Stellite_Alloys_司太立合金使用手册
- 格式:pdf
- 大小:3.12 MB
- 文档页数:15
Stellite6物理和力学性能司太立6的硬度是多少Stellite 6产品概述STL6是STELLITE6的缩写,STELLITE6合金是一种钴基合金,用于磨损环境,防咬死,防磨损,防摩擦。
合金的摩擦系数很低,能和其他金属产生滑触,在多数情况下不会产生磨损。
即使不用润滑剂,或者不能用润滑剂的应用中,合金可以把咬死和磨损降至最低。
该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的,并具有良好的性能以及加工性能、焊接性能良好。
Stellite 6化学成分Stellite 6物理和力学性能Stellite 6焊接焊前预备工序:(1) 用氧-乙炔火焰加热需返修叶片的钎焊司太立合金片,取下合金片,并打磨原钎焊部位,去除钎料(包含掉落司太立合金片的叶片);(2) 电动砂轮打磨进汽侧水蚀区域,使之露出金属光泽,边缘部位应圆滑过渡,不得有尖角,尽量去除水蚀痕迹;(3) 用放大镜检查焊接区域,若有缺点,打磨去除缺点,并用上色探伤确认缺点已去除干净后再进行下道工序;(4)用丙酮清洗干净水蚀区域,去除油、锈等污物。
上海叶钢金属集团有限公司仓库一角Stellite 6耐热耐磨性能特点Stellite耐热耐磨合金的材质硬度HRC40到HRC65,耐热温度600℃到1200摄氏度。
相比较镍基合金与铁基合金,Stellite合金的耐冷热疲劳性能更加卓越。
同时,钴基合金的热硬度也更具优势,即随着温度的升高,钴基合金的硬度下降得更为缓慢。
上海叶钢金属集团有限公司上海叶钢金属集团有限公司Stellite 6耐热耐磨硬质合金强化方式通过碳化物或金属间化合物强化,碳化物强化的钴铬钨系列,如Stellite6B,Stellite6K,Stellite1,Stellite4,Stellite12,Stellite20,Stellite100等;碳化物强化的钴铬钼系列,如stellite703;金属间化合物强化的,如TRIBALOY T-400,TRIBALOY T-800;Stellite 6应用领域合金可用于制造阀门零件, 泵柱塞, 蒸汽机防腐蚀罩, 高温轴承, 阀杆,食品加工设备, 针阀,热挤模具, 成型磨具等.上海叶钢→Stellite 6镍合金,→上海叶钢 Stellite 6钢材,上海叶钢→Stellite 6不锈钢,→上海叶钢 Stellite 6价格,上海叶钢→Stellite 6耐高温,→上海叶钢 Stellite 6圆棒,上海叶钢→Stellite 6耐腐蚀,→上海叶钢 Stellite 6圆钢,上海叶钢→Stellite 6密度,→上海叶钢 Stellite 6薄板,上海叶钢→Stellite 6硬度,→上海叶钢 Stellite 6卷板,上海叶钢→Stellite 6抗拉强度,→上海叶钢 Stellite 6材料上海叶钢→Stellite 6屈服强度,→上海叶钢 Stellite 6材质上海叶钢→Stellite 6多少钱一公斤,→上海叶钢 Stellite 6棒材上海叶钢→Stellite 6钢板,→上海叶钢 Stellite 6板子上海叶钢→Stellite 6板材,→上海叶钢 Stellite 6钢带上海叶钢→Stellite 6带材,→上海叶钢 Stellite 6厚板上海叶钢→Stellite 6法兰,→上海叶钢 Stellite 6弯头上海叶钢→Stellite 6三通,→上海叶钢 Stellite 6锻件上海叶钢→Stellite 6焊丝,→上海叶钢 Stellite 6焊条上海叶钢→Stellite 6线材,→上海叶钢 Stellite 6毛细管上海叶钢→Stellite 6无缝管,→上海叶钢 Stellite 6焊管上海叶钢→Stellite 6锻环,→上海叶钢 Stellite 6环件上海叶钢→Stellite 6焊材,→上海叶钢 Stellite 6多少钱一顿上海叶钢→Stellite 6什么价格,→上海叶钢 Stellite 6最高使用温度上海叶钢→Stellite 6厂家,→上海叶钢 Stellite 6现货上海叶钢→Stellite 6生产厂家,→上海叶钢进口Stellite 6。
『常见问题』:司太立(Stellite)合金系列有哪些?司太立(Stellite)合金合金是什么材质?司太立(Stellite)合金执行标准是什么?司太立(Stellite)合金抗拉强度是什么?司太立(Stellite)合金是什么价格?司太立(Stellite)合金屈服强度是什么?司太立(Stellite)合金对应什么牌号?司太立(Stellite)合金硬度是什么?『形态』:司太立(Stellite)合金棒材,司太立(Stellite)合金锻棒,司太立(Stellite)合金板材,司太立(Stellite)合金无缝管材,司太立(Stellite)合金带材,司太立(Stellite)合金卷材,司太立(Stellite)合金盘丝,司太立(Stellite)合金扁条,司太立(Stellite)合金圆棒,司太立(Stellite)合金厚板,司太立(Stellite)合金光棒,司太立(Stellite)合金圆钢,司太立(Stellite)合金圆饼,司太立(Stellite)合金焊丝,等可定制,司太立Stellite 12钴基耐磨合金:司太立(Stellite)是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。
即通常所说的钴基合金,司太立合金由美国人Elwood Hayness于1907年发明。
司太立合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶而也还含有铁的一类合金。
根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。
司太立合金铸件适用于核电、石化、电力、电池、玻璃、轻工、食品等诸多领域。
具有耐磨、耐蚀、抗氧化和耐高温特性。
常用的产品有阀芯、阀座、轴类、轴套、泵类部件,玻璃、电池模具、喷嘴及切割刀具等。
合金类别有:Co基合金铸件、Ni基合金铸件、Fe基合金铸件。
司太立粉末冶金制品采用钴基、镍基或铁基合金雾化粉末,经压制、烧结、精加工制成。
北京肯纳司太立合金成分标准一、引言合金材料是一种由两种以上的金属或者金属与非金属元素混合而成的材料,其具有优异的性能和广泛的应用领域。
肯纳司太立合金是一种在北京生产的优质合金材料,被广泛应用于航空航天、汽车制造、工程机械等高端领域。
为了确保产品质量和性能的稳定性,北京肯纳司太立公司制定了一套严格的合金成分标准,以保证产品在各种工况下的安全可靠性。
本文将对北京肯纳司太立合金成分标准进行全面、详细、完整和深入地探讨。
二、合金成分标准的重要性合金的成分决定了其性能和用途,合金成分标准的制定对于保证产品质量和满足用户需求非常重要。
2.1 提高产品性能合金的成分直接影响其硬度、强度、韧性、耐磨性等力学性能,通过合金成分的调整,可以提高产品的性能,使其更加耐用和可靠。
2.2 适应不同工作环境不同工作环境对合金材料的要求不同,例如在高温环境下工作的发动机零部件对耐高温性能要求较高,而在腐蚀性气候条件下使用的设备则对耐腐蚀性能有较高要求。
合金成分标准能够根据不同的工作环境要求,调整合金成分以满足不同应用领域的需求。
2.3 保证产品质量合金成分标准可以规范合金产品的生产过程,确保产品成分的一致性和稳定性,避免因为成分波动或混杂引起的材料性能不一致,从而保证产品质量。
三、北京肯纳司太立合金成分标准的制定为了确保肯纳司太立合金的质量和性能,北京肯纳司太立公司制定了严格的合金成分标准。
该标准主要包括以下几个方面的内容:3.1 主要合金元素北京肯纳司太立合金的主要成分包括铝、钛、镍、铬等元素,这些元素都具有优异的机械性能和耐腐蚀性能,能够满足产品在各种复杂工况下的使用需求。
3.2 合金元素含量范围北京肯纳司太立公司制定了合金元素含量的上下限,以确保产品的一致性和稳定性。
合金元素的含量范围是根据产品的使用环境和性能要求进行调整的,以使产品能够适应不同的应用场景。
3.3 杂质元素控制合金材料中的杂质元素可能对产品性能产生不良影响,因此需要对其进行控制。
上海司太立钴基焊条电焊条硬度化学成分(重量%)典型用途C Cr Si W Fe Mo Ni Co Mn B Cu其他Stellite 1 48 2.2029.002.0014.003.000.50 3.00Bal 1.00阀座、轴承、刀口等Stellite 6 40 1.0029.001.00 4.50 3.000.50 3.00Bal 1.00发动机气门、高温高压阀门、涡轮机叶片Stellite 12 44 1.3029.001.009.00 3.000.50 3.00Bal 1.00高温高压阀门、锯齿、螺旋推杆等Stellite 21 230.3028.001.00 2.50 5.50 2.50Bal 2.00涡轮机叶片、阀座、热冲模Stellite 25 冷硬0.1520.001.0014.003.000.5010.00Bal 1.50高温耐蚀密封面、挤压模Nistelle C 0.1017.00 5.00 6.0017.00Bal高温耐蚀密封环Ni-Mang 冷硬0.60 2.700.20Bal 3.7013.50锤式破碎机、高锰钢部件焊接STE 308-16 0.0819.500.90Bal0.5010.000.800.50用于焊接Cr18Ni8不锈钢STE 308L-16 0.0319.500.90Bal0.5010.000.800.50用于焊接超低碳Cr18Ni8不锈钢STE 309-16 0.1523.500.90Bal0.5013.000.800.50用于焊接Cr22Nil2不锈钢及用于不锈钢与低碳钢或低合金钢之间的焊接STE 309L-16 0.0223.500.90Bal0.5013.000.800.50打底层焊接,异种钢焊接,易产生裂纹部位的焊接STE 309Mo-16 0.1223.500.90Bal 2.5013.000.80用于焊接Cr22Nil2-Mo不锈钢STE309MoL-160.0323.500.90Bal 2.5013.000.80用于焊接超低碳Cr22Nil2Mo不锈钢STE 310-16 0.2026.500.75Bal0.5021.50 1.500.50用于焊接Cr25Ni20不锈钢STE 310Mo-16 0.0826.500.75Bal 2.5021.00 1.200.50耐硫酸腐蚀、抗裂性、高温性能优良STE 316-16 0.0518.500.90Bal 2.5012.500.800.50用于焊接Cr18Ni12Mo2不锈钢STE 316L-16 0.0318.500.90Bal 2.5012.500.800.50用于焊接超低碳Cr18Ni12Mo2不锈钢STE 316LF0.0218.000.75Bal 2.7016.00 2.000.50耐尿素腐蚀性优良STE 347-160.0819.500.50Bal0.5010.000.800.508xc-1.00用于焊接Cr18Ni8含铌或钛的不锈钢STE 997 560.60 5.500.80Bal 4.00W:7.00.70低氢型高速钢焊条D 287 400.1014.000.50Bal 1.00 5.000.50水泵、水轮机部件D 907冷硬0.2021.001.00 2.50Bal 3.0020.00 1.50热剪刀片。
司太立合金介绍
司太立(Stellite)是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。
即通常所说的钴基合金,司太立合金由美国人Elwood Hayness 于1907年发明。
司太立合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶而也还含有铁的一类合金。
根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。
1.铸棒
连铸生产线,直径为2.5-8.0mm的钴基、镍基系列合金,成分均匀,无偏析,杂质含量少,表面光洁,直径公差小,长度可自由选择,适合于氧乙缺焊和钨极氩弧焊工艺。
2.粉末
合金粉末适用工艺包括等离子堆焊、等离子喷涂、氧-乙炔喷焊、高频重熔、超音速喷涂及粉末冶金等。
3.管状焊丝
直径1.2mm-5.0mm、合金含量可≥50%的铁基、镍基、钴基、碳化钨、不锈钢等材料,用于埋弧焊、明弧焊、气体保护焊、线材电弧喷涂、氧-乙炔焊等的管状焊丝、焊棒。
可用于冶金、矿山、电力、机械等耐磨、耐蚀、耐高温场合。
4.电焊条
5.铸件
司太立合金铸件适用于核电、石化、电力、电池、玻璃、轻工、食品等诸多领域。
具有耐磨、耐蚀、抗氧化和耐高温特性。
常用的产品有阀芯、阀座、轴类、轴套、泵类部件,玻璃、电池模具、喷嘴及切割刀具等。
合金类别有:Co基合金铸件、Ni基合金铸件、Fe基合金铸件。
司太立粉末冶金制品采用钴基、镍基或铁基合金雾化粉末,经压制、烧结、精加工制成。
主要产品有阀杆、阀芯(球)、阀座、阀圈、密封环、木材锯齿、轴承泵、轴承球等。
镍基合金铸件。
IntroductionTitanium (Ti) alloys are well-known superalloys due to their high strength-to-weight ratio, excellent mechanical properties, corrosion and hightemperature resistance and biocompatibility. They are widely applied in various industries and application areas, such as biomedical, aerospace, marine and automotive industries, and in 3D-printing for implant manufacturing, with Ti-6Al-4V (also called TC4 or Ti64) being one of the most important titanium alloys. It is known that the chemical composition of alloys can influence their properties and grades. The concentrations of both the additive and impurityelements in the alloy need to be strictly controlled to ensure the material’s quality. For example, Al, V, Fe, Sn, and Cu in a Ti alloy can enhance high-temperature creep resistance, while Y and Pd can improve corrosion resistance and thermal stability.1-2 Therefore, accurate elemental analysis of Ti alloys is important in terms of metallurgy and product quality.In current national standards (e.g., ASTM E2371-13, China National Standard GB/T 4698 and industry standard HB 7716.13), inductively coupled plasma optical emission spectroscopy (ICP-OES) is the specified technique for the determination of elements in the concentration range from percent to ppm in alloys due to its advantages of high matrix tolerance, wide linear range and multi-element analysis capabilities.3-5Determination of Major and Trace Elements in Titanium Alloys Using the Avio Max 550 ICP-OESA P P L I C A T I O N N O T EAUTHOR Shuli ChengPerkinElmer Shanghai, ChinaICP-Optical Emission SpectroscopyAccording to the test standard method ASTM E2371, most types of Ti alloys can be dissolved in two acid mixtures: HF-HNO 3 or HCl-HF-HNO 3, where HCl is needed especially for alloys containing Mo, Pd and Ru. To compare the effectiveness of the digestion, the samples were digested with two acid mixtures: HF+HNO 3 (5:1) and HCl+HF+HNO 3 (2:3:1).Approximately 0.5 g of Ti64 alloy samples were weighed and placed into DigiTUBE ® digestion tubes, followed by deionized (DI) water and acids, as shown in Table 2. Due to the strong reactivity, all acids should be added dropwise. The DigiTUBEs were then gently heated in the Sample Preparation Block (PerkinElmer, Shelton, Connecticut, USA), until the samples were completely dissolved, according to the program in Table 3. The samplesolutions were cooled to room temperature and diluted to 100 mL with deionized water in a polypropylene volumetric flask. In addition, 1 g of pure Ti metal was digested with HF and HNO 3 and diluted to 50 mL. This solution contains 2.0 g/L of Ti for preparing matrix-matched standard solution.However, one of the challenges of analyzing Ti alloys with ICP-OES is spectral interference caused by matrix elements: Ti, Al, V and Fe. In this application, the major and trace elements in Ti64 alloy samples were analyzed with the PerkinElmer Avio ® 550 Max fully simultaneous ICP-OES, demonstrating its excellent capability of accurate measurement of complex matrix samples.ExperimentalSample PreparationSamples consisted for NIST 173c Titanium Alloy UNS R56400 (National Institute of Standards and Technology, Bethesda, Maryland, USA) and an unknown Ti64 powder. NIST 173c was used for method development and accuracy validation; thecertified values are listed in Table 1.Calibration Standards PreparationAll the calibration standard solutions were prepared PerkinElmer single- and multi-element standard solutions, as well as theprepared 2.0 g/L Ti stock. The calibration standards were matrix-matched to the approximate levels of the major elements and contained 4500 ppm Ti, along with the analyte concentrations in Table 4, which were selected to match the expected concentrations in the Ti alloys.InstrumentationAll analyses were performed with the Avio 550 Max fullysimultaneous ICP-OES (PerkinElmer), which features a unique echelle optic and segmented-array charge coupled devicedetector (SCD)6, providing high-speed analysis and simultaneous measurements of all elements. The instrument’s proprietary Universal Data Acquisition (UDA)7 technology allows collection of all the spectral data for every sample in a single run, which provides flexibility of wavelength selection of all elements and simplifies method development. Plus, the combination of Flat Plate™ plasma technology 8 with vertical torch design enables the Avio to handle high matrix samples without large dilutions. And last, but certainly not least, the instrument’s dual plasma view 9 capability allows the measurement of major and minor elements in one method by setting the radial view for the determination of major elements, while axial view is used for minor elements due to its higher sensitivity.An HF-resistant nebulizer and spray chamber were used. Theinstrument's operating parameters, the wavelengths, plasma view, and background correction are listed in Tables 5 and 6. All data processing was done with Syngistix™ for ICP software.Results and DiscussionWhen analyzing metal samples, higher dilution is generally used to decrease matrix effects and spectral interferences. However, dilution also decreases the analyte concentration, which may make measurements of low-level analytes more difficult. In this work, the Ti alloy samples were diluted 200 times for analysis of all elements, from ppm to percent levels.200ppm V4500ppm Ti10ppm F e1ppm P d1ppm R u(a)(b)Figure 1. Spectra showing interferences of (a) 200 ppm V and 4500 ppm Ti on 1 ppm Pd 340.450 and (b) 10 ppm Fe on 1 ppm Ru 240.272.No MSFNo MSFMSF MSF(a)(b)Figure 2. Spectra of (a) Pd and (b) Ru spiked at 0.1 ppm in NIST CRM 173C, with (pink) and without (blue) MSF applied.To deal with spectral interferences caused by major elements, the Multicomponent Spectral Fitting (MSF) capability (includedin Syngistix software 10) was applied to Ru and Pd. Figure 1 shows the overlayed spectra of 1 ppm of Pd and Ru and the matrix elements: 4500 ppm Ti, 200 ppm V and 10 ppm Fe. By applying MSF, as shown in Figure 2, the spectral interferences were effectively removed, yielding an interference-free spectrum (pink), allowing accurate determination of Pd and Ru at very low concentration levels (0.1 mg/L).Excellent calibrations were obtained, with regression coefficients greater than 0.999 for all elements. The method detection limits (MDLs) were determined by analyzing 10 replicates of the 4500 mg/L Ti matrix blank solution. Figure 3 shows the reporting limits (LOR) in sample calculated as 3*MDL. The LORs are far below the lower limits specified on ASTM E2371-13, demonstrating the excellent sensitivity of theAccuracyTo verify the accuracy of the results, NIST CRM 173C wasprepared with both acid mixtures and analyzed. The results from the two digestion acid mixtures are compared in Figure 4 and show that all the elements were within ± 10% of the certified values, demonstrating that both acid mixtures are suited for the that the Avio 550 Max system is capable of measuring elements at low levels by using MSF to correct for spectral interferences.Figure 4. Recoveries for the certified elements in CRM 173c sample digested with Figure 5. Recoveries for the spiked elements in NIST 173c sample.ConclusionThe results presented here demonstrate the ability of Avio 550 Max fully simultaneous ICP-OES to analyze challenging Ti alloy samples. The Flat Plate plasma technology, vertical torch design and dual view enable the Avio 550 Max to perform this analysis and obtain excellent recoveries from a wide concentration range. Multicomponent Spectral Fitting (MSF) was successfully applied for spectral interference correction, ensuring accurate results for all elements with excellent recoveries.Figure 3. LOR of analytes in Ti alloy measured (blue) and specified in LOR measured LOR specified in ASTM 2371References1. Matthew J. Donachie, Jr., Titanium, a Technical Guide, 2000.2. https:///3. A STM E2371-13, Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry.4. G B/T 4698-2019, Methods for chemical analysis of titanium sponge, titanium and titanium alloys.5. H B 7716 -2002, Spectrometric analysis of titanium alloys.6. “Avio 550/560 Max ICP-OES Optical System and SCD Detector”, Technical Note, PerkinElmer, 2020.7. “Universal Data Acquisition in Syngistix Software for Avio 550/560 Max ICP-OES”, Technical Note, PerkinElmer, 2020.8. “Flat Plate Plasma Technology on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.9. “Vertical Dual View on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.10. “Multicomponent Spectral Fitting”, Technical Note,PerkinElmer, 2017.Consumables UsedFor a complete listing of our global offices, visit /ContactUsCopyright ©2023, PerkinElmer U.S. LLC. All rights reserved. PerkinElmer ® is a registered trademark of PerkinElmer U.S. LLC. All other trademarks are the property of their respective owners.PerkinElmer U.S. LLC 710 Bridgeport Ave.Shelton, CT 06484-4794 USA (+1) 855-726-9377。
(3)美国司太立(Stellite)合金(表6-5-39)表6-5-39 司太立合金的牌号与化学成分(质量分数)(%)合金牌号化学成分(质量分数)(%)C Si Mn Cr Ni Mo Co W Fe 其他Stellite 1 2.5 ——33.0 ——余量13.0 ——Stellite 3 2.4 ——30.0 ——余量13.0 ——Stellite 3PM 2.3 1.0 1.0 31.0 ≤3.0—余量12.5 ≤3.0B1.0Stellite 4 1.0 ——33.0 ——余量14.0 ——Stellite 6 1.0 ——26.0 ——余量5.0 —Nb6.0Stellite 6KC 1.7 2.0 2.0 30.0 ≤3.0≤1.5余量4.5 ≤3.0—Stellite 6PM 1.1 1.5 1.0 29.0 ≤3.0≤1.5余量4.5 ≤3.0B≤1.0Stellite 7 0.4 ——26.0 ——余量6.0 ——Stellite 8 0.2 ——27.0 2.0 6.0 余量———Stellite 12 1.8 ——29.0 ——余量9.0 ——Stellite 12P 1.4 ——31.0 ——余量9.0 ——Stellite19 1.7 1.0 1.0 31.0 ≤3.0—余量10.5 ≤3.0B≤1.0Stellite 20 2.5 ——33.0 ——余量18.0 ——Stellite 21 0.20-0.30 1.0 1.0 25.0-29.0 1.75-3.75 5.0-6.0 余量—≤3.0B≤0.007Stellite 23 0.40 0.6 0.3 24.0 2.0 —余量5.0 1.0 —Stellite 25 0.1 ≤1.0 1.5 20.0 10.0 —余量15.0 ≤3.0S≤0.03Stellite 27 0.40 0.6 0.3 25.0 32.0 5.5量—10 —Stellite 30 0.45 0.6 0.6 26.0 15.0 6.0 余量— 1.0 —Stellite 31 0.45-0.55 1.0 1.0 24.5-26.5 9.5-11.5 —余量7.0-8.0 ≤2.0—Stellite 98M2 2.0 1.0 1.0 30.0 3.5 ≤0.80余量18.5 ≤2.5 B 1.1Stellite 156 1.6 1.1 ≤1.028.0 ≤30≤1.0余量4.0 —Stellite 157 0.1 1.6 —22.0 ≤2.0≤1.0余量4.5 ≤2.0B2.4Stellite 158 0.75 1.2 ≤1.026.0 ≤3.0≤1.0余量5.5 ≤2.0B0.7Stellite 159 0.1 3.3 —18.5 27.0 5.5 余量— 2.0 B3.2Stellite 190 3.25 0.85 ≤0.526.0 ≤3.0≤1.0余量14.5 ≤3.0—Stellite 190PM 3.2 1.0 1.0 26.0 ≤3.0—余量14.0 ≤3.0B≤1.0Stellite 228 0.1 ——26.0 — 3.0 余量—20.0 —Stellite 238 0.1 ——26.0 — 3.0 余量— 2.0 —Stellite 250 0.1 ——28.0 ——余量—20.0 Nb 2.0Stellite 251 0.3 ——28.0 ——余量—18.0 Nb 2.0Stellite 306 0.4 ——25.0 5.0 —余量2.0 —Nb 6.0Stellite 506 1.6 ——35.0 ——余量7.5 ——Stellite 694 0.85 1.0 1.0 28.0 5.0 —余量19.5 ≤3.0V1.0;B0.01Stellite 1040 2.00 ——33.0 ——余量18.0 ——Stellite 2006 1.3 1.2 —31.0 8.0 8.0 余量—18.0 —Stellite 2012 1.7 1.2 —33.0 8.0 10.0量—15.0 —Stellite F 2.0 ——25.0 22.0 —余量1.20 ——Stellite SF1 1.3 3.0 —19.0 13.0 —余量13.0 — B 2.5Stellite SF6 0.7 3.0 —19.0 13.0 —余量8.0 —B1.7Stellite SF12 0.9 2.5 —19.0 13.0 —余量9.0 — B 1.8Stellite SF20 1.5 3.0 —19.0 13.0 —余量15.0 — B 3.0Stellite X90 0.5 ——26.0 10.0 —余量7.0 ——Stellite T40 2.0 ——34.0 ——余量19.0 ——stellite合金-stellite合金基本概念stellite合金是钴基合金的典型代表。