辐射剂量与防护(final)-rev2讲解
- 格式:ppt
- 大小:2.35 MB
- 文档页数:85
辐射剂量与防护的名词解释辐射是指从放射性物质、电磁波等物质或能量传递到周围环境的过程。
在人类活动和日常生活中,我们经常面临各种形式的辐射,包括电离辐射和非电离辐射。
辐射剂量是用于度量辐射的指标,而辐射防护是为了保护人类和环境免受辐射的危害。
本文将解释辐射剂量和辐射防护的相关术语,让读者更加深入地了解这个领域。
一、辐射剂量1. 辐射剂量单位:辐射剂量的单位是希沙(Sievert,缩写为Sv),用于测量辐射对人体组织造成的伤害。
国际协定规定,1希沙等于1焦耳/千克(J/kg)。
为了更好地描述辐射剂量的大小范围,常用微希沙(microSievert,缩写为μSv)或毫希沙(milliSievert,缩写为mSv)。
2. 有效剂量:有效剂量是指考虑不同类型辐射对不同组织的不同影响程度后得出的剂量。
它是以希沙为单位,表示人体接受辐射后受到的影响,包括局部组织损伤、遗传效应等。
有效剂量的计算方法会根据不同类型的辐射进行调整。
3. 等效剂量:等效剂量也是以希沙为单位,用来度量各种不同类型辐射对生物体产生的相同效应。
等效剂量的计算方法会考虑不同类型辐射的能量传递和生物体对辐射的敏感程度。
4. 个人剂量:个人剂量是指个体在一定时间内接受到的辐射剂量,监测个人剂量可以帮助评估他们的辐射暴露情况,从而采取适当的防护措施。
二、辐射防护1. 辐射防护措施:辐射防护措施旨在减少人体暴露于辐射的风险。
这些措施包括保持距离、减少时间和使用防护设备等。
保持距离可以减少辐射暴露,特别是与放射源保持足够距离。
减少时间可以减少接受辐射的时间,例如尽量缩短在受辐射环境中的停留时间。
使用防护设备,如屏蔽材料和防护服,可以减缓辐射对人体的伤害。
2. 辐射防护原则:辐射防护有三个基本原则,即限制时间、最大距离和最小剂量。
限制时间是指尽量减少个人接受辐射的时间,最大距离是与辐射源保持足够的距离,以减少辐射暴露,最小剂量是尽量减少个人接受到的辐射剂量。
00从稳定性考虑,原子核(原子)可以分为稳定和不稳定的2大类不稳定的原子核会随着时间发生变化,会自发的或在外界影响下从某种核素(元素)变化到另一种核素(元素),与此同时会释放出各种类型的粒子,同时释放出不同的能量,这种现象称为放射性。
上述粒子携带大量能量高速运动,形成射线;常见的例外的情况是X 射线,医用、工业用X射线是由核外电子能态变化引起本课的目的:采取各种方法、手段,有效地避免放射性对人体的损害凡是存在放射性应用的地方,则必然伴随着辐射防护工作第一阶段:早期辐射损伤认识时期(1895-1930)第二阶段:中期辐射损伤认识时期(又称放射线诊断、治疗损伤时期)(1930~1960)第三阶段:近期辐射损伤认识时期(又称流行病学调查所见的辐射损伤时期)(1960~现在)01电离辐射:由能通过初级过程或次级过程引起电离的带电粒子或不带电粒子组成的,或者由它们混合组成的辐射;电离辐射场:电离辐射无论在空间,还是在介质内部通过、传播以至经由相互作用发生能量传递的整个空间范围,由此形成的场;辐射量:为了表征辐射源特征,描述辐射场性质,量度辐射与物质相互作用的程度及受照物质内部发生的辐射效应的量;粒子辐射:是指组成物质的基本粒子,或由这些粒子组成的原子核。
既有能量又有静止质量。
电磁辐射:实质是电磁波,仅有能量,没有静止质量。
辐射计量学量:根据辐射场自身的固有性质来定义的物理量;辐射剂量学量:描述辐射能量在物质中的转移、沉积的物理量;辐射防护学量:用各类品质因数加权后的吸收剂量D引申出的用于防护计算的物理量;粒子通量(N.):粒子数在时间间隔dt的变化量dN,s-1能量通量(R.):辐射能在时间间隔dt内的变化量dR,J·s-1;粒子注量(Φ):可以认为是进入单位截面积小球的粒子数;m-2能量注量(Ψ):进入向心截面积为da的小球的辐射能dR与da的比值,J·m -2粒子注量率(φ):表征单位时间内进入单位截面积小球的粒子数的多少,又称为粒子通量密度,m-2·s-1能量注量率(ψ):表征单位时间内进入单位截面积小球的辐射能的多少,又称为能量通量密度,J·m -2·s-1电离:从一个原子、分子或其它束缚状态释放一个或多个电子的过程;电离密度:带电粒子在单位路径长度上形成的离子对数,单位为离子对/cm。
辐射剂量与防护重点在现代社会中,辐射无处不在。
从我们日常使用的电子设备,到医疗检查中的 X 光、CT 扫描,再到工业生产中的核能利用,辐射都在以不同的形式和强度影响着我们的生活。
了解辐射剂量以及掌握有效的防护措施,对于保障我们的健康至关重要。
首先,我们需要明确什么是辐射剂量。
辐射剂量是衡量人体接受辐射能量的一个物理量。
它通常用单位希沃特(Sv)或者毫希沃特(mSv)来表示。
辐射剂量的大小取决于辐射的类型(如阿尔法射线、贝塔射线、伽马射线等)、辐射的能量、辐射的时间以及与辐射源的距离等因素。
不同类型的辐射对人体的危害程度有所不同。
阿尔法射线由于其穿透力较弱,一般在体外不会对人体造成太大危害,但如果被吸入或摄入体内,则可能会对器官造成严重损伤。
贝塔射线的穿透力比阿尔法射线强一些,但仍相对有限。
伽马射线则具有很强的穿透力,能够穿透人体组织,对细胞和器官造成广泛的损害。
在日常生活中,我们所接触到的辐射剂量通常是非常低的。
例如,来自地球本身的放射性物质、宇宙射线以及家用电器(如电视、电脑、微波炉等)所产生的辐射,其剂量一般都在安全范围内。
然而,在某些特定的情况下,我们可能会接触到较高剂量的辐射。
比如,进行医疗检查时的 X 光、CT 扫描以及放疗,从事核工业相关工作,或者在核事故发生地区等。
那么,多少辐射剂量是安全的呢?这是一个相对复杂的问题,因为不同的人群对辐射的敏感性不同。
一般来说,对于普通公众,每年接受的辐射剂量不应超过 1 毫希沃特。
对于从事辐射相关工作的人员,其职业照射剂量限值则相对较高,但也有严格的规定和控制。
当我们接受了超过安全剂量的辐射时,可能会对身体造成一系列的损害。
短期内,高剂量的辐射可能导致急性放射病,表现为恶心、呕吐、脱发、出血、白细胞减少等症状。
长期来看,即使是较低剂量的辐射累积,也可能增加患癌症、遗传疾病以及心血管疾病等的风险。
了解了辐射剂量的相关知识后,我们来重点探讨一下辐射防护的措施。
辐 射 剂 量 与 防 护 (精简版)1. 内照射与外照射的不同之处?答:内照射:体内放射性核素产生的照射。
开放源,持续照射,直至核素衰变完或排出体外。
外照射:体外放射性核素产生的照射。
封闭源,间断照射。
内、外照射的特点2. 内照射防护基本原则?答:制定各种规章制度,采取各种有效措施,阻断放射性物质进入人体的各种途径,在最优化原则的范围内,使摄入量减少到尽可能低的水平。
3. 待积有效剂量评价方法?答:利用ICRP78号出版物及其他资料提供的图表,可以方便地由生物分析数据和全身测量结果求得摄入量,进而计算出待积有效剂量。
4. 写出下列库室模型的动力学方程。
解:分析题意,得如下: 1121()r dq dt i q λλ=-+21212425232()r dq dt q q λλλλλ=-+++3232353()r dq dt q q λλλ=-+4242454()r dq dt q q λλλ=-+52524543535r dq dt q q q q λλλλ=++- 5.解:分析题意,得如下: ()11311q i dt dq λλγ+-=()225242322q i dt dq λλλλγ+++-= ()3342231133q q q dt dq λλλλγ+-+=()4462243344q q q dt dq λλλλγ+-+= ()5562255q q dt dq λλλγ+-=64465566q q q dt dq γλλλ-+= 6. 简述吸收剂量,比释动能和照射量的区别联系?答:适用范围:D 任何不带点与带电粒子和任何物质;K 不带电粒子如X 和γ光子等和任何物质;X 仅X 和γ射线,且仅限于空气介质。
计量学含义:D 表征辐射在所关心的体积内沉积的能量,可以来自体积内或外,K ,表征不带电粒子在所关心的体积内交给带电粒子的能量,不必注意这些能量在何处,以何种方式损失,X 表征X 或γ射线在所关心的体积内交给次级电子用于电离,激发的那部分能量。