抗体噬菌体展示技术
- 格式:ppt
- 大小:3.06 MB
- 文档页数:32
全面解读诺贝尔化学奖之噬菌体展示技术当2018年诺贝尔化学奖颁布的那一刻,我禁不住高呼一声:今年的三大自然科学奖项都被生物学给“收入囊中”了。
别的不说,就说噬菌体展示技术,经过义翘神州十多年的应用改善,已经成为公司抗体制备技术的主要手段,制备开发的抗体近万种,还有几种抗体药物也在临床试验阶段。
为了让大家对噬菌体展示技术有更加清晰的了解,我结合公司十多年的抗体研发生产经验写了本文,希望给大家带来帮助。
1.噬菌体展示技术的发展进化之路1985年Smith GP利用基因工程,将外源基因插入丝状噬菌体(Filamentous bacteriophage,fd)的基因组,使目的基因编码的多肽以融合蛋白的形式展示,从而创建了噬菌体展示技术。
1990年,Mc Cafferty等利用噬菌体展示技术构建了库容为106的抗体库,使其成为一种新兴的抗体制备技术。
而Sir Gregory P. Winter是第一个利用噬菌体展示技术将鼠源抗体药物人源化,使得抗体药物用于临床治疗,比如Adalimumab。
噬菌体展示技术创建后就成为了生物学研究中的重要研究手段,从根本上改变了传统单克隆抗体制备流程(杂交瘤技术),被广泛应用于抗原抗体库的建立、药物设计、疫苗研究、病原检测、基因治疗、抗原表位研究及细胞信号转导研究等。
随着技术的不断发展完善,还进化为多种展示技术,如核糖体展示、mRNA展示、细菌展示和酵母展示等。
噬菌体展示技术(phage display)是将外源编码多肽或蛋白质的基因通过基因工程技术插入到噬菌体外壳蛋白结构基因的适当位置,在阅读框能正确表达,使外源多肽或蛋白在噬菌体的衣壳蛋白上形成融合蛋白,随子代噬菌体的重新组装呈现在噬菌体表面,可以保持相对的空间结构和生物活性。
然后利用靶分子,采用合适的淘洗方法,洗去未特异性结合的噬菌体。
再用酸碱或者竞争的分子洗脱下结合的噬菌体,中和后的噬菌体感染大肠杆菌扩增,经过3-5轮的富集,逐步提高可以特异性识别靶分子的噬菌体比例,最终获得识别靶分子的多肽或者蛋白。
筛选多肽试剂及配制(1)LB培养基:胰蛋白胨10g酵母提取物5gNaCl 5g溶于去离子水,至1L,高压灭菌,4℃保存。
(2)IPTG/Xgal:称取1.25g IPTG,1.0g Xgal,溶于二甲基甲酰胺,至总体积25ml,-20℃避光保存。
(3)LB/IPTG/Xgal平板:1L LB培养基+15g琼脂粉,高压灭菌,冷却至70℃以下,加入1ml IPTG/Xgal,立即铺板,4℃避光保存。
(4)顶层琼脂糖凝胶:胰蛋白胨10g酵母提取物5gNaCl 5gMgCl2.6H2O 1g琼脂糖7g溶于适量去离子水中,至总体积为1L。
高压灭菌,分装为50ml/份,室温保存,使用时于微波炉内融化。
(5)2×M9盐:Na2HPO412gKH2PO46gNaCl 1gNH4Cl 2g溶于适量去离子水中,至终体积为1L。
(6)小型平板:500ml 2×M9盐500ml 3%琼脂粉20ml 20%葡萄糖2ml 1M MgSO40.1ml 1M CaCl21ml 硫胺素(10mg/ml)在混合之前,将上述成分分别高压灭菌并冷却至70℃以下,葡萄糖和硫胺素采用过滤除菌。
平板储存于4℃。
(7)封闭缓冲液:0.1M NaHCO3(PH 8.6)5mg/ml BSA0.02% NaN3过滤除菌,储存于4℃。
(8)TBS:50mM Tris-HCl (PH 7.5)150mM NaCl高压灭菌,室温储存。
(9)PEG/NaCl:20%(w/v)聚乙二醇-80002.5M NaCl高压灭菌,室温储存。
(10)碘化物缓冲液:10mM Tris-HCl (PH 8.0)1mM EDTA4M NaI室温避光保存。
操作步骤:1.第一天(1)以0.1M NaHCO3(PH 8.6)制备 100μg/ml的靶分子溶液。
如果需要稳定靶分子,可以用含有金属离子的相似离子强度缓冲液。
(2)在每孔内加入1.5ml 靶分子溶液,重复涡旋直至表面完全湿润(这一步要多注意,尽量避免溶液形成液珠)。
简述噬菌体展示的基本原理和方法噬菌体展示是一种利用噬菌体(即细菌病毒)作为展示载体来展示外源蛋白的方法。
噬菌体是一种寄生在细菌上并以细菌为宿主的病毒,它具有高效的感染能力和高度选择性的感染靶细菌的特性,因此被广泛应用于基因工程、蛋白质工程和生物技术研究领域。
噬菌体展示的基本原理是将目标蛋白的编码基因与噬菌体的外壳蛋白基因相连接,构建成重组噬菌体基因。
在噬菌体感染细菌的过程中,重组噬菌体基因会被细菌细胞内的转录和翻译系统识别并表达出来,从而使目标蛋白与噬菌体的外壳蛋白相连,展示在噬菌体的表面。
噬菌体展示的方法主要有两种:一种是基于基因III的展示系统,另一种是基于基因VIII的展示系统。
基因III是噬菌体表面的主要外壳蛋白,通过将目标蛋白编码基因与基因III基因相连接,并在细菌细胞内进行表达,可以使目标蛋白与噬菌体的外壳蛋白连接在一起。
基因VIII则是噬菌体的次要外壳蛋白,通过将目标蛋白编码基因与基因VIII基因相连接,并在细菌细胞内进行表达,可以使目标蛋白展示在噬菌体的表面。
噬菌体展示的方法在实验室中可以通过以下步骤来进行:首先,将目标蛋白的编码基因与噬菌体的外壳蛋白基因进行连接,构建成重组噬菌体基因;然后,将重组噬菌体基因导入到感染性大肠杆菌等宿主细菌中;接着,通过培养宿主细菌,使重组噬菌体基因在细菌细胞内进行转录和翻译,从而使目标蛋白与噬菌体的外壳蛋白连接在一起;最后,通过离心分离和纯化的方法,获得展示目标蛋白的重组噬菌体。
噬菌体展示的优势在于其高效、高通量和高度选择性的表达特点。
由于噬菌体具有高效的感染能力和短周期的复制时间,可以在短时间内大量表达目标蛋白,并且可以通过筛选和分离的方法选择性地表达和纯化感兴趣的蛋白。
此外,噬菌体展示还可以实现对目标蛋白的定向进化和筛选,使其具有更好的性能和活性。
噬菌体展示在科学研究和应用领域具有广泛的应用价值。
在药物研发领域,噬菌体展示可以用于筛选和鉴定潜在药物靶点,并可以通过定向进化的方法优化药物分子的亲和性和特异性。
噬菌体展示技术第一篇:噬菌体展示技术介绍噬菌体作为一种针对细菌的病毒,与我们生活息息相关。
除了作为抗生素的发现者,噬菌体还可以被利用于噬菌体展示技术。
这种技术利用噬菌体表面展示的蛋白质,实现对目标蛋白质的快速筛选和鉴定。
本文将介绍噬菌体展示技术的原理、优缺点,以及在生命科学研究和工业生产中的应用。
一、原理噬菌体展示技术是将目的蛋白或肽插入噬菌体表面的一种方法。
噬菌体表面组分主要有三种:1)编码质粒的pIII蛋白质;2)编码细胞毒素E的pVIII蛋白质;3)编码专一结合的pV蛋白质。
它们在噬菌体的组成和结构上有不同的作用。
其中,pIII和pVIII蛋白质被广泛地应用于蛋白质展示,pV 蛋白质则被用于病毒特异性分离。
噬菌体展示技术的基本步骤为:首先,在噬菌体pIII或pVIII蛋白质基因的外侧区域中插入目的蛋白的DNA序列;然后使用这些噬菌体感染大肠杆菌。
噬菌体在感染过程中就会将目的蛋白展示在其表面。
最后,可使用具有亲和力的配体或抗体选择目的蛋白并纯化。
二、优缺点噬菌体展示技术的优点主要集中在以下几个方面:1)大容量:噬菌体可以在感染过程中表达众多的外表面蛋白,其中每个蛋白均可成为一个展示物,针对多种噬菌体展示技术。
2)直接鉴定:在已知多肽的情况下,可以使用特定的抗体直接鉴定噬菌体表面的展示蛋白。
3)高灵敏度:噬菌体展示技术对目标蛋白的识别灵敏,并且可以使用大量病毒颗粒进行检测。
4)高效率:噬菌体展示技术可将展示蛋白直接表达在噬菌体的表面,无需进行分离提纯,从而加快了蛋白纯化过程。
噬菌体展示技术的缺点主要有以下几方面:1)分子大小限制:目前仅适用于直径小于1/3噬菌体直径的蛋白分子。
2)生物安全:组装成噬菌体后,展示蛋白无法及时得到更新,可能会导致噬菌体的生物安全风险。
3)抗原性:由于目的蛋白常常被表达在噬菌体的表面,因此它们可能会被视为异物而引起免疫反应。
三、应用由于噬菌体表面蛋白质的展示,噬菌体展示技术已经被广泛应用于生物医学研究和工业生产中。
噬菌体展示技术的原理和方法噬菌体展示技术是一种利用噬菌体表面展示特定肽段或蛋白的技术。
这项技术自20世纪80年代问世以来,已在许多领域显示出广阔的应用前景,包括药物研发、疫苗设计、蛋白质相互作用研究等。
本文将详细介绍噬菌体展示技术的原理和方法,并探讨其优缺点和发展趋势。
噬菌体展示技术利用的是噬菌体的特性,噬菌体是一种病毒,专门感染细菌等微生物。
它们由蛋白质外壳和内部遗传物质组成,其中蛋白质外壳又由多个蛋白亚基组成。
噬菌体展示技术利用噬菌体表面展示特定的肽段或蛋白,这些肽段或蛋白可以来自天然蛋白质,也可以是人工合成的。
展示在噬菌体表面的这些肽段或蛋白能够与特异性受体结合,从而实现表面展示的功能。
噬菌体展示技术的关键之一是选择合适的展示载体。
载体通常是一种丝状噬菌体,其基因组可以容纳较小的外源基因片段。
常用的载体包括M filamentous phage等。
这些载体具有一些共同的特性,如对外源蛋白质的容纳能力较强,能在体内和体外环境中稳定存在等。
在噬菌体展示技术中,需要筛选出能感染特定细菌的噬菌体。
这些噬菌体可以是自生的,也可以是通过基因工程改造得到的。
在筛选过程中,可以利用不同细菌的特性,如受体类型、细胞壁结构等,来选择合适的噬菌体。
还需要考虑噬菌体的毒性、繁殖能力等因素。
在噬菌体展示过程中,需要反复感染以积累足够数量的展示肽段或蛋白。
这个过程中,通常需要使用超滤或凝胶过滤等手段对噬菌体进行纯化,以确保得到的展示肽段或蛋白的纯度和浓度。
反复感染的过程不仅可以增加展示肽段或蛋白的数量,还能帮助排除展示过程中可能产生的突变。
克隆选择是噬菌体展示技术的另一个关键步骤。
这个过程中,通过将展示肽段或蛋白与特定配体结合,筛选出能够与配体结合的克隆。
这些克隆可以进一步扩增和纯化,从而获得高亲和力和高特异性的克隆。
噬菌体展示技术的优点在于其能够将蛋白质或多肽特异性与噬菌体的生物学特性相结合,从而实现表面展示的功能。
噬菌体展示
简介
噬菌体是一种能够感染细菌并在其中繁殖的病毒。
它被广泛用于生物学研究和生物技术应用中,特别是在基因工程和基因治疗领域。
噬菌体展示技术是一种将特定蛋白质或肽段展示在噬菌体表面的方法。
通过选择与目标蛋白质相互作用的噬菌体克隆,可以筛选出具有特定功能的蛋白质或肽段。
本文将介绍噬菌体展示技术的原理、应用和优点。
原理
噬菌体展示技术依赖于噬菌体基因组中的一个外源基因,该基因编码目标蛋白质或肽段。
这个外源基因通常被插入到噬菌体的毒力因子基因中,例如毒力因子III基因。
插入后,目标蛋白质或肽段会与细菌细胞的表面结合。
噬菌体携带的基因信息会导致细菌细胞表面展示目标蛋白质或肽段。
通过这种方式,科研人员可以通过筛选和选择的方法找到与目标蛋白质或肽段相互作用的噬菌体克隆。
应用
噬菌体展示技术在生物学研究和生物技术应用中有广泛的应用。
以下是一些常见的应用领域:
抗体库筛选
噬菌体展示技术可用于抗体库筛选,以寻找与特定抗原相互作用的抗体。
通过将抗原展示在噬菌体表面,科研人员可以筛选出具有高亲和力和特异性的抗体,用于治疗和诊断应用。
肽库筛选
噬菌体展示技术也可用于肽库筛选,以寻找具有特定功能的肽段。
通过将肽段展示在噬菌体表面,科研人员可以筛选出与特定靶点相互作用的肽段,用于药物开发和治疗应用。
蛋白质互作网络研究
噬菌体展示技术可以用于研究蛋白质互作网络。
通过将一种蛋白质展示在噬菌体表面,并将其用作识别其他与其相互作用的蛋白质的。