博得变频器VFD-S说明书
- 格式:pdf
- 大小:14.79 MB
- 文档页数:29
台达电梯专用变频器VFD-VL 系列创变新未来电梯专用电机驱动器无机房电梯的特点无机房电梯采用先进的专用主机及无齿轮永磁同步电机,安装更省时、省空间。
PM电机机械效能达95%,耗电量只有传统电机的一半,油压电梯的三分之一,更省电。
毋须更换齿轮油,环保又省维护成本。
采用最新的控制技术及工法,让电梯乘坐更加平顺舒适。
产品特点模块化设计具有高性能磁束向量控制(FOC)可用于感应电机及永磁同步电机使用永磁同步电机,启动时可执行磁极位置检测驱动永磁同步电机时,具有电机参数及编码器原点偏移角度自我学习功能内置制动刹车单元(至22kW)支持紧急救援系统(EPS),于DC48/96V低电压运行自动修正启动力矩、荷重补偿及手动微调功能,提高电梯舒适性内置电梯机械车输出接点内置电梯启动/停止控制程序结构融入薄型模块化设计易维护,方便安装及拆卸采用RS-485通讯接口(RJ-11),标准MODBUS通讯协议可与PC联机,监控电梯运行及参数设定,提高电梯舒适感完善保护功能,高精度的电流侦测,可精准快速的达到保护功能传统电梯油压电梯无机房电梯基本配线图建议客户在控制端子RB-RC加装异常或电源瞬间短路保护线路。
※ EPS为紧急电源输入端子,详细配线图参与使用手册。
※ PG卡为选购品,详细说明请参考使用手册速度反馈PG卡选用。
型号说明标准规格版本输入电压:23:230V 三相 43:460V 三相VFD-VL 系列产品系列最大使用电机055:7.5HP(5.5kW) 150:20HP(15kW)075:10HP(7.5kW) 185:25HP(18.5kW) 110:15HP(11kW) 220:30HP(22kW)VFD110VL23A230V 系列460V 系列共同特性选购配件数字操作器KPVL-CC01速度反馈PG卡选用EMVL-PGABL:适用ABZ/UVW line driveEMVL-PGABO:适用ABZ open collectorEMVL-PGH01:适用HEIDENHAIN 绝对式增量 编码器I/O扩展卡选用EMVL-IODA01:I/O and D/A cardEMVL-SAF01:Safety relay board地址:上海市浦东新区民夏路238号邮编:201209 电话:(021)5863-5678传真:(021)5863-0003中达电通公司版权所有如有改动,恕不另行通知合肥电话:(0551)6281-6777传真:(0551)6281-6555南宁电话:(0771)5875-699传真:(0771)2621-502北京电话:(010)8225-3225传真:(010)8225-1360成都电话:(028)8434-2072传真:(028)8434-2073上海电话:(021)6301-2827传真:(021)6301-2307武汉电话:(027)8544-8265传真:(027)8544-9500济南电话:(0531)8690-7277传真:(0531)8690-7099乌鲁木齐电话:(0991)6118-160传真:(0991)6118-289沈阳电话:(024)2334-1160传真:(024)2334-1163南昌电话:(0791)8625-5010传真:(0791)8626-7603长沙电话:(0731)8827-7881传真:(0731)8827-7882郑州电话:(0371)6384-2772传真:(0371)6384-2656西安电话:(029)8669-0810传真:(029)86690810-8000长春电话:(0431)8859-6017传真:(0431)8892-5345南京电话:(025)8334-6585传真:(025)8334-6554厦门电话:(0592)5313-601传真:(0592)5313-628天津电话:(022)2301-5082传真:(022)2335-5006重庆电话:(023)8806-0306 传真:(023)8806-0776杭州电话:(0571)8882-0610传真:(0571)8882-0603广州电话:(020)3879-2175传真:(020)3879-2178太原电话:(0351)4039-475传真:(0351)4039-047哈尔滨电话:(0451)5366-5568 传真:(0451)5366-0248中达电通已建立了41个分支机构及服务网点,并塑建训练有素的专业团队,提供客户最满意的服务,公司技术人员能在2小时内回应您的问题,并在48小时内提供所需服务。
台达变频器使用手册一、台达变频器简介台达变频器是台达公司推出的一款高性能变频器,具有高效率、低噪音、节能环保等特点,适用于各种工业应用场景。
本手册将详细介绍台达变频器的使用方法、注意事项和维护保养技巧。
二、设备连接1. 电源连接:将变频器的输入端子连接到电源,通常为三相交流电源(380V)。
2. 电机连接:将变频器的输出端子连接到电机,确保正确匹配电机和变频器的规格。
3. 控制线连接:将控制信号线连接到变频器的控制端子,用于手动或远程控制变频器。
4. 接地:确保所有连接均已牢固连接并接地,以减少电气干扰。
三、参数设置1. 模式选择:通过控制面板或外部控制信号选择所需的运行模式。
2. 频率设定:通过控制面板或外部控制信号设置变频器的输出频率。
3. 电压/电流限制:设置变频器的电压和电流限制,以防止过压和过流。
4. 加速时间/减速时间:根据实际应用需求设置加速时间和减速时间。
5. 其他参数:根据具体应用需求设置其他参数,如PWM模式、制动方式等。
四、运行操作1. 启动:将变频器置于运行模式,通过控制面板或外部控制信号启动变频器。
2. 停止:将变频器置于停止模式,通过控制面板或外部控制信号停止变频器。
3. 手动调整:通过控制面板或外部控制信号手动调整输出频率和电压。
4. 故障复位:当变频器出现故障时,按下控制面板上的故障复位按钮,复位故障并继续运行。
五、故障处理1. 常见故障:如过压、欠压、过流、过热等,可通过控制面板上的故障指示灯指示故障类型。
2. 故障排除:根据控制面板上的提示,对照台达变频器的故障代码表进行故障排除。
如需更换部件,请按照说明书中的步骤更换。
3. 紧急停车:如遇到紧急情况,按下控制面板上的紧急停车按钮,变频器将立即停止运行。
再次按下该按钮,变频器将恢复正常运行。
六、注意事项1. 使用前请仔细阅读产品说明书和操作手册,正确使用和维护设备。
2. 在连接和控制变频器时,确保操作正确、安全,避免电击和短路风险。
VFDsSpecifying cables for VFD applicationsBrandon L. PhillipsEric J. Bulington Product DevelopmentEngineer &Northeast Industrial Account Manager VFDs (Variable Frequency Drives) seem to be ever present in applications ranging from motion control to commercial flow/pumping. VFDs, also known as Adjustable Speed Drives or Variable Speed Drives require special considerations for the proper installation and operation of the drive system as well as the proper operation of nearby or adjacent systems. The nature of their operation impacts both longevity and reliability of these systems. This paper examines the motor-supply cable’s impact on VFDs and surrounding equipment. Included are some fundamental guidelines for their installation and design.Evaluation of Cable Types Used for VFDsIn order to provide an understanding of the variables and a guide in cable selection, the most commonly recommended cables for VFD applications were studied in both a lab and working application. Some wiring methods were not examined, such as THHN building wire in conduit, as their use has been shown to have detrimental effects, as outlined in other studies.1 2 The exception to this was the use of PVC-Nylon insulated, PVC jacketed, tray cables. These cables are the most commonly installed industrial con-trol cable and are often misapplied for use in VFD applications. For this purpose they are included for comparison. The PVC-Nylon designs were evaluated in both unshielded and foil shielded versions with their photos included below. Other cables evaluated were:Evaluating Critical VFD Cable ParametersXLP insulated, foil/braid(85%) shielded, PVCjacketed cable designed for VFD applications.Four Conductor (three conductorsplus green/yellow ground)XLPE Insulation (.045” wall) 100%Foil +85% Tinned Copper Braid ShieldFull Size Tinned Copper Drain Wire(sectioned in #8 and larger)Full Size Insulated Tinned CopperGround ConductorIndustrial PVC Jacket600V/1000V Rated•◊◊◊◊◊◊XLP insulated, continuously welded alumi-num armored, PVC jacketed cable designed forVFD applicationsThree Conductor #12XLPE Insulation (.030” wall)Continuously Welded AluminumArmorThree Symmetrical #16 Bare GroundConductorsPVC Jacket600V MC Rating•◊◊◊◊◊◊XLP insulated, dual-copper tape shielded,PVC jacketed cable designed for VFD applica-tionsThree Conductor #12XLPE Insulation (.030” wall)(2) .002” Cu Tapes spiral wrappedwith 20% overlapThree Symmetrical #16 Bare GroundConductorsPVC Jacket•◊◊◊◊◊In order to better illustrate the application, a schematic is included in Figure 1. The cables discussed are used to interconnect the VFD to the AC motor(s). All testing was conducted using a current generation, IGBT-based, 480V, 5HP , AC, VFD, a inverter-duty rated AC motor and relevant lab equipment such as an LCR meter used to characterize the cables and an Oscilloscope used to make voltage measurements.Cable Design Impact on Motor and Cable LifeReflected waves caused by a cable-to-motor impedance mismatch are prevalent in all AC VFD applications. It is dependent on the length of the cable, the rise-time of the PWM (Pulse Width Modulated) carrier wave, the voltage of the VFD, and the magnitude of the impedance difference between the motor and cable. Because cable length is mostly determined by the application, the rise times vary by VFD output semiconductor, and the voltage of the VFD is driven by the application: the impedance of the cable relative to the motor will be the primary mechanism outlined in this paper. First let’s look at estimated motorimpedance over a range of horsepower ratings as indicated in Figure 2.PVC-Nylon/PVC Foil Shield Type TCPVC-Nylon/PVC Type TCNote that the cable impedance for 1HP motor/drive combinations would need to be roughly 1,000 ohms in order to match the corresponding motor’s impedance. A cable with such high characteristic impedance would require conductorspacing in excess of several feet, implying that such a cable would be both impractical and very expensive, if it were available.In addition to other benefits such as reduced capacitance, more closely matching impedance can improve motor life. Table 1 lists the observed line-to-line peak motor terminal voltages as well as the impedance of the cables under test. The voltage measurements were taken using 120ft cable lengths.Table 1 lists typical impedance values for #12 AWG circuit conductors and is based on actual data. Impedance is influenced by the geometry and materials used in the manufacture of the cable. The characteristic impedance of the cable is calculated using the following formula:Note the inversely proportional relationship between the cable’s impedance and the peak motor terminal voltage. The cables with higher impedance tended to result in lower peak motor terminal voltages. The cable design for impedance also impacts the cable’s useful life. Lower voltages across the motor terminals also translate into the cable being exposed to lower voltages, increasing the life expectancy of the cable. In addition, this reduces the likelihood of reaching either the cable or motor’s CIV (corona inception voltage). CIV is the point at which the air gap between two conductors in the cable or two windings on the motor breaks down. If the CIV level is reached, insulation failure can occur in the windings of the motor.3The corona discharge occurring between conductors of the cable can reach very high temperatures. If the insulation system of the cable is a plastic material, such as PVC, corona inception can cause premature failure due to a gradual localized melting of the insulation. For this reason alone,thermoplastic insulations should not be used for VFD applications. Thermoset insulation systems such as XLP are ideal materials for such small localized temperature extremes because of the high temperature stability that they exhibit. The heat generated from possible corona forms a thermally isolating charred layer on the surface of the insulation preventing further degradation. All cables used for VFDs should use a thermoset insulation system as a precautionary measure.Understanding Radiated Noise in VFD applicationsRadiated noise is proportional to the amount of varying electric current within the VFD cable. As cable lengths grow, so does the magnitude of reflected voltage. This transient over voltage combined with the high amplitudes of current associated with VFDs creates a source of significant radiated noise. By shielding the VFD cable, noise can be controlled. Relative shielding effectiveness was observed by noting the magnitude of noise coupled to 10’ of parallel unshielded instrumentation cable for each VFD cabletype. The results of the shielding effectiveness testing are documented in Figure 3:As demonstrated by the pale green/blue trace in Figure 3, foil shields are simply not robust enough to capture the volume of noise generated by VFDs. Unshielded cables between VFDs and motors canTable 1. Impedance impact on motor terminal voltage, using 120 ft of cable radiate noise in excess of 80V to unshielded communication wires/cables and in excess of 10V to shielded instrumentation cables. Moreover, the use of unshielded cables in conduits should be limited as the conduit is an uncontrolled path to ground for the noise it captures. Any equipment in the vicinity of the conduit or conduit hangers may be subject to an injection of this captured,common-mode, noise. Therefore, unshielded cables in conduit are also not a recommended method for connecting VFDs to motors. If radiated noise is an issue in an existing VFD installation, care should be taken when routing instrumentation/control cables in the area. Maintain as much separation as possible between instrumentation cables and VFD cables/leads. A minimum of onefoot for shielded instrumentation and three feet for unshielded instrumentation cables is recommended. If the cables must cross paths, try to minimize the amount of parallel cable in the runs, preferably crossing the instrument cable perpendicularly with thepower/VFD cable. If noise issues persist, useFigure 3. Noise coupled from VFD cables to unshielded instrumentation cable a non-metallic, vertical-tray flame rated fiber optic cable and media-converters or direct-connect fiber communication equipment for the instrumentation circuit. Other mitigation techniques may also be required, such as, but not limited to, band-pass filters/chokes, output reactors, motor terminators, and metallic barriers in cable trays or raceways. Impact of Common Mode Noise in VFD ApplicationsNoise radiating from the cable is one method for interference of adjacent systems, but is often easier to identify and rectify. Common-mode noise is more difficult to diagnose as the point of failure in adjacent systems, but it is often the cause and most difficult situation to rectify. High levels of noise across a broad frequency range, often from 60Hz to 30MHz, can capacitively couple from the windings of the motor to the motor frame and then to ground. Common-mode noise can also capacitively couple from unshielded motor leads in a conduit to ground via the conduit ground straps, supports or other adjacent and unintentional grounding paths. Thiscommon-mode ground current is troublesome because digital systems are susceptible to the high-frequency noise generated by VFDs. Components and systems susceptible to common-mode noise are capacitive sensors such as proximity sensors, thermocouples signals, low-level communication signals, and encoders. Because this noise takes the path of least resistance, it findsunpredictable grounding paths that change and are often intermittent as humidity, temperature and load all change over time. One way to control common-mode noise is to provide a known path to ground for the noise captured at the motor’s frame. A low-impedance path, such as a properly designed cable ground/shield system, can provide this noise with an easier way toget back to the drive, other than using the building ground grid, steel, equipment, etc. Tests were conducted on the five cable types to determine the ground path impedance of the shield and grounding system of each cable. These tests were conducted across a broad frequency spectrum and are outlined in Figure 4. Lower impedance implies a more robust ground path and therefore relatively lower noise coupled to the building ground. Lower building ground noise means reduced troubleshooting ofnearby adjacent systems and components. Figure 4. Shield/Ground impedance of the various cable typesConclusionSelecting an appropriate VFD cable can improve overall drive system longevity and reliability by mitigating the impact of reflected waves on the overall drive system. Special attention should be paid to the cable’s insulation type, impedance, and shield/ground system. Cables employing a heavy wall of thermoset insulation are recommendedbecause of the proven electrical benefits and improved high temperature stability that they exhibit. Shielding systems including: copper tape, combination foil/braid, and continuous armoring types are the most appropriateshielding systems for VFD applicationsbecause of the low impedance path that they provide for common-mode noise to return to the drive. When VFD cables are installed in close proximity to low-level communications cables and other susceptible devices, shielded instrumentation cable should be used. It would also be prudent to limit parallel runs of VFD cable with instrumentation cables to 10’ or less in order to reduce the likelihood of experiencing radiated noise issues.1 E. J. Bartolucci, B.H. Finke, “Cable Design for PWM Variable Speed AC Drives”, IEEE Petroleum and Chemical Industry Conference, Sept, 19982 E. Bulington, S. Abney, G. Skibinski, “Cable Alternatives of PWM AC Drive Applications”, IEEE Petroleum and Chemical Industry Conference, Sept, 19993 Evon, S., Kempke, D., Saunders, L., Skibinski, G., “Riding the Reflected wave - IGBT Drive Technology Demands New Motor and Cable Considerations”,IEEE Petroleum and Chemical Industry Conference, Sept, 1996。
vfd一v M2S0007B变频器说明书序言感谢您采用台达高机能向量型交流电机驱动器VFD一V系列。
VFD 一V系采用高品质之元件、材料及融合最新的微电脑控制技术制造而成。
本手册提供给使用者安装、参数设定、异常诊断、排除及日常维护本交流电机驱动器相关注意事项。
为了确保能够正确地安装及操作本交流电机驱动器,请在装机之前,详细阅读本使用手册,并请妥善保存及交由该机器的使用者。
交流电机驱动器乃精密的电力电子产品,为了操作者及机械设备的安全,请务必交由专业的电机工程人员安装试车及调整参数,本手册中有"危险”、”注意”等符号说明的地方请务必仔细研读,若有任何疑虑的地方请连络本公司各地的代理商治询,我们的专业人员会乐於为您服务。
注意1.请勿对驱动器内部的零组件进行耐压测试,因驱动器所使用的半导体易受高压击穿而损坏。
2.驱动器的电路板有cmosIC极易受静电的破坏,故在未做好防静电措施前请勿用手触摸电路板。
3.即使电机是停止的,驱动器的主回路端子仍然可能带有危险的高压。
4.只有合格的电机专业人员才可以安装、配线及修理保养驱动器。
5.当驱动器某些功能被设定後,可能在电源输入後会立即起动电机开始运转。
6.请选择安全的区域来安装交流电机驱动器,防止高温及日光直接照射,避免湿气和水滴的泼溅。
7.请防止小孩或一般无关民众接近交流电机驱动器。
8.本交流电机驱动器只能用在本公司所认可的场合,未经认可的使用环境可能导致火灾、气爆、感电等事件。
9.当交流电机驱动器与电动机之间的配线过长时,对电机的层间绝缘可能产生破坏,请改用变频器专用的交流电机,或在驱动器及交流电机之间加装电抗器,避免造成交流电机因绝缘破坏而烧毁。
(电抗器详细规格请与本公司或当地代理商人员洽谈)。
10.变频器可能因运送不慎而造成损伤,若有损坏请勿接入电源。
11.搬运变频器时,请勿直接提取前盖,应由变频器散热座搬运以防前盖脱落,避免变频器掉落造成人员受伤或变频器损坏。
vfd004s43a说明书变频器是运用近代电力电子与微电脑控制技术的一项新兴产品,主要用在各种工业和民生的机械设备上。
其用途在于借着它改变供电频率,来控制电机转速,进而机械自动化程度与节约能源的目的。
台达S系列--多功能易操作简易型变频器是结合现代电力电子与微电脑控制技术所设计的一款高科技产品。
主要应用于纺织设备、自动化流水线等领域。
具有稳定性好、操作简单等特点。
输出频率0.1--600Hz模块化设计内置小型PLC功能内置滤波器(230V1phase--460V3phase)支持Field bus通讯模块:Device Net,Profuse,Ironworks and Can openFIR-switch应用于非接地电源系统DC-BUS直流母线可并联共享可弹性扩展完整保护功能安装环境温度-5℃--40℃,避免高温多湿,湿度小于90%(不结露)。
防止电磁干扰,远离干扰源。
防止水滴,蒸汽,粉尘,棉絮,金属细粉的侵入,防止油,盐,及腐蚀性气体的侵入。
禁止安装在含有易燃性,爆炸性气体、液体和固体环境。
输出侧请勿安装空开、接触器及有关电容或压敏电阻等器件,否则会造成变频器故障,跳保护或元器件损坏。
变频器须使用独立电源,避免与电焊机等共用同一电源,否则会引起变频器保护或损坏。
为了冷却及维护方便,须将变频器垂直安装,周围留有足够的空间,保证空气流通顺畅。
安装壁面应使用铁板等不燃性材料,须避免振动而引起变频器损坏。
多台变频器安装于同一柜子里,采用上下安装时,注意间距的同时,须在中间加导流隔板。
储存环境温度-20℃到+65℃范围内。
储存环境相对湿度在0%到95%范围内(无结露)无尘垢,干燥的位置。
储存环境中不含腐蚀性气、液体,最好放置在架子上,并适当包装存放。
变频器长时间存放会导致电解电容劣化,如需长期存放,须保证在1年内通电一次,通电时间至少5小时以上,输入时电压必须用调压器缓。
缓升高至额定电压值。
台达变频器使用手册一、引言台达变频器是一种用于控制电动机转速的设备,具有广泛的应用领域。
本使用手册旨在提供对台达变频器的全面了解和正确操作指导,帮助用户充分发挥其功能和效能,确保安全操作和长期可靠运行。
二、产品概述1. 产品介绍台达变频器是一种用于控制三相交流电动机的转速、转矩和保护设备。
具有多种控制模式、广泛的应用领域和高性能参数。
2. 技术规格台达变频器的技术规格包括额定电流、额定电压、频率范围、输出功率、环境要求等。
用户在选择合适的变频器时应根据实际需求和技术规格进行匹配。
三、安装和调试1. 安装指导(1)选择安装场所:确保变频器安装在通风良好、干燥、无腐蚀性气体和易燃、易爆物质的场所。
(2)安装方式:根据变频器的类型和安装要求选择合适的安装方式,确保固定牢固、线缆连接可靠。
2. 电气连接(1)电源连接:根据变频器的额定电压和电流要求,正确连接输入电源。
(2)电动机连接:根据变频器的输出要求,正确连接电动机。
3. 参数设置根据实际需求,设置变频器的频率、转矩、过载保护等参数,确保其能够满足工作要求,并保证安全和高效运行。
四、操作指导1. 启动和停止(1)启动:按下启动按钮,变频器将根据预设的参数逐渐提升电机转速。
(2)停止:按下停止按钮,变频器将逐渐减速并停止电机运行。
2. 运行控制变频器提供多种运行控制方式,包括手动、自动和远程控制等。
用户可根据实际情况选择合适的控制方式,并通过相应的操作界面进行设置和调整。
3 . 故障诊断和保护台达变频器具有故障诊断和保护功能,可监测电机运行状态并及时发出警报。
用户应根据变频器提供的故障代码和手册中的故障排除指南进行操作,以保障设备的正常运行。
五、维护和保养1. 清洁定期将变频器表面和散热器上的灰尘清理干净,确保其散热性能良好。
2. 检查定期检查变频器的连接器、电源和控制线路的接触情况,确保其连接可靠。
3. 维护根据变频器的维护周期和要求,进行相应的维护工作,如更换电解电容、清洁风扇等。
台达变频器vfd说明书台达变频器VFD说明书一、产品概述台达变频器VFD是一种高性能的电子调速设备,可用于各种机械设备的调速控制。
其主要功能包括电机启停控制、转速调节、转矩控制、过载保护等。
该产品具有体积小、重量轻、效率高、稳定性好等特点,广泛应用于风机、水泵、压缩机等领域。
二、产品特点1. 采用先进的数字控制技术,具有高效率和稳定性。
2. 内置多种保护功能,如过载保护、过热保护等,可有效延长设备使用寿命。
3. 可实现多种控制模式,如开环控制和闭环控制等。
4. 具有多种输入输出接口,方便用户进行连接和操作。
5. 支持多种通信协议,如Modbus RTU协议和CAN总线协议等。
三、产品参数1. 输入电压范围:AC380V±15%2. 输出电压范围:0-AC380V3. 额定功率范围:0.75kW-630kW4. 频率范围:0-400Hz5. 控制方式:开环控制、闭环控制6. 通信协议:Modbus RTU协议、CAN总线协议7. 输入输出接口:数字输入口、模拟输入口、数字输出口、模拟输出口8. 外形尺寸:根据不同功率和型号有所差异,详见产品说明书。
四、使用方法1. 接线:将台达变频器VFD与电机连接,根据实际需要进行相应的接线操作。
2. 参数设置:通过按键或计算机软件等方式,设置相应的参数,包括电机额定功率、输出频率范围等。
3. 控制方式选择:根据实际需要选择开环控制或闭环控制方式。
4. 启动运行:按下启动按钮,设备开始运行。
在运行过程中,可通过监视器对设备进行监测和调整。
五、注意事项1. 在使用前,请仔细阅读产品说明书,并按照要求进行正确的安装和接线操作。
2. 在使用过程中,请勿超过设备额定功率范围,并注意保持设备通风良好。
3. 在设备故障时,请及时停止使用,并寻求专业人员进行维修处理。
4. 请勿在潮湿或易受振动的环境中使用该产品。
六、维护保养1. 定期检查设备的接线和连接情况,确保电气安全。
台达vfd-m变频器说明书台达 VFDM 变频器说明书一、产品概述台达 VFDM 变频器是一款高性能、多功能的交流电机调速装置,广泛应用于各种工业自动化领域,如风机、水泵、输送带、机床等。
它采用先进的控制技术和优化的电路设计,能够实现精确的速度控制、稳定的运行性能和高效的能源利用。
二、技术规格1、输入电源电压范围:单相 220V ± 15%,三相 220V ± 15%,三相 380V ± 15%频率范围:50/60Hz ± 5%2、输出频率范围:01 400Hz3、控制方式V/F 控制无感向量控制(选配)4、过载能力一般负载:150%额定电流 1 分钟重载:180%额定电流 1 分钟5、保护功能过电流保护、过电压保护、欠电压保护、过热保护、过载保护等三、安装与接线1、安装环境环境温度:-10℃+50℃相对湿度:90%以下(无结露)避免安装在有腐蚀性气体、灰尘多、振动大的场所2、安装方式壁挂式安装3、接线注意事项输入电源和输出电机的接线务必正确,否则可能导致变频器损坏或故障。
接地线应可靠接地,以确保安全。
四、操作面板1、面板布局包括显示屏、按键等,用于设置参数、查看运行状态等。
2、按键功能“RUN”键:启动变频器运行“STOP”键:停止变频器运行“MODE”键:切换显示模式“▲”“▼”键:调整参数值五、参数设置1、基本参数频率给定方式运行方向加速时间减速时间2、高级参数电机参数保护参数控制模式选择六、运行操作1、启动与停止按下“RUN”键启动,按下“STOP”键停止。
2、调速方式可以通过操作面板、外部模拟信号或通信方式进行调速。
七、故障诊断与排除1、常见故障代码及含义例如,“OC”表示过电流,“OV”表示过电压等。
2、故障排除方法根据故障代码,检查相关电路和参数设置,采取相应的措施进行排除。
八、维护与保养1、定期清洁清除变频器表面的灰尘和杂物。
2、检查接线确保接线牢固,无松动现象。
vfdv变频器说明书参数一览表
台达变频器参数设置为:
1、必设参数:(MODE菜单,ENTER确认)
2、最高操作频率P03(出厂设定值:60HZ)电机额定电流P52(根据电机铭牌电流设置,已问过官方不是百分比)
3、电子热动电驿:P5800
以标准型电机动作(这个一定要设)
(变频器端子默认功能:M0—正转,M1—反转,M2—复位,GND—公共端)
台达VFD-M系列变频器常用参数:
一:与参数相关的功能键:
该系列变频器面板上的ENTER键可用于参数修改确认保存功能。
MODE键为功能切换键,在待机或运行时可用于切换要显示的频率、电流等值,也可切换到参数界面。
二:控制回路端子功能:
(注:M0,M5只有SNK拉电流模式,不可以使用外部电源。
)
RA、RB-RC:多功能指示输岀继电器接点。
M0,M2-GND:正转、反转、异常复位。
M3,M5-GND:多段速指令输入。
AVI-+10V-GND(0,10VDC):外接调速电位器(3,5千欧姆)。
AVI-GND(0,10VDC):模拟电压输入。
ACI-GND(4,20mA):模拟电流输入。
MO1(接正极)-MCM(接负极):多功能光耦合输出接点。
AFM-GND(0,10vDC):模拟输岀。
感^您逗用台蓬VFDB勤力制勃煞隼模瑰。
VFDB制勤单元主要J ffi用於常三相感J8雷械由交流雷檄.11勤器所SIffib在减速停止畤用以吸收由重械例J所回生的能量,藉由VFDB制勤罩元揩此能量以熟能的方式消耗在煞聿霜阻上。
本J⅛品在安装使用前,洋箭羊⅛ff1^^使用手册的^明再暹行施工配⅛1,以免造成檄械或人具的^害。
VFDB勤力制勤煞串模瑰遹用於本公司VFD所有系列的交流甯檄SIi勒器。
VFDB制勤军元需搭配煞率甯阻BR系列,才能彝挥侵巽的制勤特性,B⅛⅛ff1的规格及使用方法^IIg本使用停兑明善。
VFDB制勤罩元规格BR制勤雷阻规格外型尺寸121∙0[4∙76180.013.15]R3.3[R0.13] - 130.015.121IIAIIe111E8710160。
【9寸各部名耦及功能^明各端子使用乐泉彳监基本配^^■富交流邂IgrJ 器有加装直流甯抗器(DCCho 心)畤,其煞隼模瑰之重源输入迪路+(P )端的配⅛ι方法,可参考交流重usι⅛≡⅛器手册。
■言青勿耨霜源输入J1路・(N )端,接至重力系统之中性黠。
勤作^明:1 .在安装制勤覃元的Ifi 用中卷了安全的考量,在制勃军元典煞隼雷阻之IW 加装一稹热甯瞬(0.1);或舆交流甯檄《1勤器前端的甯磁接微器(MC )作一建^的昊常保2 .加装稹熟甯S?的主要目的是卷了保^煞隼雷阻不因煞隼频繁谩熟而烯毁,或是因输入甯源甯里昊常谩高擎致制勤罩元建女戒簿通烧毁煞隼甯阻。
此畤只有揩交流甯1»勤器的甯源Ii 朗才可避免煞聿雷阻^毁。
3,稹熟甯瞬规格的i1用^参考制勤军元典放甯甯阻遹用一霓表。
4 .制勃军元中的故障输出端子(RC 、RA 、RB )在散热装置温度高於95℃日寺曾勃作,表示安装的璟境温度可能超谩50℃以上,或是煞隼制β⅛的ED%超谩10ED%;若是此类真的故障言青自行加装凰扇强制囤冷或改善IS 境温度。
若非温度的原因,可能控制甯路受损或温度感测器故障,此H 邦育送雉修。