10二元函数的连续性与可微性教学案例
- 格式:ppt
- 大小:440.00 KB
- 文档页数:7
一、引言对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。
对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。
下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。
二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系1.可微与连续的关系假设函数f(x,y在点(x0,y0处可微,那么在该点连续,但反之不成立(同一元函数。
证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,所以lim(△x,△y→(0,0f(x0+△x,y0+△y=f(x0,y0,故f(x,y在点(x0,y0处连续。
反之不成立。
例1.f(x,y=x2yx2+y2,x2+y2≠00,x2+y2=$在点(0,0处连续,但在该点不可微。
2.偏导数存在与可微的关系由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,那么f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。
3.偏导数连续与可微的关系由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,那么f(x,y 在点(x0,y0处可微;但反之不成立,例2.f(x,y=(x2+y2sin1x2+y2,x2+y2≠00,x2+y2=%’’’&’’(0在点(0,0处可微,但偏导数在点(0,0不连续。
4.连续与偏导数存在之间的关系二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2(圆锥在点(0,0连续但在该点不存在偏导数。
更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,yxyx2+y2,x2+y2≠00,x2+y2=$在点(0,0不连续,但f y(0,0=lim△y→∞0-0=0,f y(0,0=lim△y→∞0-0△y=0。
§ 3 二元函数的连续性一 二元函数的连续性定义 设f 为定义在点集2R D ⊂上的二元函数.()。
的孤立点的聚点,或者是它或者是D D D P ∈0对于任给的正数ε,总存在相应的正数δ,只要(),;D P U P δ0∈,就有 ()()ε<-0P f P f ,()1则称f 关于集合D 在点0P 连续。
在不至于误解的情况下,也称f 在点0P 连续。
若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数。
由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在连续等价于()().lim 00P f P f DP P P =∈→()2如果0P 是D 的聚点,而()2式不成立()应情形相同其含义与一元函数的对,则称0P 是f 的不连续点或称间断点。
特别当()2式左边极限存在但不等于)(0P f 时,0P 是f 的可去间断点.如上节例1、2给出的函数在原点连续;例4给出的函数在原点不连续,又若把例3的函数改为{}⎪⎪⎩⎪⎪⎨⎧=+≠=∈+=),0,0(),(,1,0,|),(),(,),(222y x m m x m x y y x y x y x xyy x f其中m 为固定实数,亦即函数f 只定义在直线mx y =上,这时由于(),0,01),(lim 2),(),(00f m my x f mx y y x y x =+==→ 因此f 在原点沿着直线mx y =是连续的。
设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆ ()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量。
和一元函数一样,可用增量形式来描述连续性,即当0l i m ),()0,0(),(=∆∈→∆∆z Dy x y x时,f 在点0P 连续。
二元函数可微,连续,偏导数之间的关系二元函数的可微与连续是偏导数的重要前提条件。
如果一个二元函数在某一点处可微,则其在该点处必定连续,但连续并不一定意味着可微。
此外,偏导数也和可微、连续有一定的关系。
对于二元函数 $f(x,y)$,若其在点 $(x_0,y_0)$ 可微,则有: $$lim_{Delta xto 0}frac{f(x_0+Deltax,y_0)-f(x_0,y_0)-frac{partial f}{partial x}Delta x}{Delta x} = 0$$$$lim_{Delta yto 0}frac{f(x_0,y_0+Deltay)-f(x_0,y_0)-frac{partial f}{partial y}Delta y}{Delta y} = 0 $$其中,$frac{partial f}{partial x}$ 和 $frac{partialf}{partial y}$ 分别表示函数 $f(x,y)$ 对 $x$ 和 $y$ 的偏导数。
若以上两个极限存在且相等,则称 $f(x,y)$ 在点 $(x_0,y_0)$ 可微。
反之,如果 $f(x,y)$ 在某一点处不可微,则该点处必定不连续。
但连续并不一定意味着可微,如绝对值函数 $|x|$ 在 $x=0$ 处连续但不可导。
偏导数也和可微、连续有关系,若 $f(x,y)$ 在某一点处连续且具有偏导数,则该点处必定可微。
但可微并不一定意味着偏导数存在,如 $f(x,y)=xysinfrac{1}{x+y}$ 在 $(0,0)$ 处可微但其偏导数不存在。
总之,二元函数的可微与连续是偏导数的重要前提条件,偏导数则可以进一步判断函数的可微性和连续性。
编号:Xxxxxxx x学校本科毕业论文二元函数连续性、偏导数存在性及可微性的讨论院系:数学科学系姓名:XXXX学号:XXX专业:XXXX年级:2008级指导教师:XXX职称:讲师完成日期:2012年5月摘要二元函数微分学是高等数学的重点之一,理清其基本概念之间的相互关系对于认识二元函数的性质有重要的意义,只有这样才能弄清楚二元函数连续、偏导数及可微之间的关系,才能更好地加以利用.本论文将重点对它们之间的关系加以总结和探讨,并给以证明和应用举例.本论文正文主要介绍了二元函数连续性、偏导数存在性及可微性的基本知识.对它们分别进行了总结证明和进一步讨论,还总结二元函数连续性、偏导数存在性及可微性的简单关系,并举出的例子加以论证支撑.关键词:二元函数;连续;偏导数;可微Abstrac tBinaryFunctio n Differe ntialCalculu s is one of the priorit ies of the highermathema tics, to clarify the basic concept s of the relatio nshipbetween the signifi cancefor underst anding the natureof the binaryfunctio n, the only way to figureout the binaryfunctio n continu ous partial derivat ives and differe ntiabi lity the relatio nshipbetween, in order to bettertake advanta ge of this paper will focus on the relatio nships between them to be summari zed and discuss ed, and give proof of applica tion example.In this thesis, the text introdu ces binaryfunctio n continu ity, partial derivat ives of the Existen ce and differe ntiabi lity of basic knowled ge. Them a summary of the proof and further discuss ion, and also summari zes the continu ity of the binaryfunctio n, the partial derivat ives exist and micro of simplerelatio ns, citingthe example s to demonst rate support.Key words:Dual functio n; Continu ously; Partial derivat ive; Differe ntiabl e目录摘要错误!未定义书签。
二元函数连续偏导可微之间的关系二元函数是指一个有两个自变量的函数。
在数学中,连续偏导数和可微性是二元函数重要的性质。
本文将探讨二元函数的连续偏导数和可微性之间的关系。
我们来了解连续偏导数和可微性的定义。
对于一个二元函数f(x, y),如果它的偏导数在定义域内存在且连续,那么我们称f(x, y)在该定义域内具有连续偏导数。
而如果一个二元函数在某一点的偏导数存在且连续,且其在该点的全微分存在,那么我们称该函数在该点可微。
连续偏导数和可微性之间有着密切的联系。
事实上,对于一个具有连续偏导数的二元函数,在该点可微是一个充分条件,但不是必要条件。
也就是说,如果一个二元函数在某一点可微,那么它在该点的偏导数一定是连续的。
然而,如果一个二元函数的偏导数在某一点连续,不一定能保证这个函数在该点可微。
具体来说,我们可以通过一个例子来说明这个关系。
考虑二元函数f(x, y) = |xy| / √(x^2 + y^2),当(x, y) ≠ (0, 0)时,f(x, y)的偏导数可以通过求导得到。
我们可以得到f对x的偏导数f_x = y^2 / (x^2 + y^2)^(3/2),f对y的偏导数f_y = x^2 / (x^2 + y^2)^(3/2)。
容易看出,f(x, y)在整个定义域内的偏导数都是连续的。
然而,当(x, y) = (0, 0)时,f(x, y)的偏导数f_x = f_y = 0。
虽然f(x, y)在该点的偏导数连续,但是f(x, y)在该点不可微。
因为我们可以通过计算f(x, y)在该点的全微分来证明全微分不存在。
连续偏导数和可微性之间的关系是:连续偏导数是可微性的充分条件,但不是必要条件。
这意味着一个二元函数的连续偏导数可以确保它在某一点可微,但一个二元函数的偏导数连续并不能保证它在某一点可微。
对于二元函数的研究,连续偏导数和可微性是非常重要的性质。
它们在数学中有广泛的应用,尤其在微积分和优化理论中。
§7.1 二元函数的概念 二元函数的极限和连续性教学目的: 了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
教学重点: 求二元函数的极限,掌握二元函数极限与连续的关系。
1、二元函数的定义定义1的函数值,函数值的总体称为函数的值域。
例 1设(x2+y2≠0), 求证。
因为,可见,对任何ε>0,取,则当时,总有成立,所以。
我们必须注意,所谓二重极限存在,是指P (x,y )以任何方式趋于P 0(x 0,y 0)时,函数都无限接近于A 。
在某一给定如果当变量和设有三个变量y x z y x ,,,按照一定时,变量内任取一对值的二元有序实数对z y x D ),(yx z ,,叫做变量它们对应,则变量总有唯一确实的数值和的规律),(y x f z =的二元函数,记作称为函变化的范围为因变量,为自变量,其中D y x z y x ),(,),(),(,),(0000y x y x f z D y x 称为对应于则,数的定义域。
设点=∈定义 设函数f(x,y)在开区域(或闭区域)D 内有定义,P 0(x 0,y 0)是D 的内点或边界点且P 0∈D 。
如果则称函数f(x,y)在点P 0(x 0,y 0)连续。
性质1(最大值和最小值定理) 在有界闭区域D 上的多元连续函数,在D 上一定有最小值和最大值。
性质2(介值定理) 在有界闭区域D 上的多元连续函数,如果在D 上取得两个不同的函数值,则它在D 上取得介于这两个值之间的任何值至少一次。
性质3 (零点定理)性质4(有界性定理)例2 设 解 因此且上连续在有界闭区域若函数,),(D y x f 则至少数值数值和一个小于零的函它取得一个大于零的函,则上连续在有界闭区域若函数,),(D y x f .上有界它必在D ),(,23sin ),(21lim y x f xy e y x y x f y x xy→→++=求π,)2,1(,),(在其定义域内且点是初等函数由于y x f ,)2,1(),(处连续在点故y x f 232223sin )2,1(),(22221lim+=++==→→e e f y x f y x π§7.2 偏导数教学目的:了解偏导数的概念、几何意义以及与连续的关系。
二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
二元函数连续左右偏导可微题
对于一个二元函数而言,连续性、可导性和偏导数的定义是需要分别考虑左右侧的。
下面我将从连续性、可导性和偏导数的角度来回答你的问题。
连续性:
一个二元函数在某一点上连续,意味着在该点的函数值与该点的极限值相等。
对于左右侧的连续性,我们需要分别考虑左右极限是否存在且与该点的函数值相等。
可导性:
一个二元函数在某一点上可导,意味着在该点的切线存在且唯一。
对于左右侧的可导性,我们需要分别考虑左右极限的切线是否存在且唯一。
偏导数:
对于一个二元函数,我们可以分别对两个自变量求偏导数。
左
偏导数指的是在某一点上,只考虑自变量的左侧变化,而右偏导数则是只考虑自变量的右侧变化。
左右偏导数的存在与连续性和可导性有关。
综上所述,对于一个二元函数连续、左右偏导可微的问题,我们需要分别考虑函数在某一点上的连续性、可导性以及左右偏导数的存在与唯一性。
在具体解答问题时,需要根据具体的函数形式和条件进行分析和推导。
这可能涉及到极限的计算、导数的求解以及函数的性质分析等多个方面。
希望以上回答能够满足你的要求。
如果你有更具体的问题,欢迎继续提问。