c =,cos b A c =,tan a A b =,cot b A a=,所以0sin 10cos 1tan 0cot 0A A A A <<<<>>,,,.四、三角函数关系1. 同角三角函数关系:三角函数 0︒ 30︒ 45︒ 60︒ 90︒ sin A 0 12 22 321 cos A 1 32 2212 0 tan A 0 331 3 - cot A - 3 1 330 例题精讲三角函数22sin cos 1A A +=,sin tan cos AA A=,tan cot 1A A ⋅= 2. 互余角三角函数关系:⑴ 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-; ⑵ 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; ⑶ 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-;⑷ 任意锐角的余切值等于它的余角的正切值:()cot tan 90A A =︒-.3. 锐角三角函数值的变化规律: 令1c =,锐角A ∠越小,则a 越小,则b 越大;当A ∠越大,则a 就越大,b 就越小,且a c b c <<,,所以当角度在0~90︒︒范围内变化时,正弦值随角度的增大(或减小)而增大(或减小);余弦值随角度的增大(或减小)而减小(或增大).而正切值也是随角度的增大(或减小)而增大(或减小);余切值随角度的增大(或减小)而减小(或增大).可以应用0~90︒︒间的正弦值、余弦值、正切值、余切值的增减性来比较角的正弦、余弦、正切、余切值的大小,其规律是:⑴A B 、为锐角且A B >,则sin sin A B >,cos cos A B <,tan tan A B >,cot cot A B <;⑵A B 、为锐角且A B <,则s in s in A B <,cos cos A B >,tan tan A B <,cot cot A B >.该规律反过来也成立.板块二 常用公式1. 和角公式:cos()cos cos sin sin αβαβαβ+=-,sin()sin cos cos sin αβαβαβ+=+,tan tan tan()1tan tan αβαβαβ++=-⋅;2. 差角公式:cos()cos cos sin sin αβαβαβ-=+,sin()sin cos cos sin αβαβαβ-=-,tan tan tan()1tan tan αβαβαβ--=+⋅;3. 倍角公式:2222cos2cos sin 2cos 112sin ααααα=-=-=-,sin22sin cos ααα=,22tan tan 21tan ααα=-;4. 半角公式:21cos cos 22αα+=,21cos sin 22αα-=,sin 1cos tan 21cos sin ααααα-==+; 5. 万能公式:22tan2sin 1tan 2ααα=+,221tan 2cos 1tan 2ααα-=+,22tan2tan 1tan 2ααα=-;6. 积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-,1cos sin [sin()sin()]2αβαβαβ=+--,1sin cos [sin()sin()]2αβαβαβ=++-,1sin sin [cos()cos()]2αβαβαβ=-+--.7. 和差化积公式:cos cos 2cos cos22αβαβαβ+-+=,cos cos 2sin sin22αβαβαβ+--=-,sin sin 2sin cos22αβαβαβ+-+=,sin sin 2cossin22αβαβαβ+--=.板块一、三角函数基础【例1】 已知如图:在Rt ABC ∆中,810BC AC ==,.求sin A 和sin B 的值。
三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。
正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
专题16 三角函数的概念及诱导公式知识点一、同角三角函数的基本关系 (1)知识点二、三角函数的诱导公式 (1)知识点三、有关三角函数的常用结论 (2)题型01:同角三角函数的基本关系式 (2)题型02:sinα±cosα与sinαcosα的关系及应用 (6)题型03:利用诱导公式化简求值 (10)题型04:同角三角函数基本关系式、诱导公式的综合应用 (13)知识点一、同角三角函数的基本关系(1)平方关系:sin2x+cos2x=1.(2)商数关系:tan x=sin xcos x⎝⎛⎭⎪⎫其中x≠kπ+π2,k∈Z.知识点二、三角函数的诱导公式组数一二三四五六角α+2kπ(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sin_α-sin_αsin_αcos_αcos_α余弦cos α-cos_αcos_α-cos_αsin_α-sin_α正切tan αtan_α-tan_α-tan_α知识点三、有关三角函数的常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.题型01:同角三角函数的基本关系式【规律方法】1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法” (1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin c sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解.【典例1】(1)(2021·镇原中学高一期末)若1sin 2α=,π(,π)2α∈,则cos α= 。
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。
单调区间:在区间⎥⎦⎤⎢⎣⎡+-22,22ππππk k 上为增函数,在区间⎥⎦⎤⎢⎣⎡++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2π时, y取最小值-1。
对称性:直线x =k π+2π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。
这里k ∈Z .定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。
单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。
最小正周期为2π。
奇偶性:偶函数。
对称性:直线x =k π均为其对称轴,点⎪⎭⎫⎝⎛+0,2ππk 均为其对称中心。
有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。
值域为[-1,1]。
这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π,0)均为其对称中心。
定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)=.)tan tan 1()tan (tan βαβα ±定理7 和差化积与积化和差公式:s in α+s in β=2s in ⎪⎭⎫⎝⎛+2βαco s ⎪⎭⎫ ⎝⎛-2βα,s in α-s in β=2s in ⎪⎭⎫ ⎝⎛+2βαco s ⎪⎭⎫⎝⎛-2βα,co s α+co s β=2co s ⎪⎭⎫ ⎝⎛+2βαco s ⎪⎭⎫ ⎝⎛-2βα, co s α-co s β=-2s in ⎪⎭⎫ ⎝⎛+2βαs in ⎪⎭⎫⎝⎛-2βα,s in αco s β=21[s in (α+β)+s in (α-β)],co s αs in β=21[s in (α+β)-s in (α-β)],co s αco s β=21[co s(α+β)+co s(α-β)],s in αs in β=-21[co s(α+β)-co s(α-β)].定理8 倍角公式:s in 2α=2s in αco s α, co s2α=co s 2α-s in 2α=2co s 2α-1=1-2s in 2α,tan 2α=.)tan 1(tan 22αα- 定理9 半角公式:s in ⎪⎭⎫ ⎝⎛2α=2)cos 1(α-±,co s ⎪⎭⎫⎝⎛2α=2)cos 1(α+±, tan ⎪⎭⎫⎝⎛2α=)cos 1()cos 1(αα+-±=.sin )cos 1()cos 1(sin αααα-=+定理10 万能公式: ⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=2tan 12tan 2sin 2ααα, ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=2tan 12tan 1cos 22ααα, .2tan 12tan 2tan 2⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=ααα定理11 辅助角公式:如果a , b 是实数且a 2+b 2≠0,则取始边在x 轴正半轴,终边经过点(a ,b )的一个角为β,则s in β=22ba b +,co s β=22ba a+,对任意的角α.a s in α+bco s α=)(22b a +s in (α+β).定理12 正弦定理:在任意△ABC 中有R CcB b A a 2sin sin sin ===,其中a , b , c 分别是角A ,B ,C 的对边,R 为△ABC 外接圆半径。
定理13 余弦定理:在任意△ABC 中有a 2=b 2+c 2-2bco s A ,其中a ,b ,c 分别是角A ,B ,C 的对边。
定理14 图象之间的关系:y =s inx 的图象经上下平移得y =s inx +k 的图象;经左右平移得y =s in (x +ϕ)的图象(相位变换);纵坐标不变,横坐标变为原来的ω1,得到y =s in x ω(0>ω)的图象(周期变换);横坐标不变,纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +ϕ)(ω>0)的图象(周期变换);横坐标不变,纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +ϕ)(ω, ϕ>0)(|A |叫作振幅)的图象向右平移ωϕ个单位得到y =A s in ωx 的图象。
定义4 函数y =s inx ⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∈2,2ππx 的反函数叫反正弦函数,记作y =a r c s inx (x ∈[-1, 1]),函数y =co s x (x ∈[0, π]) 的反函数叫反余弦函数,记作y =a r cco s x (x ∈[-1, 1]). 函数y =tanx ⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∈2,2ππx 的反函数叫反正切函数。
记作y =a r ctanx (x ∈[-∞, +∞]). y =co s x (x ∈[0, π])的反函数称为反余切函数,记作y =a r ccotx (x ∈[-∞, +∞]). 定理15 三角方程的解集,如果a ∈(-1,1),方程s inx =a 的解集是{x |x =n π+(-1)n a r c s ina , n ∈Z }。
方程co s x =a 的解集是{x |x =2kx ±a r cco s a , k ∈Z }. 如果a ∈R ,方程tanx =a 的解集是{x |x =k π+a r ctana , k ∈Z }。
恒等式:a r c s ina +a r cco s a =2π;a r ctana +a r ccota =2π. 定理16 若⎪⎭⎫⎝⎛∈2,0πx ,则s inx <x <tanx . 二、方法与例题 1.结合图象解题。
例1 求方程s inx =lg |x |的解的个数。
2.三角函数性质的应用。
例2 设x ∈(0, π), 试比较co s(s inx )与s in (co s x )的大小。
例3 已知α,β为锐角,且x ·(α+β-2π)>0,求证:.2sin cos sin cos <⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛xxαββα注:以上两例用到了三角函数的单调性和有界性及辅助角公式,值得注意的是角的讨论。
3.最小正周期的确定。
例4 求函数y =s in (2co s|x |)的最小正周期。
4.三角最值问题。
例5 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。
例6 设0<θ<π,求s in)cos 1(2θθ+的最大值。
例7 若A ,B ,C 为△ABC 三个内角,试求s inA +s inB +s inC 的最大值。
注:三角函数的有界性、|s inx |≤1、|co s x |≤1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。
例8 求xx xx y cos sin 1cos sin ++=的值域。
例9 已知a 0=1, a n =11121---+n n a a (n ∈N +),求证:a n >22+n π.注:换元法的关键是保持换元前后变量取值范围的一致性。
另外当x ∈⎪⎭⎫⎝⎛2,0π时,有tanx >x >s inx ,这是个熟知的结论,暂时不证明,学完导数后,证明是很容易的。
6.图象变换:y =s inx (x ∈R )与y =A s in (ωx +ϕ)(A , ω, ϕ>0).由y =s inx 的图象向左平移ϕ个单位,然后保持横坐标不变,纵坐标变为原来的A 倍,然后再保持纵坐标不变,横坐标变为原来的ω1,得到y =A s in (ωx +ϕ)的图象;也可以由y =s inx的图象先保持横坐标不变,纵坐标变为原来的A 倍,再保持纵坐标不变,横坐标变为原来的ω1,最后向左平移ωϕ个单位,得到y =A s in (ωx +ϕ)的图象。