AlxCoCrFeNi high-entropy alloys
- 格式:pdf
- 大小:1.52 MB
- 文档页数:8
《Al_xCoCrFeNi高熵合金力学性能的分子动力学模拟》篇一一、引言高熵合金,作为一种新兴的金属材料,因其在各种环境下所表现出的卓越力学性能和抗腐蚀性,引起了科研工作者的广泛关注。
近年来,AlxCoCrFeNi高熵合金以其优异的物理和化学性质成为了研究的热点。
本文利用分子动力学模拟的方法,探究了AlxCoCrFeNi高熵合金的力学性能,旨在从微观层面揭示其力学特性的本质。
二、AlxCoCrFeNi高熵合金概述AlxCoCrFeNi高熵合金主要由Al、Co、Cr、Fe和Ni五种金属元素构成。
高熵合金的高性能来源于各组成元素的相互作用以及由于多种主元素引起的晶格混乱效应。
由于其特殊的结构特性,该合金在强度、硬度、延展性等方面表现优异。
三、分子动力学模拟方法分子动力学模拟是一种有效的材料研究方法,能够从微观角度揭示材料的性质和性能。
通过模拟原子和分子的运动,我们可以了解材料的结构变化以及性能特点。
本文采用了经典的动力学理论进行分子动力学模拟,模型参数由实际条件设定。
四、模拟结果与讨论1. 结构特性:通过模拟,我们观察到AlxCoCrFeNi高熵合金的微观结构具有明显的晶格混乱效应,多种元素混合的原子分布相对均匀。
这种混乱的结构对于合金的力学性能有显著影响。
2. 力学性能:通过分子动力学模拟,我们发现随着Al元素含量的增加,合金的强度和硬度有所提高,而延展性则有所降低。
这表明AlxCoCrFeNi高熵合金的力学性能可以通过调整Al的含量来优化。
此外,我们还发现该合金在各种环境下的抗腐蚀性也相当出色。
3. 影响因素:模拟结果表明,合金的力学性能受多种因素影响,包括元素组成、温度、压力等。
其中,元素组成对力学性能的影响最为显著。
此外,温度和压力也会影响合金的微观结构和力学性能。
五、结论本文通过分子动力学模拟的方法,研究了AlxCoCrFeNi高熵合金的力学性能。
结果表明,该合金具有优异的强度、硬度和抗腐蚀性。
《热机械处理Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织及力学性能》一、引言高熵合金是一种新型的合金材料,由多种主要元素组成,其混合焓变化较小,具有优异的力学性能和显微组织。
Al_xCoCrFeNi高熵合金作为一种典型的多元合金体系,其性能受到合金元素含量、热处理工艺等因素的影响。
本文旨在研究热机械处理对Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织和力学性能的影响。
二、实验材料与方法1. 材料制备采用真空电弧熔炼法制备Al_xCoCrFeNi(x=0.1~0.8)高熵合金。
将各元素按照预设比例混合后进行熔炼,确保合金成分均匀。
2. 热机械处理对制备的高熵合金进行热机械处理,包括退火、淬火、冷轧等工艺。
通过调整热处理温度、保温时间等参数,研究不同热处理工艺对合金性能的影响。
3. 显微组织观察利用光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察合金的显微组织,分析合金的相结构、晶粒尺寸及分布等信息。
4. 力学性能测试通过拉伸试验、硬度测试等方法,测定合金的力学性能,包括抗拉强度、屈服强度、延伸率及硬度等指标。
三、结果与讨论1. 显微组织分析(1)相结构分析通过X射线衍射(XRD)和TEM观察,发现Al_xCoCrFeNi 高熵合金在热机械处理后,形成以BCC(体心立方)结构为主的固溶体相。
随着Al含量的增加,合金中会出现一些面心立方(FCC)结构的相。
这些相的形成与合金元素的相互作用及热处理工艺有关。
(2)晶粒尺寸及分布通过OM和SEM观察,发现热机械处理后,Al_xCoCrFeNi 高熵合金的晶粒尺寸得到细化,晶界清晰。
随着Al含量的增加,晶粒尺寸有所减小。
冷轧等工艺对晶粒的细化作用更为显著。
2. 力学性能分析(1)抗拉强度和屈服强度热机械处理后,Al_xCoCrFeNi高熵合金的抗拉强度和屈服强度得到提高。
随着Al含量的增加,合金的抗拉强度和屈服强度呈现先增加后减小的趋势。
第 1 期第 220-230 页材料工程Vol.52Jan. 2024Journal of Materials EngineeringNo.1pp.220-230第 52 卷2024 年 1 月激光增材制造Al x CoCrFeNi 高熵合金的组织与性能Microstructure and properties of Al x CoCrFeNi high entropy alloys fabricated by laser additive manufacturing于丽莹1,王晨1,2,朱礼龙1,张华1,黄海亮1,阮晶晶1,张尚洲1,江亮1,周鑫1*(1 烟台大学 精准材料高等研究院,山东 烟台 264005;2 中南大学 粉末冶金国家重点实验室,长沙410083)YU Liying 1,WANG Chen 1,2,ZHU Lilong 1,ZHANG Hua 1,HUANG Hailiang 1,RUAN Jingjing 1,ZHANG Shangzhou 1,JIANG Liang 1,ZHOU Xin 1*(1 Institute for Advanced Studies in Precision Materials ,Yantai University ,Yantai 264005,Shandong ,China ;2 State Key Laboratory of PowderMetallurgy ,Central South University ,Changsha 410083,China )摘要:为了研究Al 含量对FeCoCrNi 合金组织性能的影响,采用多路送粉激光熔覆设备高通量制备Al x CoCrFeNi 高熵合金(0≤x ≤0.9),通过X 射线衍射仪、金相显微镜、扫描电子显微镜、电子探针和显微硬度计测试合金的相组成、显微组织结构、成分和硬度。
结果表明:随着Al 含量的增加,Al x CoCrFeNi 高熵合金由单一FCC 相(x ≤0.35)转变为FCC+BCC 双相结构(0.35<x <0.85),最后转变为单一BCC 结构(x ≥0.85)。
《热机械处理Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织及力学性能》篇一一、引言高熵合金作为一种新型的合金设计理念,其独特的物理和化学性质使其在众多领域中得到了广泛的应用。
Al_xCoCrFeNi高熵合金系列,通过调整Al元素的含量(x=0.1~0.8),可以获得不同的显微组织和力学性能。
本文旨在研究热机械处理对Al_xCoCrFeNi高熵合金显微组织和力学性能的影响。
二、材料与方法1. 材料准备实验所用的Al_xCoCrFeNi高熵合金由高质量的元素粉末通过高能球磨法混合均匀后,通过真空电弧熔炼制备而成。
合金中Al元素的含量通过调整原料配比进行控制,范围为x=0.1~0.8。
2. 热机械处理热机械处理包括固溶处理和形变热处理两个阶段。
首先,将合金在高温下进行固溶处理,使合金元素充分溶解;然后进行形变热处理,通过轧制、拉伸等工艺使合金发生形变。
3. 显微组织观察利用金相显微镜、扫描电子显微镜和透射电子显微镜对合金的显微组织进行观察,分析其相结构、晶粒大小和分布等。
4. 力学性能测试通过硬度测试、拉伸试验和冲击试验等方法,对合金的力学性能进行测试和分析。
三、结果与讨论1. 显微组织分析(1)相结构:随着Al含量的增加,Al_xCoCrFeNi高熵合金的相结构发生变化。
当x≤0.5时,合金主要由体心立方(BCC)相组成;当x≥0.6时,面心立方(FCC)相逐渐增多。
(2)晶粒大小与分布:热机械处理后,合金的晶粒大小得到细化,分布更加均匀。
随着Al含量的增加,晶粒细化效果更加明显。
2. 力学性能分析(1)硬度:随着Al含量的增加,合金的硬度先增加后降低。
在适当的Al含量下(如x=0.5),合金的硬度达到最大值。
这主要归因于合金相结构和晶粒大小的综合影响。
(2)拉伸性能:热机械处理后,合金的抗拉强度和延伸率均得到提高。
随着Al含量的增加,抗拉强度和延伸率呈现先增加后降低的趋势。
在适当的Al含量下,合金的拉伸性能达到最佳。
《Al_xCoCrFeNi高熵合金力学性能的分子动力学模拟》一、引言高熵合金(High-Entropy Alloys, HEAs)以其独特的物理和化学性质,近年来在材料科学领域引起了广泛的关注。
AlxCoCrFeNi高熵合金作为一种重要的多主元合金,具有优良的力学性能和广泛的工业应用前景。
然而,对其力学性能的微观机制,尤其是原子尺度的行为和交互过程的理解仍然有限。
因此,本研究采用分子动力学模拟(Molecular Dynamics Simulation, MDS)的方法,对AlxCoCrFeNi高熵合金的力学性能进行深入探究。
二、分子动力学模拟方法分子动力学模拟是一种强大的计算工具,能够从原子尺度上模拟材料的行为和性质。
在本研究中,我们采用先进的分子动力学模拟方法,对AlxCoCrFeNi高熵合金的力学性能进行模拟。
首先,我们构建了具有实际晶体结构的模型,然后通过调整模型中的原子间相互作用力场参数,使其能够反映真实的高熵合金的物理性质。
接着,我们使用牛顿运动定律对模型进行动态模拟,以获得材料在各种条件下的力学性能。
三、模拟结果与分析1. 弹性性能通过模拟,我们得到了AlxCoCrFeNi高熵合金的弹性常数和弹性模量等参数。
结果表明,该合金具有较高的弹性模量和良好的弹性性能。
这主要归因于其独特的晶体结构和原子间的相互作用力。
2. 塑性变形在模拟过程中,我们观察到AlxCoCrFeNi高熵合金在受到外力作用时,原子间的相互作用力会发生变化,导致材料发生塑性变形。
这种变形行为具有显著的剪切带特征,表现出较高的延展性和韧性。
3. 强度与韧性通过对模拟结果的分析,我们发现AlxCoCrFeNi高熵合金的强度和韧性具有优异的综合性能。
随着铝含量的增加,合金的强度会有所提高,同时保持良好的韧性。
这种良好的综合性能主要得益于合金的多主元组成和独特的晶体结构。
四、结论本研究采用分子动力学模拟的方法,对AlxCoCrFeNi高熵合金的力学性能进行了深入探究。
《Al_xCoCrFeNi高熵合金力学性能的分子动力学模拟》篇一一、引言高熵合金(High-Entropy Alloys, HEAs)是由多种主要元素组成的合金,其特点在于通过多种元素的组合来提高合金的力学性能。
近年来,AlxCoCrFeNi高熵合金因其在各种工程应用中的出色性能而受到广泛关注。
为了更好地理解和预测这种合金的力学性能,分子动力学模拟作为一种重要的计算方法被广泛应用。
本文旨在利用分子动力学模拟的方法来研究AlxCoCrFeNi高熵合金的力学性能。
二、模型与方法1. 模型构建本研究所使用的模型是基于AlxCoCrFeNi高熵合金的原子结构构建的。
我们采用了周期性边界条件来模拟大尺寸的合金系统,并考虑了合金中各种元素的相互作用。
2. 分子动力学方法分子动力学模拟是一种基于经典力学的计算方法,通过求解系统中所有原子的运动方程来模拟材料的力学性能。
我们采用了LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)进行模拟计算。
三、模拟过程与结果1. 模拟过程在模拟过程中,我们首先对系统进行了能量最小化处理,以消除初始模型中的应力。
然后,我们对系统进行了长时间的模拟,以观察合金的力学性能。
在模拟过程中,我们考虑了温度、压力等因素对合金性能的影响。
2. 结果分析通过模拟,我们得到了AlxCoCrFeNi高熵合金的应力-应变曲线、弹性模量、屈服强度等力学性能参数。
我们还观察了合金在受到外力作用时的原子运动情况,以及合金的断裂过程。
四、讨论1. 力学性能分析根据模拟结果,我们发现AlxCoCrFeNi高熵合金具有优异的力学性能,包括较高的屈服强度和良好的延展性。
这主要归因于多种元素的协同作用,以及合金中原子间的强相互作用。
此外,我们还发现温度和压力对合金的力学性能有显著影响。
2. 原子运动与断裂过程分析通过观察原子运动情况,我们发现合金在受到外力作用时,原子会发生重新排列和扩散,从而使得合金能够承受更大的外力。
精密成形工程第15卷第8期孟爽,国栋,赵冬凤,余青,林毛毛(天津职业技术师范大学机械工程学院,天津 300222)摘要:高熵合金具有独特的微观结构和特性,作为一种新型的高性能材料,逐渐获得了国内外研究人员的广泛关注。
高熵合金具备多元化的元素组成方式,不但没有形成传统概念中复杂的相结构,反而展现出了更优异的性能,在诸多领域均具有良好的应用前景。
在当前的高熵合金体系中,CoCrFeNi系研究最为广泛,其研究内容主要体现在通过添加不同元素或进行退火热处理对原合金体系改性进而获得优异性能的材料。
首先,结合CoCrFeNi体系对高熵合金的定义和性能特点进行了分析和总结;其次,从热力学和动力学角度论述了CoCrFeNi系高熵合金的结构预测、层错能计算及缺陷动力学分析;再次,总结了Al、Ti、Cu、Mn 和C元素对CoCrFeNi系高熵合金显微组织和力学性能的影响;最后,分析了当前的研究现状并进行了展望。
关键词:高熵合金;CoCrFeNi系;模拟计算;合金元素;力学性能DOI:10.3969/j.issn.1674-6457.2023.08.019中图分类号:TG139 文献标识码:A 文章编号:1674-6457(2023)08-0156-13Research Progress of CoCrFeNi High Entropy AlloyMENG Shuang, GUO Dong, ZHAO Dong-feng, YU Qing, LIN Mao-mao(Faculty of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China)ABSTRACT: As a new high performance material, high entropy alloy has gradually got the attention of the world in recent years due to its distinctive microstructure and properties. The diversified element composition not only avoids the formation of complex phase structures in the traditional concept, but also exhibits superior performance to conventional alloys and has a wide range of potential applications. The CoCrFeNi system is now the mostly studied high entropy alloy system, which is mostly seen in the modification of the original alloy system through the addition of other elements and annealing treatment to produce supe-rior material properties. The definition and characteristics of a high entropy alloy combined with the CoCrFeNi system were firstly examined and summarized. Then, the structure prediction, calculation of layer fault energy and defect dynamics analysis of CoCrFeNi high entropy alloy were discussed from the perspective of thermodynamics and dynamics. Next, the effect of Al, Ti, Cu, Mn and C elements on the microstructure and mechanical properties of CoCrFeNi high entropy alloy was summarized. Fi-收稿日期:2023-04-21Received:2023-04-21基金项目:国家自然科学基金(52074193);天津市自然科学基金科技计划重点项目(22JCZDJC00770);天津市教委科研计划重点项目(2022ZD022)Fund:National Natural Science Foundation of China(52074193); Key Project of Tianjin Natural Science Foundation Science and Technology Program(22JCZDJC00770); Key Projects of the Tianjin Education Commission's Research Program(2022ZD022)作者简介:孟爽(1995—),女,硕士生,主要研究方向为高熵合金。
随着现代工业的发展,对高性能材料的需求日益增长。
高熵合金作为一种新型材料,具有优异的综合性能,如高硬度、高强度、耐腐蚀性、耐磨损性等,因此在航空航天、汽车制造、海洋工程等领域具有广泛的应用前景。
本文将对高熵合金的判定依据进行详细阐述。
二、高熵合金的定义高熵合金(High-Entropy Alloys,简称HEAs)是指由五种或五种以上元素组成的固溶体合金。
这些元素在合金中的原子比例接近,且具有相似的电子结构和离子半径。
高熵合金的发现突破了传统合金设计理念,为材料科学领域带来了新的突破。
三、高熵合金的判定依据1. 元素种类高熵合金的判定首先取决于合金的元素种类。
一般来说,高熵合金由五种或五种以上元素组成,这些元素在合金中的原子比例接近。
具体而言,以下几种情况可判定为高熵合金:(1)元素种类为5-10种,原子比例接近,如AlxTi1-xSn(x=0.2-0.8)。
(2)元素种类为11-15种,原子比例接近,如CoCrFeNiMn(原子比例接近)。
2. 元素比例高熵合金中,各元素的原子比例接近,这是其独特性能的基础。
一般来说,以下几种情况可判定为高熵合金:(1)各元素原子比例在0.1-0.9之间,如AlxTi1-xSn(x=0.2-0.8)。
(2)各元素原子比例在0.5-0.5之间,如CoCrFeNiMn(原子比例接近)。
3. 电子结构和离子半径高熵合金的电子结构和离子半径具有相似性,这是其优异性能的保障。
以下几种情况可判定为高熵合金:(1)各元素具有相似的电子结构,如Al、Ti、Sn等元素均为d0s2结构。
(2)各元素具有相似的离子半径,如Al、Ti、Sn等元素的离子半径接近。
高熵合金的相结构是其性能的关键因素。
以下几种情况可判定为高熵合金:(1)具有单相固溶体结构,如AlxTi1-xSn(x=0.2-0.8)。
(2)具有复杂的相结构,如CoCrFeNiMn等元素组成的合金。
5. 综合性能高熵合金的判定还需考虑其综合性能,如硬度、强度、耐腐蚀性、耐磨损性等。
《Al_xCoCrFeNi高熵合金力学性能的分子动力学模拟》篇一一、引言高熵合金(High-Entropy Alloys, HEAs)是一种新型的金属材料,由多种主要元素组成,其独特的合金设计理念和优异的力学性能使其在众多领域具有广泛的应用前景。
AlxCoCrFeNi高熵合金作为一种典型的多元合金体系,其力学性能的深入研究和优化对于提升材料性能具有重要意义。
本文采用分子动力学模拟方法,对AlxCoCrFeNi高熵合金的力学性能进行深入研究。
二、研究方法分子动力学模拟是一种基于牛顿运动定律的计算机模拟方法,能够有效地模拟材料在原子尺度的行为。
本文采用分子动力学模拟软件,对不同Al含量(x=0, 0.5, 1.0, 1.5, 2.0)的AlxCoCrFeNi 高熵合金进行模拟。
通过构建合理的模型,设定合适的初始条件,进行系统的模拟计算。
三、模拟结果与分析1. 结构特性通过分子动力学模拟,我们得到了AlxCoCrFeNi高熵合金的原子结构。
随着Al含量的增加,合金的晶格常数、原子间距离等结构参数发生改变。
同时,我们发现,在一定Al含量范围内,合金的结构稳定性得到提高。
2. 力学性能我们对不同Al含量的AlxCoCrFeNi高熵合金进行了拉伸、压缩等力学性能测试。
结果表明,Al元素的加入显著提高了合金的强度和硬度,同时保持了良好的塑性。
特别是当Al含量适中时(如x=1.0),合金表现出最佳的力学性能。
此外,我们还发现Al元素对合金的韧性和疲劳性能也有积极的影响。
3. 影响因素分析通过分析模拟结果,我们发现Al元素的加入改变了合金的元素分布和相结构,从而影响了合金的力学性能。
此外,温度、应变速率等因素也对合金的力学性能产生影响。
在未来的研究中,我们将进一步探讨这些因素对AlxCoCrFeNi高熵合金力学性能的影响机制。
四、结论本文采用分子动力学模拟方法,对不同Al含量的AlxCoCrFeNi高熵合金的力学性能进行了深入研究。
Journal of Alloys and Compounds 509 (2011) 1607–1614Contents lists available at ScienceDirectJournal of Alloys andCompoundsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j a l l c omElectrical,magnetic,and Hall properties of Al x CoCrFeNi high-entropy alloysYih-Farn Kao a ,Swe-Kai Chen b ,c ,∗,Ting-Jie Chen a ,Po-Chou Chu a ,Jien-Wei Yeh a ,c ,Su-Jien Lin a ,caDepartment of Materials Science and Engineering,National Tsing Hua University,101Kuang Fu Road Sec.2,Hsinchu 30013,Taiwan,ROCbCenter for Nanotechnology,Materials Science,and Microsystems (CNMM),National Tsing Hua University,101Kuang Fu Road Sec.2,Hsinchu 30013,Taiwan,ROC cHigh-entropy Alloys Lab.,National Tsing Hua University,101Kuang Fu Road Sec.2,Hsinchu 30013,Taiwan,ROCa r t i c l e i n f o Article history:Received 4October 2010Received in revised form 25October 2010Accepted 28October 2010Available online 10 November 2010Keywords:Bulk Al x CoCrFeNi alloys CastHomogenization Plastic deformation Melt-spinningElectrical resistivity Hall effectCarrier density Carrier mobility Magnetic property Kondo-like effect Lattice defectsa b s t r a c tThis investigation explores the electrical and magnetic properties of as-cast,-homogenized,and -deformed Al x CoCrFeNi (C-x ,H-x ,and D-x ,respectively)alloys at various temperatures from 4.2to 300K.Experimental results reveal that carrier density of the alloys is of 1022–23cm −3.H-x has a carrier mobil-ity of 0.40–2.61cm 2V −1s −1.The residual electrical resistivity of the alloys varies from 100to 220 cm.The temperature coefficient of resistivity (TCR)of H-2.00is small (82.5ppm/K).Therefore,defects in the lattice dominate electrical transportation.Some compositions exhibit Kondo-like behavior.At 300K,H-0.50,H-1.25,and H-2.00are ferromagnetic,while H-0.00,H-0.25,and H-0.75are paramagnetic.Al and AlNi-rich phases reduce the ferromagnetism of single FCC and single BCC H-x ,respectively.Spin glass behavior of some compositions is also observed.Alloys H-x are of the hole-like carrier type,and ferromagnetic H-x exhibits an anomalous Hall effect (AHE).© 2010 Elsevier B.V. All rights reserved.1.IntroductionThe first study on high-entropy alloys (HEAs)was published in 1996[1].Today,research into HEAs addresses their mechan-ical,anticorrosion,hydrogen storage [2],and thermophysical [3]properties,among others.Relevant results demonstrate that HEAs have simple microstructures in the form of a solid solution of multiple elements [4–6],a favorable capacity to form nano-scale precipitates [5,7],high thermal stability [8],superior extensive or compressive properties [9],extremely high hardness [10],excel-lent anticorrosive properties [11,12],and special thermophysical and magnetic properties [3].The crystallinity of HEAs is commonly simple,even though they are comprised more than five elements.The simple crystal lattices exhibit both the individual characteris-tics of their constituents and collective characteristics.For example,they exhibit the collective mechanical and thermal properties of a solid solution,but the anticorrosion performance of its individual constituent elements.∗Corresponding author at:Center for Nanotechnology,Materials Science,and Microsystems (CNMM),National Tsing Hua University,101Kuang Fu Road Sec.2,Hsinchu 30013,Taiwan,ROC.Tel.:+88635742569;fax:+88635713113.E-mail address:skchen@.tw (S.-K.Chen).Understanding the physical properties,including electrical,magnetic,and thermal properties,of HEAs can help in understand-ing their lattice.The magnetic property of CoCrCuFeNiTi x alloys [13]has been studied.The FCC solid solutions that comprise in CoCrCuFeNi and CoCrCuFeNiTi 0.5alloys exhibit typical paramag-netism,whereas CoCrCuFeNiTi 0.8and CoCrCuFeNiTi alloys exhibit superparamagnetism,which is attributable to the embedding of nanoparticle assemblies in the amorphous phase with the addi-tion of Ti.Al x CoCrFeNi alloys have been widely studied to elucidate their microstructural and mechanical [4],anticorrosive [11],and thermally expansive [3]properties.However,their electrical and magnetic properties are still not fully understood.This investiga-tion,which extends another,[4],aims to study the electrical and magnetic properties of Al x CoCrFeNi alloys by measuring resistiv-ity,magnetization,and the Hall effect.The values of the relevant parameters obtained using these three methods will be compared with each other,to provide insight into the physical properties of Al x CoCrFeNi alloys.2.Experimental detailsA total of 40–50g of Al,Co,Cr,Fe,and Ni with purities of greater than 99.5%was used to prepare Al x CoCrFeNi (0≤x ≤2)alloys using a vacuum arc-remelter.After the alloys were re-melted,they were turned over and the process was repeated at least three times to ensure that the alloys were completely mixed.As-cast alloys were0925-8388/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.jallcom.2010.10.2101608Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–1614Fig.1.Drawing for the x interval associated with phase boundary for alloys C-x ,H-x ,and D-x .heated to 1100◦C at 20◦C per min and held at that temperature for 24h.The samples were then quenched in water.These heated and quenched samples are called as-homogenized ones herein,except where otherwise specified.The as-homogenized samples were cold-deformed by a DBR250two-high rolling mill to reduce their thickness by 75%.Cracks appeared in the samples with molar ratios of Al of more than 0.875(x >0.875)because they had high hardness.Therefore,the as-deformed samples were those with 0≤x ≤0.875in this investigation.Here,C-x ,H-x ,and D-x represent as-cast,-homogenized,and -deformed Al x CoCrFeNi (0≤x ≤2)alloys,respectively.Melt-spun samples with x =0.25,M-0.25,were also prepared and their resistivity was measured and compared.The samples were cut using a diamond cutter into pieces with a thickness of 2mm,and then ground to a thickness of less than 500m,using smaller-number sandpaper,to enable their resistivity to be mea-sured.An EG &G Model 5210Dual Phase Lock-in Amplifier was used to measure the resistance by the four-point probe method.To measure the resistivity of the sam-ples at low temperatures,the samples were gradually sunk into liquid helium in a Dewar flask,and their resistance was continuously measured between 300and 4.2K.A superconducting quantum interference device magnetometer MPMS5(SQUID),from American Quantum Design,was used to measure the magnetic properties of the samples,including the hysteresis loop (M –H curve)and the magnetization vs.temperature curve (M –T curve).The two states in which the M –T curves were measured were the zero-field cooling (ZFC)and field cooling (FC)ones.The hys-teresis loops were measured at 300,50,and 5K.The M –T curves of 5–150K were measured in a magnetic field of 100Oe.The manipulating current that was used to measure the Hall effect was 10mA;the applied magnetic field was up to ±9T,and the temperature range was 5–300K.Fig.2.(a)Experimental data of (T )for alloys C-x ,(b)alloys H-x ,and (c)alloys D-x ,and (d)alloy Al 0.25CoCrFeNi at various conditions.Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–161416093.Results and discussion3.1.Microstructure of alloys C-x,H-x,D-x,900◦C-homogenizedH-0.25,and M-0.25As shown in Fig.1,the structures of the alloys C-x,H-x,and D-x, (with increasing amount of Al,given by x)are single FCC,duplex FCC–BCC,and single BCC,respectively.Al is a BCC stabilizer in Al x CoCrFeNi alloys.The ranges of x in which the alloys C-x,H-x, and D-x are in a duplex phase are0.45≤x≤0.88,0.30≤x≤1.17, and0.30≤x≤0.875,respectively[4].Alloys900◦C-homogenized-H-0.25and M-0.25comprise duplex FCC-AlNi-rich precipitate BCC and single FCC,respectively.3.2.Electrical properties3.2.1.Highly concentrated point defects in lattice of HEAsFig.2(a)–(c)presents resistivity data for alloys C-x,H-x(x=0–2.00),and D-x (x =0–0.875),respectively,from 4.2 to300K.Table1lists the resistivity at 4.2K( 0),resistiv-ity at300K( 300),residual resistivity ratio(RRR),defined as 0/ 300,and temperature coefficient of resistivity(TCR)defined as ( 300− 150)/[ 150(300−150)].Studies[4,14]have shown that Al is a strong BCC former and can promote atomic bonding in high-entropy alloys(HEAs). Therefore,the mechanical property[15],wear behavior[16], and anti-corrosion ability[17]are closely related to the Al con-tent.However,no linear relationship between resistivity and x is observed in Fig.2(a)–(c),indicating that the microstructure is not the only factor that affects the electrical resistivity of this alloy system.The ranges of the 0values of alloys C-x,H-x,and D-x are111.06–196.49,93.78–162.77,and120.48–162.05 cm, respectively.The 0values of amorphous AlCoCrCu0.5FeNi[18] and Nd–Fe–B[19]alloys are289and250 cm,respectively; the 0values of crystallized ternary Ni75Fe17Cr8,Ni75Fe13Cr12, and Ni68Fe17.5Cr14.5alloys are58.1,89.6,and92.4 cm,respec-tively[20].The 0values of the quinary alloys of interest herein exceed those of the aforementioned traditional crystalline alloys,Table1Electrical properties: 0(resistivity at4.2K), 300K(resistivity at300K),RRR(resid-ual resistivity ratio),and TCR(temperature coefficient of resistivity)for alloys C-x, H-x,and D-x.Alloys 0( cm) 300K( cm)RRR TCR(150–300K)(ppm/K)C-0118.61141.83 1.20620C-0.25111.06124.76 1.12438C-0.375125.46141.01 1.12416C-0.50123.05135.18 1.10338C-0.75142.05162.87 1.15508C-0.875123.73142.97 1.16597C-1.00185.60220.82 1.19703C-1.25132.32167.41 1.27927C-1.50125.37153.41 1.22816C-2.00196.49211.29 1.08227H-0123.84146.59 1.18619H-0.2599.88111.22 1.11388H-0.37593.78106.00 1.13444H-0.50100.67113.06 1.12390H-0.75115.68132.34 1.14479H-0.875103.33120.87 1.17584H-1.00162.77189.56 1.16581H-1.25144.96166.71 1.15586H-1.50126.55145.01 1.15508H-2.00158.68163.28 1.0382.5D-0162.05192.73 1.19645D-0.25133.30150.28 1.13432D-0.375120.48138.18 1.15481D-0.50132.68148.96 1.12417D-0.75130.19148.32 1.14463D-0.875146.17162.21 1.11369but are less than those of amorphous alloys.Electron transporta-tion is usually associated with the‘orderliness’of a lattice.The above discussion suggests that the orderliness of the lattices of the studied alloys is between that of an ordered structure(traditional crystalline alloys)and that of a disordered structure(amorphous alloy).HEAs exhibit long-range order but seemingly less degree short-range order in the sense of a single lattice.With respect to electronic conduction,quinary HEAs are metallic(see below)Table2Coefficients offitted curves based on the formula = 0+A ln(T)+BT2+CT3for C-x,H-x,and D-x at low temperatures.Alloys Range offit(K) 0( cm)A(10−2 cm)B(10−5 cm K−2)C(10−6 cm K−3)C-0 4.2–20118.71–7560C-0.258.4–33.6111.60−5.8048–C-0.37510.8–23.1126.58−44.41166–C-0.507.4–29.4123.62−23.9175–C-0.75 4.2–20142.21–81–C-0.875 4.2–20123.86–– 6.81C-1.00 4.2–20186.18––60C-1.25 4.2–20132.48–9820C-1.50 4.2–20125.80–31–C-2.009.8–39.2197.21−3.2535–H-0 4.2–20124.19–4620H-0.25 6.3–24.9100.08−7.5040–H-0.375 5.9–23.694.45−19.9377–H-0.50 4.8–19101.91−46.11217–H-0.75 4.2–14.6115.93−13.47136–H-0.875 4.2–16104.40−65.871365–H-1.00 5.3–21.1163.31−23.22195–H-1.258.9–39.9145.45−8.805 5.86H-1.50 5.4–21.8127.34−21.83–50H-2.0016.5–65.9161.05−76.06360.17D-0 4.2–20162.21–185–D-0.25 4.2–20133.56––20D-0.375 4.4–17.8121.17−31.03176–D-0.50 4.2–20132.94––20D-0.75 4.2–20130.40––60D-0.875 4.2–20146.53–––1610Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–1614Fig.3.Residual resistivity( 0)for the alloy Al0.25CoCrFeNi at as-cast,-homogenized (900and1100◦C),-cold-deformed(50%and75%reduction in thickness),and-melt spun states.but have highly-concentrated point defects,resulting from multi-principal elements in a pseudo-unitary lattice(PUL)cell.The RRR values range from1.03to1.27,as indicated in Table1.Accordingly, electronic transportation in the alloys of interest is dominated by the defects from4.2to300K,the defects in the lattice of alloys dominate electronic transportation therein.Additionally,the TCR value of H-x in Table1is low(82.5ppm/K),because of the lesser orderliness of each lattice.3.2.2.Resistivity of alloys FCC C-0.25,H-0.25,and D-0.25Fig.2(d)plots data on the resistivity of alloys C-0.25,H-0.25 (900and1100◦C),D-0.25(50%and75%reductions)and M-0.25 from4.2to300K.Fig.3reveals that the 0values increase in the order1100◦C-homogenized H-0.25,C-0.25,50%reduction-D-0.25,75%reduction-D-0.25,M-0.25,and900◦C-homogenized H-0.25.Greater deformation or a higher quenching/cooling rate corresponds to more introduced defects,and higher 0values. The900◦C-homogenized H-0.25has a relatively high 0.This is associated with a small amount of BCC AlNi-rich precipitate[21]. Additionally,the 0of D-0.25after75%cold deformation slightly exceeds that of D-0.25after50%cold deformation.3.2.3.Kondo-like behaviorThe dependence of resistivity of temperature is not simple, because it usually involves several effects over several tempera-ture ranges.Conduction electrons usually interact with phonons at high temperatures,such as300–1000K,and the dependence in this temperature range is ∝T[20,22,23].Conduction electrons usually interact with magnetic atoms in the alloys at interme-diate temperatures,such as100–300K,and ∝T2.When the temperature declines to0–50K,phonon(T3),magnetic(T2),and electron–electron interaction(T1/2)effects occur simultaneously [20].Hence,suitable temperature ranges must be carefully selected to study the influence of temperature on the effects of all of the above phenomena.Experiments have shown two typical features of electrical con-ductivity at low temperatures.They are residual resistivity(equal to 0,as described in Section3.2.)and the Kondo effect[24].Residual resistivity is the resistivity that is caused by the scattering of elec-tron waves by static defects that disturb the periodicity of the lattice [22].According to Matthiessen’s rule,the net resistivity is given by = L+ i,where L represents the resistivity that is caused by the thermal phonons,and i is the residual resistivity.Therefore, i(0) is the extrapolated resistivity to0K because L is commonly inde-pendent of the number of defects when the defect concentration is weak,and is usually proportional to the temperature.There-fore, L vanishes as T approaches0K.The Kondo effect,however,Table3Coefficients offitted curves based on the formula = 0+BT2+DT for C-x,H-x,and D-x at temperatures in the range of100–300K.Alloys Range offit(K)0( cm)B(10−5 cm K−2)D(10−2 cm K−1)C-0120–300117.98–8.48100–120120.9125 2.90C-0.25100–300110.09– 4.98C-0.375130–300125.03– 5.39100–130126.2715 2.29C-0.50150–300122.70– 4.42100–150122.022 4.44C-0.75200–300142.82– 6.89100–200139.240.878.39C-0.875200–300119.45–7.86100–200121.216 5.82C-1.00200–300181.39212.49100–200180.72312.53C-1.25150–300128.10–13.45100–150129.091410.67C-1.50150–300120.75–10.96100–150122.40108.48C-2.00180–300200.24– 3.71100–180189.41– 5.82H-0100–300122.30–8.21H-0.25100–30098.84– 4.28H-0.375100–30093.00– 4.39H-0.50150–300101.17– 4.12100–150100.213 4.16H-0.75150–300115.27– 6.01100–150114.948 4.94H-0.875100–300102.50– 6.14H-1.00100–300160.37–9.83H-1.25200–300140.46–8.88100–200141.0438.07H-1.50100–300125.29– 6.83H-2.00180–300160.72–0.85100–180159.11– 1.76D-0120–300160.07–11.00100–120159.63–11.16D-0.25100–300131.80– 6.31D-0.375150–300120.76– 5.80100–150119.963 5.81D-0.50120–300132.29– 5.54100–120132.4415 3.43D-0.75130–300130.40– 6.08100–130130.0612 4.62D-0.875100–300145.82 5.7 5.24vanishes at high temperatures,but localized spinfluctuation and RKKY interaction[22]increase resistivity at low temperatures.The Kondo effect commonly arises in dilute alloy systems.Although HEAs are not dilute,they exhibit a Kondo-like behavior,which will be discussed in the following section.In Fig.2(a)–(c),two formulae are applied tofit (T).At low temperatures(4.2–66K), = 0+A ln(T)+BT2+CT3is used to model Kondo-like(A),magnetic(B),and low-temperature phonon(C) effects.At intermediate temperatures(100–300K),thefitting for-mula, = 0+BT2+DT,where B and D are the coefficients of magnetic and phonon effects,respectively,is utilized.The Kondo-like effect is usually considered[25]to be proportional to lnT at low temperatures,such that / min∝ln T.Tables2and3dis-play the results offitting.Alloys C-x(x=0.25–0.50,and2.00),H-x (x=0.25-2),and D-0.375exhibit Kondo-like behavior.At low tem-peratures,B is clearly one to two orders of magnitude higher than at intermediate temperatures.A is always negative in Kondo-like samples,and larger absolute values of A are associated with a stronger Kondo-like effect,especially in H-2.00.The magnetic contribution,T2,competes with the Kondo-like effect.When the magnetic contribution greatly exceeds the Kondo-like effect,resis-tivity remains constant with a change in temperature and levels off at low temperatures.The Kondo-like and the magnetic effectsY.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–16141611Fig.4.Magnetization vs.magneticfield(M–H)curves from SQUID at5,50,and300K for(a)H-0,(b)H-0.25,(c)H-0.50,(d)H-0.75,(e)H-1.00,(f)H-1.25,and(g)H-2.00.in H-x slightly increase with temperature at low temperatures,but the magnetic and phonon effects decrease with increasing temper-ature at intermediate temperatures.Evaluating the phonon effect at low temperatures,T3,is difficult,because it is extremely small and frequently mixed with a magnetic effect,T2[20].3.3.Magnetic properties of alloys H-xFig.4(a)–(f)plot SQUID data for alloys H-x,respectively,at5, 50,and300K.Table4presents the related magnetic parameters of alloys H-x.In the next two sections,most of the factors that are related to the magnetic property of alloys H-x,are associated with (i)the crystal structure and(ii)the Al or AlNi-rich phase.First,the results that are explained by the crystal structure are discussed.Table4reveals that all H-x alloys are ferromagnetic at low temperatures(5and50K).Additionally,the saturation mag-netization(M s)of alloys H-1.25and H-2.00exceeds that of alloys H-0and H-0.25,indicating that at low temperatures,the BCC phase has a higher M s value than the FCC phase.At room temperature (300K),alloys H-0.50,H-1.25,and H-2.00remain ferromagnetic, while alloys H-0,H-0.25,and H-0.75are paramagnetic.The esti-mated Curie temperatures(T C)are taken from the curves of the reciprocal of magnetic susceptibility( −1)against temperature.Table4shows no regular relationship between T C and x for alloys H-0,H-0.25,and H-0.50.Next,M s,to which both BCC and FCC phases contribute,is estimated when0.5≤x≤0.75.The M s of the two phases at5K can be calculated numerically as follows:M s=X FCC M s,FCC+X BCC M s,BCC(1) where X FCC,M s,FCC,X BCC,and M s,BCC are the volume fraction of FCC, the saturation magnetization of FCC,the volume fraction of BCC, and the saturation magnetization of BCC,respectively.However, X FCC and X BCC can be obtained from thefitting of hardness[4]. Therefore,the above equation can be rewritten as,140.11=0.7551M s,FCC+0.2449M s,BCC(for H-0.50)(2) 119.93=0.5765M s,FCC+0.4235M s,BCC(for H-0.75)(3) Accordingly,M s,FCC=167.78(emu cm−3)and M s,BCC=54.79 (emu cm−3).The reason for the result M s,BCC<M s,FCC is ascribed to the existence of Al or AlNi-rich phase as discussed further in the following paragraph.The results for which the Al or AlNi-rich phase are responsible is discussed.The M s value declines as x increases in the ranges 0≤x≤0.25and1.25≤x≤2.00,as indicated in Table4.The M s and magnetic susceptibility( −1)values of alloy H-0are smaller than those of alloy H-0.25,implying that Al reduces the ferromagnetism1612Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–1614Table4A list of magnetic properties at5K,50K,and300K for alloys H-x.Temperature Parameters H-0(FCC)H-0.25(FCC)H-0.50(FCC+BCC)H-0.75(FCC+BCC)H-1.25(BCC)H-2.00(BCC) 5K State Ferro.Ferro.Ferro.Ferro.Ferro.Ferro.H(B)0.250.180.170.150.670.29M s(emu cm−3)203.65144.08140.11119.93529.83228.46M r(emu cm−3)0.948.549.48 6.9013.879.53H c(Oe) 2.2430.08137.9571.3176.4630.92S=M r/M s a,×10−20.464 5.930 6.770 5.750 2.620 4.17050K State Ferro.Ferro.Ferro.Ferro.Ferro.Ferro.H(B)0.190.110.140.090.660.27M s(emu cm−3)159.1490.84113.8069.60521.73212.22M r(emu cm−3)0.180.280.6990.36 6.790.70H c(Oe)0.58 4.479.50 4.5636.59 2.35S=M r/M s,×10−20.1130.3080.6140.517 1.3000.330300K State Para.Para.Ferro.Para.Ferro.Ferro.H(B)–b–0.04–0.380.08(10−4emu Oe−1cm−3) 5.1 3.15–8.37––M s(emu cm−3)––36.36–301.3561.79M r(emu cm−3)––0.013– 3.080.43H c(Oe)––0.524–17.8 5.15S=M r/M s,×10−2––0.036– 1.0200.696Estimated T c(K)12090335200440375T f c(K)3510–10–40a“S”means squareness of the loop.b“–”means not detectable.c“T”is the temperature below which the magnetic state is spin glass in M vs.T curves measured in5–150K.fFig.5.Magnetization vs.temperature(M–T)curves under FC and ZFC conditions at100Oe for(a)H-0,(b)H-0.25,(c)H-0.50,(d)H-0.75,(e)H-1.00,(f)H-1.25,and(g)H-2.00.Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–16141613Table5Parameters of Hall effect measurements at9T for H-x.Parameters Temperature(K)H-0.25(FCC)H-0.50(FCC+BCC)H-0.75(FCC+BCC)H-1.00(FCC+BCC)H-1.25(BCC)Carrier type–Hole Hole Hole Hole HoleDensity(g cm−3)–7.927.807.587.10 6.83 Molecular weight–54.6453.1151.7350.4949.37Carrier density a(1022cm−3)5 3.87413.288 6.416 4.39410.840300 5.7678.298 3.339 2.718 1.436 Carrier mobility(cm2V−1s−1)5 1.610.460.840.870.403000.920.67 1.41 1.21 2.61 Valency50.446 1.5240.7510.518 1.2893000.6640.9630.3910.3210.171 Radius coefficient5 3.46 2.30 2.93 3.32 2.46300 3.03 2.69 3.64 3.90 4.82Fermi wave vector b(108cm−1)5 1.048 1.58 1.24 1.093 1.476300 1.196 1.3510.9970.9310.753Fermi velocity c(108cm s−1)5 1.212 1.828 1.434 1.264 1.708300 1.384 1.563 1.154 1.0770.871Fermi energy d(eV)5 4.179.49 5.84 4.548.29300 5.44 6.94 3.78 3.30 2.15Fermi temperature(104K)5 4.84811.028 6.787 5.2749.628300 6.3228.057 4.391 3.828 2.502 Relaxation time(10−14s)50.0780.0240.0420.0430.0203000.0520.0380.080.0690.148Mean free path(10−7cm)50.9420.4310.5960.5370.3343000.7230.5900.9220.739 1.284a Carrier density is defined as N/V.b k F=(3 2N/V)1/3.c v F=( /m)(3 2N/V)1/3.dεF= 2k F2/2m.of the FCC phase alloys(0≤x≤0.25).According to a study of Alnico magnets[26],the AlNi-rich phase exhibits weak ferromagnetism. In one study[4],H-2.00contained an AlNi-rich ordered BCC phase. Hence,the fact that the M s value of H-2.00is smaller than that of H-1.25,which has no AlNi-rich ordered BCC phase,is unsurprising.In summary,Al reduces the ferromagnetism of single-FCC and single-BCC alloys H-x,by forming Al and AlNi-rich phases,respectively.In Fig.5(a)–(b)and(d)–(f),the maximum magnetization can be observed at5–40K.This reentrant spin glass behavior occurs at the freezing transition point(T f)at which electronic spins are frozen.3.4.Hall effect of alloys H-xThe Hall effect measurements are made in alloys H-0.25(FCC), H-0.50(duplex),H-0.75(duplex),H-1.00(duplex),and H-1.25 (BCC).Fig.6(a)–(b)present data on the Hall resistivity( H)of the H-x samples at5and300K,respectively.Table5presents the related parameters.Both the ordinary Hall effect(OHE)and the anomalous Hall effect(AHE)can be observed because of the ferromagnetism of the samples.Fig.6plots Hall resistivity( H)against magneticfield at5 and300K,and reveals an obvious covariation of AHE and OHE.For alloys H-0.25and H-0.75,at temperatures above the Curie temper-ature(300K),only OHE occurs,while at temperatures below the Curie temperature(5K),AHE clearly occurs.For H-1.25,the Curie temperature exceeds300K,and the curve at300K is shifted from that of5K since the magnetization is lower at300K.For AHE,the Hall resistivity H can be expressed as,H=R0B+4 M s R s(4) where R0is the ordinary Hall coefficient;B is the magnetic induc-tion;M s is the saturation magnetization,and R s is the anomalous Hall coefficient.R0B is the Lorentz force that acts on the conduc-tion electrons,and the second term is attributable to the spin-orbit interaction[27–29]in a ferromagnet.The values of R s M s and R0 are obtained from the intercept and the slope,respectively,and the relatedfitting results are listed in Table6.Notably,the M s values of the samples are obtained from the SQUID data in Section3.3.Only the ferromagnetic samples yield R s values in Table6,revealing that AHE dominates in ferromagnetic materials.Additionally,values of R s at5K are close to those at300K,and this result shows that R s is almost independent of temperature.Graphical analysis yields% of OHE and%of AHE,%OHE and%AHE,can be obtained.The relevant equations are as follows:%OHE=R0B/(R0B+4 M s R s)(5) %AHE=1−%OHE(6)Table6R0(ordinary Hall coefficient),R s(anomalous Hall coefficient),%OHE(%of OHE),and%AHE(%of AHE)at5K and300K for alloys H-x. Alloys5K300KR0(10−11m3A−1s−1)R s M s(10−10V m2A−2)R s(10−8m3A−1s−1)%OHE(%)%AHE(%)R0(10−11m3A−1s−1)R s M s(10−10V m2A−2)R s(10−8m3A−1s−1)%OHE(%)%AHE(%)H-0.2516.1137.62 2.0723.4676.5410.82−1.15–1000H-0.50 4.7026.28 1.4911.3588.657.52−7.53−1.64NA b NA b H-0.759.7337.23 2.4615.7784.2318.709.23–1000H-1.0014.2180.05NA a11.2888.7222.97−33.66NA a NA b NA b H-1.25 5.76144.98 2.17 2.7097.3043.4696.89 2.55 3.4096.60a“NA”means“not available”,because H-1.00is paramagnetic at both5K and300K.b Calculation of R s is omitted when R s M s is negative.1614Y.-F.Kao et al./Journal of Alloys and Compounds509 (2011) 1607–1614Fig.6.Hall measurements using magnetic field 1–9T for H-x (x =0.25,0.50,0.75,1.00,1.25)at 5K (a)and 300K (b).Table 6presents %OHE and %AHE at 9T.Clearly,%OHE exceeds %AHE at 300K because H-x exhibits weaker ferromagnetism at 300K than at 5K.The %AHE at 5K is approximately equal to the satura-tion magnetization,M s ,at 5K in Table 6.Samples with higher M s ,especially H-1.25,have higher %AHE ,indicating that more strongly ferromagnetic samples have higher %AHE ,and so %AHE depends on the magnetism.The results in Fig.6support this conclusion.The Hall resistivity of alloys H-x is positive,as shown in Fig.6.These alloys are similar to Glassy TE-TL alloys [30].The carriers in these samples are hole-like,although in some cases,the carriers are electron-like [31].Based on H and (the resistivity data in Section 3.2.),the related parameters of the Hall effect,presented in Table 5,can be obtained.The carrier density in a high-entropy alloy system H-x (1022–23cm −3)is similar to that in conventional alloys.However,the H-x high-entropy alloy system has lower carrier mobility (0.40–2.61cm 2V −1s −1)than conventional alloys with the same carrier density,because HEAs have heavier lattice defects than conventional alloys.This explanation warrants further study.4.ConclusionsThe values of 0at 4·2K for alloys C-x ,H-x ,and D-x are 111.06–196.49,93.78–162.77,and 120.48–162.05 cm,respec-tively.They are larger than those of conventional alloys with the same carrier density,but smaller than those of amorphous alloys.The RRR values range from 1.03to 1.27.Therefore,the defects in the lattice dominate the electronic transportation in the studied alloy system.These facts imply that the density of defects in a single lat-tice in these high-entropy alloys is less than in amorphous alloys,but greater than in conventional alloys.The presented TCR value of H-2.00is small (82.5ppm/K).The fitted (T )reveals that some compositions exhibit Kondo-like behavior.The single BCC structure in the alloy system has a high M s value at low temperatures.At 300K,alloys H-0.50,H-1.25,and H-2.00are ferromagnetic,while alloys H-0.00,H-0.25,and H-0.75are para-magnetic.Al and AlNi-rich phases reduce the ferromagnetism of single FCC and single BCC H-x alloys,respectively.Some of the com-positions of interest in this investigation exhibit spin glass behavior.Alloys H-x are of the hole-like carrier type.More strongly fer-romagnetic alloys have higher %AHE ,and an anomalous Hall effect (AHE)that depends more strongly on magnetism.The carrier den-sity of H-x (1022–23cm −3)is similar to that of conventional alloys.Alloys H-x have a low carrier mobility (0.40–2.61cm 2V −1s −1),which is associated with the heavier lattice defects of HEAs than of the conventional alloys with the same carrier density.AcknowledgementSKC would like to thank the financial support of this research from the National Science Council of the Republic of China,Taiwan,under the Contract No.NSC96-2221-E007-066-MY3.Ted Knoy is appreciated for his editorial assistance.References[1]K.H.Huang,A Study on the Multicomponent Alloy Systems Containing Equal-mole Elements,M.S.thesis,Department of Material Science and Engineering,NTHU,Taiwan,1996.[2]Y.F.Kao,S.K.Chen,J.H.Sheu,J.T.Lin,W.E.Lin,J.W.Yeh,S.J.Lin,T.H.Liou,C.W.Wang,Int.J.Hydrogen Energy 35(2010)9046–9059.[3]H.P.Chou,Y.S.Chang,S.K.Chen,J.W.Yeh,Mater.Sci.Eng.B163(2009)184–189.[4]Y.F.Kao,T.J.Chen,S.K.Chen,J.W.Yeh,J.Alloys Compd.52(2009)1026–1034.[5]C.J.Tong,Y.L.Chen,S.K.Chen,J.W.Yeh,T.T.Shun,C.H.Tsai,S.J.Lin,S.Y.Chang,Metal.Mater.Trans.A36(2005)881–893.[6]J.W.Yeh,Ann.Chim.Sci.Mater.31(2006)633–648.[7]J.W.Yeh,S.K.Chen,S.J.Lin,J.Y.Gan,T.S.Chin,T.T.Shun,C.H.Tsau,S.Y.Chang,Adv.Eng.Mater.6(2004)299–303.[8]S.Varalakshmi,M.Kamaraj,B.S.Murty,Mater.Sci.Eng.A527(2010)1027–1030.[9]Y.J.Zhou,Y.Zhang,Y.L.Wang,G.L.Chen,Appl.Phys.Lett.90(2007)181904–181906.[10]K.C.Hsieh,C.F.Yu,W.T.Hsieh,W.R.Chiang,J.S.Ku,i,C.P.Tu,C.C.Yang,J.Alloys Compd.483(2009)209–212.[11]Y.F.Kao,T.D.Lee,S.K.Chen,Y.S.Chang,Corros.Sci.52(2010)1026–1034.[12]Y.Y.Chen,U.T.Hong,H.C.Shih,J.W.Yeh,T.Duval,Corros.Sci.47(2005)2679–2699.[13]X.F.Wang,Y.Zhang,Y.Qiao,G.L.Chen,Intermetallics 15(2007)357–362.[14]W.Y.Tang,J.W.Yeh,Metall.Mater.Trans.A 40(2009)1479–1486.[15]S.T.Chen,W.Y.Tang,Y.F.Kuo,S.Y.Chen,C.H.Tsau,T.T.Shun,J.W.Yeh,Mater.Sci.Eng.A 527(2010)5818–5825.[16]J.M.Wu,S.J.Lin,J.W.Yeh,S.K.Chen,Y.S.Huang,H.C.Chen,Wear 261(2006)513–519.[17]C.P.Lee, C.C.Chang,Y.Y.Chen,J.W.Yeh,H.C.Shih,Corrs.Sci.50(2008)2053–2060.[18]M.H.Cai,Study on the Microstructure and Electrical Properties Evolution ofHigh-Entropy Alloy Thin Films,M.S.thesis,Department of Material Science and Engineering,NTHU,Taiwan,2003.[19]T.Saito,J.Alloys Compd.505(2009)23–28.[20]S.Chakraborty,A.K.Majumdar,J.Magn.Magn.Mater.186(1998)357–372.[21]A.A.Al-Aql,Mater.Des.24(2003)547–550.[22]C.Kittel,Introduction to Solid State Physics,8th ed.,Wiley,New York,2005.[23]P.J.Cote,L.V.Meisel,Phys.Rev.Lett.39(1977)102–105.[24]J.Kondo,Prog.Theo.Phys.32(1964)37–49.[25]B.Shen,Q.Guo,Y.Gong,W.S.Zhan,J.G.Zhao,J.Appl.Phys.81(1997)4661–4663.[26]B.D.Cullity,Introduction to Magnetic Materials,Addison-Wesley,Reading,Massachusetts,1972.[27]L.Berger,G.Bergmann,in:C.L.Chien,C.R.Westgate (Eds.),The Hall Effect andIts Applications,Plenum Press,New York and London,1980.[28]J.Smit,Physica 16(1951)612–627.[29]L.Berger,Phys.Rev.B 2(1970)4559–4566.[30]H.Beck,H.-J.G ˝untherodt (Eds.),Glassy Metals III,Topics in Applied Physics,vol.72,Springer,Berlin,1994.[31]P.C.Chu,Hall effect and related electrical and magnetic properties in variousquinary and senary high-entropy alloys selected from Al,Co,Cr,Fe,Ni,and Ti,M.S.thesis,Department of Material Science and Engineering,NTHU,Taiwan,2009.。