金属表面纳米化
- 格式:doc
- 大小:25.00 KB
- 文档页数:10
表面自纳米化摘要:一、表面自纳米化简介1.概念解释2.表面自纳米化的方法二、表面自纳米化的优势1.提高材料性能2.增加材料表面积3.改善材料表面黏附性三、表面自纳米化在实际应用中的案例1.金属材料的表面自纳米化2.陶瓷材料的表面自纳米化3.聚合物材料的表面自纳米化四、表面自纳米化的前景与挑战1.技术发展前景2.目前面临的挑战正文:表面自纳米化是一种通过表面处理技术,使材料表面形成纳米级结构的过程。
在这个过程中,材料的表面通过特殊的处理方法,如化学刻蚀、物理磨损等,形成具有高度有序的纳米级结构。
这种结构不仅可以提高材料的性能,还可以增加材料的表面积,改善材料表面的黏附性,因此在材料科学和工程领域具有广泛的应用。
表面自纳米化的方法主要包括化学刻蚀法、物理磨损法、电化学法等。
其中,化学刻蚀法是通过化学反应将材料表面逐渐蚀刻成纳米结构;物理磨损法是通过机械磨损或溅射等方法使材料表面形成纳米级结构;电化学法则是在电化学过程中使材料表面发生形变,形成纳米级结构。
表面自纳米化技术可以显著提高材料的性能。
例如,金属材料的硬度、耐磨性、抗疲劳性等性能可以得到显著提高;陶瓷材料的抗磨损、抗腐蚀性能也会得到很大的提升;聚合物材料的黏附性、抗氧化性等方面也会得到改善。
在实际应用中,表面自纳米化技术已经成功应用于金属、陶瓷、聚合物等多种材料。
例如,对金属材料的表面自纳米化处理可以提高其抗磨损性能,增加其使用寿命;对陶瓷材料进行表面自纳米化处理,可以提高其抗磨损、抗腐蚀性能,扩大其应用领域;对聚合物材料进行表面自纳米化处理,可以改善其黏附性,提高其与其它材料的结合性能。
然而,表面自纳米化技术目前还面临一些挑战,如处理过程中对环境的影响、纳米结构的稳定性、处理效果的可控性等。
表面技术第53卷第4期金属材料表面纳米化研究与进展杨庆,徐文文,周伟,刘璐华,赖朝彬*(江西理工大学 材料冶金化学学部,江西 赣州 341000)摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。
研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。
金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。
根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。
最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。
关键词:金属材料;表面纳米化;梯度纳米结构;纳米化机理;表面性能中图分类号:TG178 文献标志码:A 文章编号:1001-3660(2024)04-0020-14DOI:10.16490/ki.issn.1001-3660.2024.04.002Research and Progress on Surface Nanocrystallizationof Metallic MaterialsYANG Qing, XU Wenwen, ZHOU Wei, LIU Luhua, LAI Chaobin*(Department of Materials Metallurgy and Chemistry, Jiangxi University ofTechnology, Jiangxi Ganzhou 341000, China)ABSTRACT: It is well known that the failure of most metallic materials starts from their surfaces, which in turn affects the overall performance of the whole material. Numerous studies have shown that the preparation of nanocrystals on the surface of metallic materials, i.e., surface nanosizing, can enhance the surface properties of materials and extend their service life. Surface nanosizing of metallic materials makes use of repeated violent plastic deformation to make the surface coarse grains gradually收稿日期:2023-02-23;修订日期:2023-06-29Received:2023-02-23;Revised:2023-06-29基金项目:国家自然科学基金项目(52174316,51974139);国家重点研发计划项目(2022YFC2905200,2022YFC2905205);江西省自然科学基金项目(20212ACB204008)Fund:National Natural Science Foundation of China(52174316, 51974139); National Key Research and Development Program of China (2022YFC2905200, 2022YFC2905205); Natural Science Foundation of Jiangxi Province (20212ACB204008)引文格式:杨庆, 徐文文, 周伟, 等. 金属材料表面纳米化研究与进展[J]. 表面技术, 2024, 53(4): 20-33.YANG Qing, XU Wenwen, ZHOU Wei, et al. Research and Progress on Surface Nanocrystallization of Metallic Materials[J]. Surface Technology, 2024, 53(4): 20-33.*通信作者(Corresponding author)第53卷第4期杨庆,等:金属材料表面纳米化研究与进展·21·refine to the nanometer level, forming nanostructured layers with gradient changes of grains along the thickness direction, including surface non-woven nanocrystalline layer, submicron fine crystal layer, coarse crystal deformation layer and matrix layer, and this unique gradient nanostructure is effective for the significant improvement of surface properties of metallic materials. The process technology and related applications of nanocrystalline layers on the surface of metallic materials in China and abroad are introduced, and the research progress of high-performance gradient nanostructured materials is discussed.Starting from the classification of the preparation process of gradient nanostructured materials and combining with the research results of surface nanosizing in China and abroad, a brief overview of three methods of metal surface nanosizing, namely, surface coating or deposition, surface self-nanosizing and hybrid nanosizing, was given, the advantages and disadvantages of each were discussed and the advantages of surface self-nanosizing technology were summarized. On the basis of this, the key role of dislocations and twins in the process of surface self-nanitrification of metallic materials was analyzed, and the mechanism of surface self-nanitrification of metallic materials was inextricably linked to the material structure and the size of layer dislocation energy, and the current research status of the mechanism of surface self-nanitrification of metallic materials was summarized. Finally, the key technologies required to be overcome in the existing surface strengthening process were summarized, and future research work was prospected. It was proposed to combine surface nanosizing technology with some existing surface treatment technologies such as electroplating, vapor deposition, tack coating, spraying, chemical heat treatment, etc., to replace the high-cost manufacturing technologies and prepare inexpensive complex-phase surface layers with more excellent performance.Techniques for the preparation of gradient nanostructured materials include surface coating or deposition, surface self-nanosizing, and hybrid surface nanosizing. Surface coating or deposition technology has the advantages of precise control of grain size and chemical composition, and relatively mature process optimization, etc. However, because the coating or deposition technology adds a cover layer on the material surface, the overall size of the material increases slightly, and there is a certain boundary between the coating and the material, and there will be defects in the specific input of production applications.In addition, the thickness of the gradient layer prepared by this technology is related to the deposition rate, which takes several hours to prepare a sample. The surface self-nanitrification technique, which generates intense plastic deformation on the surface of metal materials, has the advantages of simple operation, low cost and wide application, low investment in equipment and easy realization of unique advantages. The nanocrystalline layer prepared on the surface of metal materials with the surface self-nanitrification technique has a dense structure and no chemical composition difference from the substrate, and no surface defects such as pitting and pores, but the thickness of the gradient layers and nanolayers prepared by this technique as well as the surface quality of the material vary greatly depending on the process. Hybrid surface nanosizing is a combination of the first two techniques, in which a nanocrystalline layer is firstly prepared on the surface of a metallic material by surface nanosizing technology, and then a compound with a different composition from the base layer is formed on its surface by means of chemical treatment.To realize the modern industrial application of this new surface strengthening technology, it is still necessary to clarify the strengthening mechanism and formation kinetics of surface nanosizing technology as well as the effect of process parameters, microstructure, structure and properties on the nanosizing behavior of the material. For different nanosizing technologies, the precise numerical models for nanosizing technologies need to be established and improved, and the surface self-nanosizing equipment suitable for industrial scale production needs to be developed. In the future, surface nanosizing technology will be combined with some existing surface treatment technologies (e.g. electroplating, vapor deposition, adhesion coating, spraying, chemical heat treatment, etc.) to prepare a complex phase surface layer with more excellent performance, which is expected to achieve a greater comprehensive performance improvement of the surface layer of metal materials.KEY WORDS: metal material; surface nanocrystallization; gradient nanostructures; nanocrystallization mechanism; surface properties金属材料在基建工程、航空航天中扮演着重要角色,随着当今科学技术的高速发展,传统金属材料的局限性日趋明显,开发一种综合性能优异的金属材料迫在眉睫。
金属材料表面纳米化的研究现状
金属材料表面纳米化的研究现状主要包括以下几个方面:
1. 表面纳米结构制备技术:包括物理气相沉积、化学气相沉积、溅射沉积、电子束蒸发等技术,通过控制沉积参数和处理条件,可制备出不同形貌和尺寸的表面纳米结构。
2. 表面纳米结构的物理和化学性质:通过表征技术如扫描电子显微镜、透射电子显微镜、X射线衍射等,研究表面纳米结构的形貌、晶体结构和化学成分,同时也研究其在光学、电子、力学等方面的性质。
3. 表面纳米结构的增强效应:纳米结构的引入改变了材料表面的电子结构和表面电场分布,从而导致一系列的物理和化学增强效应,如增强的光吸收、增强的催化活性、增加的疏水性等。
4. 表面纳米结构的应用:纳米结构的引入可用于光电器件、传感器、催化剂、涂层等多个领域。
例如,纳米颗粒可以用于制备表面增强拉曼光谱(SERS)基底,纳米线结构可用于柔性
电子器件。
总体来说,金属材料表面纳米化的研究旨在通过控制表面结构和性质,实现金属材料的功能化和性能提升,拓展其在各个领域的应用。
不同的纳米结构和制备方法可以根据具体需求进行选择,并通过表征技术和性能测试手段来评估其性能。
引 言1998年6月3日,德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡的严重后果。
事后经过调查,人们发现,造成事故的原因竟然是因为一节车厢的车轮内部疲劳断裂而引起。
从而导致了这场近50年来德国最惨重铁路事故的发生。
2002 年5月25日,台湾“中华航空公司”CI-61 班机,波音b747-200 型客机在从台北飞往香港的途中坠机,乘坐这一航班的206 名乘客和19名机组成员全部遇难。
事后经台湾“中科院”航材所、美国国家运输安全委员会以及波音公司对飞机残骸进行金相分析表明,金属疲劳竟然是造成这次惨重事故的重要原因之一。
诸如此类,因金属疲劳引起的灾难性破坏事故屡见不鲜。
因此,研究金属疲劳问题的产生原因和寻求解决金属疲劳失效的方法显得十分重要。
疲劳断裂是造成航空、桥梁、车辆交通等领域发生严重事故的重要原因之一,因此研究各种因素对晶体金属疲劳寿命的影响,显得尤为重要。
1,金属疲劳现象的产生机理为什么金属疲劳时会产生破坏作用呢?这是因为从微观角度讲,金属内部浅析表面纳米化对金属疲劳性能的影响张 力 西安航空职业技术学院工业生产中心 710089结构并不均匀,从而造成对应力传递的不平衡,有缺陷的地方会成为应力集中区。
与此同时,金属内部的缺陷处还存在许多微小的裂纹,在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至剩余部分不能继续传递载荷时,金属构件就会全部毁坏,甚至在工作应力远低于许用应力的情况下突然断裂,发生所谓的低应力脆断。
2,表面纳米化技术的提出和意义近年来,纳米材料以其优异的性能已成为材料领域研究的热点之一。
纳米材料由于晶粒细小(通常至少在一维方向上小于100nm,典型为l0nm左右),界面密度高、所占体积分数大,表现出独特的力学及物理化学性能。
大量实验结果表明,纳米材料的力学行为和性能通常优于传统粗晶材料,因此对粗晶材料进行晶粒细化处理使其晶粒达到纳米级(简称纳米化)将是一种不改变材料化学成分而提高其综合性能的新方法。
纯铜表面纳米化的微观结构演化及其力学性能研究
纯铜是一种常见的金属材料,具有良好的导电性和导热性,并且具有良好的可塑性和强度。
在某些特定的工程应用中,如微电子器件和传感器等,要求纯铜具有更高的强度和硬度。
为了提高纯铜的力学性能,一种常用的方法是对其表面进行纳米化处理。
纳米化处理是通过控制处理工艺中的参数和条件,使材料的表面形成纳米尺度的结构和特点。
纳米化处理可以改善材料的力学性能,并在一些特殊应用中发挥重要作用。
在纯铜表面纳米化的研究中,通常采用的方法包括机械磨削、化学腐蚀和电化学方法等。
在纯铜表面纳米化的微观结构演化方面的研究中,主要关注以下几个方面。
首先是纳米化处理过程中铜表面的微观结构演化规律。
通过对纳米化处理过程中不同参数和条件下的铜表面进行观察和分析,可以揭示铜表面纳米化的微观结构变化规律,包括晶粒尺寸的变化、晶粒形貌的演化等。
其次是纳米化处理对纯铜力学性能的影响。
通过对纯铜表面纳米化的力学性能进行测试和分析,可以研究纳米化处理对纯铜的硬度、强度和塑性等力学性能的影响。
纯铜表面纳米化的微观结构演化及其力学性能的研究对于了解纳米材料的制备和应用具有重要意义。
纯铜表面纳米化可以提高纯铜的力学性能,为其在微电子器件和传感器等领域的应用提供可能性。
通过对纯铜表面纳米化的研究,可以优化纳米化处理的工艺参数和条件,以获得更好的性能效果。
机械材料表面纳米化处理研究及应用近年来,随着科技的不断进步,机械材料表面纳米化处理逐渐成为研究的热点领域。
表面纳米化处理是指通过改变材料表面的结构和性质,使其具备更好的力学性能和化学活性。
这一技术已经被广泛应用于许多领域,包括航空航天、汽车制造和生物医学等。
首先,机械材料表面纳米化处理可以显著改善材料的硬度和耐磨性能。
通过利用纳米颗粒或纳米涂层,可以增加材料表面的硬度,从而增强其抗磨损能力。
比如,飞机发动机的涡轮叶片通常需要经受极高的磨损和高温腐蚀的考验,通过在叶片表面进行纳米化处理,可以大大延长其使用寿命。
其次,表面纳米化处理还可以改善材料的耐腐蚀性能。
很多金属在潮湿的环境下容易发生腐蚀,导致材料的性能下降。
通过纳米化处理,可以在材料表面形成一层致密的金属氧化物膜,阻断金属与周围环境的直接接触,从而提高其耐腐蚀性能。
这种技术在船舶制造和海洋工程中得到了广泛应用,可有效延长材料的使用寿命。
此外,表面纳米化处理还可以改善材料的润滑性能。
摩擦和磨损是很多机械设备运行过程中不可避免的问题,而纳米化处理可以在材料表面形成一层低摩擦的纳米润滑层,减少摩擦阻力,提高机械效率。
例如,纳米润滑层在汽车发动机零部件的制造中得到了广泛应用,可以降低零部件的摩擦损失,提高发动机的燃油效率。
此外,机械材料表面纳米化处理还可以应用于生物医学领域。
在生物医学工程中,纳米材料被广泛应用于药物输送、组织工程和生物传感器等方面。
通过在生物材料表面进行纳米化处理,可以改善材料的生物相容性和降解性能,从而提高生物医学材料的应用效果。
综上所述,机械材料表面纳米化处理是一项重要的研究领域,其应用潜力巨大。
通过改变材料表面的结构和性质,可以显著改善材料的力学性能、化学活性和生物相容性等方面。
尽管目前还存在一些挑战,如处理技术的成本和可扩展性等问题,但随着科技的不断进步,相信这一领域将会得到更多的突破和应用。
我们期待机械材料表面纳米化处理在各个领域的进一步发展和运用,为人类的生活和科技进步做出更大的贡献。
表面自身纳米化及其研究进展摘要:金属材料表面自身纳米化,即在材料自身表面形成具有纳米结构的表面层。
纳米结构表层与基体之问没有明砬的界面,处理前后材料的外形尺寸基本没变,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米晶体材料的优异性能与传统金属材料相结合。
关键词:表面自身纳米化;性能;应用前言很多丁程上的应用只需要改善材料的表面性能.就可以提高整个材料的综合服役性能和使用寿命,因为材料的失效一般源于材料的表面,如材料的疲劳、磨蚀疲劳、腐蚀、摩擦磨损等。
另外,为了改进一些常见的材料加丁工艺,如材料的表面渗氮、渗铬,异种金属材料的固态扩散焊接等,迫切需要改善材料的表面性能。
显然,把纳米技术与表面改性技术相结合。
实现材料的表面纳米化。
将是一个非常有潜力的领域。
近年来,徐滨士等【1-2】提出纳米表面工程的概念。
为材料表面改性开创了新的途径。
表面纳米化处理是近几年表面强化方法研究的热点之一。
这种技术将纳米晶体材料的优异性能与传统工程金属材料相结合,在工业应用上具有广阔的应用前景。
众所周知,工程结构材料的失效多始于表面,而且材料的疲劳、腐蚀、磨损对材料的表面结构和性能很敏感。
因此,表面组织和性能的优化就成为提高材料整体性能和服役行为的有效途径。
1999年,h等⋯提出了金属材料表面自身纳米化(SufaceSelf-Nanocrystallization,SNC)的概念,即在材料自身表面形成具有纳米结构的表面层。
纳米结构表层与基体之间没有明显的界面,处理前后材料的外形尺寸基本不变。
这种表面自身纳米化技术,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米材料的优异性能应用到了传统工程材料的表面改性技术中。
因此,这种新材料新技术具有很大的工业应用价值。
目前,表面纳米化的研究主要集中于机械加工的方法。
本文将简要介绍表面自身纳米化处理的技术特点以及对疲劳、腐蚀、磨损等性能的影响。
2 表面纳米化的基本原理与制备方法在块状粗晶材料上获得纳米结构表层有3种基本方式[8] 表面涂层或沉积,表面自身纳米化和混合方式。
表面涂层或沉积,首先制备出具有纳米尺度的颗粒再将这些颗粒固结在材料的表面在材料上形成一个与基体化学成分相同(或不同)的纳米结构表层。
这种材料的主要特征是纳米结构表层内的晶粒大小比较均匀表层与基体之间存在着明显的界面材料的外形尺寸与处理前相比有所增加。
表面自身纳米化,对于多晶材料采用非平衡处理方法增加材料表面的自由能使粗晶组织逐渐细化至纳米量级这种材料的主要特征是晶粒尺寸沿厚度方向逐渐增大纳米结构表层与基体之间不存在界面与处理前相比材料的外形尺寸基本不变。
表面自身纳米化技术与表面自身纳米化材料有很多独特之处:首先,表面自身纳米化采用常规的表面处理方法(或者对常规的处理方法进行略微的改造)即可实现,在工业应用中不存在明显的技术障碍;其次,表面自身纳米化材料表面的晶粒尺寸在厚度方向沿梯度变化,表面自身纳米晶组织与基体组织之问不存在明显的界面,不会发生剥层和分离;第三,表面自身纳米化既适用于材料的整体,又可用于材料的局部改性。
对比表面涂层或沉积,表面自身纳米化技术与利用表面涂层或沉积实现表面纳米化有着明显的区别,表面涂层或沉积纳米化是利用常规的表面涂层和沉积技术,如PVD、CVD、溅射、电镀和电解沉积等,将制备好的纳米颗粒固结在材料的表面,在材料表面形成一个与基体化学成分相同或不同的纳米结构表层。
纳米结构表层与基体之间存在着明显的界面,材料的外形尺寸与处理前相比有所增加。
表面自身纳米化的制备原理简介由非平衡过程实现表面自身纳米化主要有两种方法心】,即表面机械加工处理法和非平衡热力学法,不同方法所采用的工艺和由其导致的纳米化的微观机理均存在着较大的差异。
现在,绝大多数实现表面自身纳米化的方法主要是表面机械加工法。
主要是表面机械加工处理方法原理简单,用常规的表面处理技术就可以实现,在具体的实验操作中易获得纳米层。
表面机械加工法实现表面自身纳米化是一种非平衡处理方法,即外加载荷重复作用于材料表面,增加多晶体金属材料表面的自由能,使表面组织产生不同方向的强烈塑性变形而逐渐将材料表层的粗晶组织细化至纳米量级⋯。
该方法的晶粒细化机理类似于早前提出的用强烈塑性变形法(Severe Plastic Deformation,SPD)制备块体纳米晶材料的细化机理,主要是通过塑性变形以及位错的运动来细化晶粒。
不同之处在于前者塑性变形只发生在试样的表层,并由表及里逐渐减小,通常变形层的深度为几十至几百微米,只有表面层结构发生变化并细化为纳米晶,而材料内部仍保持原始的组织结构;目前.用的比较多、相对比较成熟的方法有:表面机械研磨处理(SmT)超声喷丸(USSP)、高能喷丸(HESP)、气动喷丸等。
另外,激光脉冲产生的冲击波也可以使材料发生强烈的塑性变形。
并促使晶粒细化。
后者是利用压力扭转或等通道挤压的方法使试样整体产生强烈的塑性变形,从而使晶粒不断细化,以达到纳米尺寸的晶粒,材料的内部有较强的织构和较大的内应力,同时该方法的适用范围受到材料变形难易程度的限制。
非平衡热力学法,是将材料的表面达到熔化或相变温度,再进行急速冷却,通过动力学控制来提高形核速率并抑制晶粒长大速度,可以在材料的表面获得纳米晶组织。
实现快速加热一冷却的方法主要有激光加热和电子辐射等。
1.3表面层的组织结构目前的研究均表明㈣,表面自纳米化处理后,在材料上可获得表面为纳米晶、晶粒尺寸沿厚度方向逐渐增大的梯度结构。
一般将表面层分为四层:纳米结构表层、细化的亚微晶层、变形细化的微晶层和基本没有变化的基体【¨】。
表面纳米化对性能的影晌1.4表面纳米化层的力学性能表面纳米化改变了材料表面的组织和结构.这不仅有利于提高材料的表面性能.而且对材料的整体性能也有相当的提高。
目前。
对于纳米结构表层的力学性能,如强度、硬度、塑性与超塑性、冲击韧度、弹性模量、疲劳性能、摩擦磨损性能等。
抗腐蚀性能、扩散性能、稳定性等已有比较广泛的研究【Ⅲ柳。
表面纳米晶层的硬度显著提高.并随着深度的增加而逐渐减小.与显微组织未发生变化的心部相比,硬度可提高几倍(旧,表面以下亚微晶层的硬度也明显增大;表面硬度的提高有助于改善材料的摩擦磨损性能,但由于机械加工处理引起的表面粗糙度的增加却有可能对材料的耐磨性产生不利的影响,因此在低载荷下材料的摩擦磨损性与表面处理前相比变化不大。
随着载荷的增加。
未处理材料的磨损量急剧下降,而表面纳米化材料的磨损量变化很小。
可见表面纳米化能够明显提高高载荷下材料的耐摩擦磨损性能刚。
经研究发现【2l】,表面纳米化可以提高低碳钢在低载荷及中等载荷作用下的耐磨性,并可以明显降低摩擦系数;同时,随着载荷的增大,表面纳米化低碳钢的主要磨损机制从磨粒磨损方式转变为疲劳磨损方式.表面纳米化有助于减弱低碳钢表面的疲劳磨损效应,表面纳米化可以提高材料表面的抗冲击性能,研究低碳钢经过表面机械加工处理后冲击能量与刮削体积的关系可以得出:试验初期。
表面纳米化材料的抗冲击性明显优于处理前.随着冲击次数的增加。
二者的差距减小,这主要是纳米结构表层因冲击次数增加而逐渐消失所致。
随着制备工艺的不断完善,表面纳米结构表层厚度的增加得到进一步提高。
表面性能的改善对材料的整体性能也会产生有利影响阎,l mm厚度的低碳钢板材双面经过表面机械加工处理后,当双侧纳米层厚度只占板材总厚度的3%时.材料的屈服强度可提高约35%,而伸长率只下降4%。
对于块状超细材料来说,强度的提高总是伴随着韧性的明显下降.而表面纳米化能够有效地提高材料的整体强度,同时又不明显地降低材料的韧性。
4.2表面纳米层的耐蚀性能金属材料表面纳米化以后,表面的纳米晶体材料中含有大量能量较高的亚稳定态晶界,表面活性较高,晶界的体积比明显增加,晶界处的原子数较多。
活性金属参与腐蚀反应的活性原子增加,使材料易于发生腐蚀反应。
但对于惰性金属,表面更易形成致密的钝化膜,反而可以提高材料的抗腐蚀性能。
李瑛等[16]研究了SMAT低碳钢的电化学腐蚀行为,研究结果表明材料的反应活性普遍增加,对于活性金属,纳米化使材料的腐蚀速度增加,并且溶解速度存在明显的尺寸效应。
在晶粒尺寸小于35rim时,纳米低碳钢的电化学腐蚀速度随晶粒尺度的增加而降低,当晶粒尺寸高于35nm时,晶粒尺度对腐蚀速度的影响不大。
X Y.Wang等n7]经过表面喷砂和退火处理在304不锈钢表面制备了20nm的纳米化层,表面形成的致密的钝化膜提高了材料的抗腐蚀的能力。
4.3表面纳米化对抗疲劳性能的影响材料经过表面纳米化处理之后,表层形成的组织均一、性能均一的纳米晶层可以有效地抑制疲劳裂纹的萌生,同时表面形成的压应力层也有助于提高材料的抗疲劳性能。
李东等[18]利用SMAT技术,在SS400钢焊接接头表面形成了尺寸均匀、晶粒取向呈随机分布的纳米晶组织,实现了焊接接头表层硬度的均匀化,表层硬度明显高于内部,而消除了对接接头表层组织的不均匀性,使焊接接头表面的拉应力变为压应力,提高了焊接接头的抗疲劳性能。
另外熊天英等[1叼利用SSPB技术在0Crl8Ni9Ti焊接接头表面形成了组织均匀的纳米晶层,表面形成压应力层。
接头的抗Hzs应力腐蚀试验表明,晶粒尺寸细小而均匀,在裂纹萌生阶段,氢致裂纹驱动力可由更多细小的晶粒所承受,晶内和晶界的应变度相差较小,应力集中较小,因而材料受力均匀,裂纹不易萌生;在裂纹的扩展阶段,由于纳米晶结构的晶界体积分数高,微裂纹将在晶界处受到阻碍,同时一旦微裂纹穿过晶界后,扩展方向就会发生改变,必然消耗更多的能量,从而使微裂纹不易扩展长大,超细等轴晶以及压应力协同作用使焊接接头抗应力腐蚀性能大大提高。
4.4表面纳米化层的热稳定性纳米晶材料是一种非平衡材料,其热稳定性一直都是科研人员研究的重要课题,同样表面纳米化层的热稳定性能也是涉及到表面纳米化技术能否实际应用的一个重要问题。
纳米晶体材料中含有大量能量较高的亚稳定态晶界,纳米晶粒长大的驱动力主要来自体系晶粒和界面的储能降低,阻力来自于原子扩散或晶界迁移需要一定的激活能。
研究表明表面纳米化层的热稳定性与纳米晶界的本征结构即存在大量的三叉晶界和界偶有关,由于三叉晶界和界偶的移动比普通晶界的移动更需要高的激活能,这就使纳米晶层具有了一定的热稳定性。
佟伟平口o]研究了SMAT纯铁和38CrMoAl表面纳米化层的热稳定性,结果表明表面纳米化层具有一定的热稳定性。
通过XRD和TEM观察纯铁在450℃退火6h后晶粒的变化情况,退火后晶粒尺寸比未退火前有所长大,晶粒大小为10~45nm,但仍小于100nm。
在高于500℃时这种稳定性丧失,晶粒长大。
对于38CrMoAl的试验显示400℃等温退火30h晶粒尺寸仍保持在30nm左右。