多刚体系统运动学与动力学
- 格式:pdf
- 大小:211.78 KB
- 文档页数:22
1. 绝对节点坐标法传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。
Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。
该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。
其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。
1.1梁单元的绝对节点坐标法Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。
在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为:23101232320123r =Se r a a x a x a x r b b x b x b x ⎡⎤+++⎡⎤==⎢⎥⎢⎥+++⎣⎦⎣⎦图1其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。
123456781102205162e []|,|,|,|,Tx x x l x l e e e e e e e e e r e r e r e r ========= 1212304078,,,x x x l x l r r r r e e e e x x x x ====∂∂∂∂====∂∂∂∂最终,通过绝对节点坐标法得到的无约束的单元动力学方程为:k e Me+Q =Q 其中,M 为常数质量矩阵,Q k 为广义弹性力矩阵,Q e 为广义外力矩阵。
基于多体动力学的机械系统运动学分析多体动力学是研究机械系统中多个物体的相对运动规律的一门学科。
机械系统是由多个物体组成的系统,这些物体之间通过各种力和力矩相互作用,从而实现了系统的运动。
多体动力学旨在研究这些物体之间的相对运动规律,以及力和力矩对系统运动的影响。
多体动力学的研究对象包括刚体、弹性体和流体等。
刚体是指物体不会发生形变的物体,而弹性体和流体则会发生形变。
多体动力学的分析方法可以广泛应用于机械系统、航天器、汽车和机器人等领域。
多体动力学的分析需要从系统的几何和运动学方面入手。
首先,需要建立坐标系以描述物体的位置和方向。
通过选择适当的坐标系,可以简化问题的复杂性。
其次,需要确定系统中各个物体之间的相对运动关系。
这可以通过描述物体之间的位移、速度和加速度等参数来实现。
多体动力学的分析还需要考虑各种力和力矩对系统的影响。
力和力矩是引起物体运动的原因,包括重力、弹簧力、摩擦力等。
系统中的物体之间还存在相互作用力和反作用力的关系。
通过对这些力和力矩进行求解和计算,可以得到系统的运动规律。
多体动力学的分析方法主要包括牛顿-欧拉方法和拉格朗日方法。
牛顿-欧拉方法以牛顿定律为基础,通过建立物体之间的动力学方程来描述系统的运动。
拉格朗日方法则利用拉格朗日方程,通过建立系统的广义坐标和广义力来描述系统的运动。
这两种方法在不同的问题中有着不同的适用性。
多体动力学的分析可以帮助我们理解机械系统的运动规律,并为系统的设计和控制提供指导。
通过对物体之间的相对运动进行分析,可以预测系统的响应和稳定性。
这对于机械系统的优化设计和工程实现具有重要的意义。
总而言之,多体动力学是研究机械系统中多个物体的相对运动规律的学科。
它包括建立坐标系、确定物体之间的相对运动关系、分析力和力矩的作用等内容。
多体动力学的分析方法有牛顿-欧拉方法和拉格朗日方法。
多体动力学的研究对于机械系统的设计和控制具有重要的意义。
大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。
刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。
这意味着刚体是刚性的,并且不会发生形变。
2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。
(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。
刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。
(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。
在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。
二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。
平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。
2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。
刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。
(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。
刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。
(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。
三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。
转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。
2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。
角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。
(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。
多体系统动力学建模与仿真分析概述多体系统动力学建模与仿真分析是解决实际工程问题和科学研究中的重要技术手段。
本文将从理论介绍、实际应用和发展前景等几个方面,探讨多体系统动力学建模与仿真分析的相关内容。
一、多体系统动力学建模的理论基础多体系统动力学建模是研究多体系统运动规律的基础工作。
其理论基础主要包括牛顿运动定律、欧拉-拉格朗日动力学原理等。
1. 牛顿运动定律牛顿运动定律是多体系统动力学建模的基础。
根据牛顿第二定律,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
在多体系统中,通过对所有物体的运动状态和相互作用力进行分析,可以建立多体系统的动力学模型。
2. 欧拉-拉格朗日动力学原理欧拉-拉格朗日动力学原理是一种更为普适的多体系统动力学建模方法。
该理论通过定义系统的广义坐标和广义速度,以及系统的势能和拉格朗日函数,通过求解拉格朗日方程,得到系统的运动方程。
相比于牛顿运动定律,欧拉-拉格朗日动力学原理具有更广泛的适用性和更简洁的表达形式。
二、多体系统动力学建模的实际应用多体系统动力学建模在工程和科学领域中有着广泛的应用。
以下以机械系统和生物系统为例,简要介绍多体系统动力学建模的实际应用。
1. 机械系统在机械工程中,多体系统动力学建模是设计和优化机械系统的关键步骤。
以汽车悬挂系统为例,通过建立汽车车体、轮胎、悬挂弹簧和减震器等部件的动力学模型,可以分析车辆在不同工况下的悬挂性能,进而指导悬挂系统的设计和优化。
2. 生物系统在生物医学工程和生物力学研究中,多体系统动力学建模对于理解和模拟生物系统的运动特性具有重要意义。
例如,通过建立人体关节和肌肉的动力学模型,可以分析人体的运动机制,评估关节健康状况,提供康复治疗方案等。
三、多体系统动力学仿真分析的方法与技术多体系统动力学仿真分析是通过计算机模拟多体系统的运动过程,从而得到系统的运动学和动力学特性。
常用的方法与技术包括数值积分方法、刚体碰撞检测与处理、非线性约束求解等。
多体系统动力学简介多体系统动力学研究对象——机构工程中的对象是由大量零部件构成的系统。
在对它们进行设计优化与性态分析时可以分成两大类一类为结构——正常工况下构件间没有相对运动(房屋建筑,桥梁等)——关心的是这些结构在受到载荷时的强度、刚度与稳定一类为机构——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。
机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统多体系统动力学俄研究的对象——机构(复杂机械系统)不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系典型案例:平面和空间机构的运动分析系统各部件间通过运动副与驱动装置连接在一起数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础数学模型:非线性微分代数方程组讨论载荷和系统运动的关系研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题动力学正问题——已知外力求系统运动的问题动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动数学模型:非线性微分代数方程组机械系统的多体系统力学模型在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。
对系统如下四要素进行定义:•物体•铰链•外力(偶)•力元实际工程中的机械系统多体系统力学模型的定义取决于研究的目的模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优性态分析的求解规模与力学模型的物体与铰的个数有关物体——定义多体系统中的构件定义为物体多体系统力学模型中物体的定义并不一定与具体工程对象的零部件一一对应。
刚体的静力学与动力学刚体是物理学中的重要概念之一,它是指一类在力的作用下没有形变的物体。
刚体的运动可以通过静力学和动力学来描述。
本文将对刚体的静力学和动力学进行探讨。
一、刚体的静力学静力学研究的是物体在力的作用下处于静止状态的力学性质和规律。
对于刚体的静力学分析,我们需要了解以下几个基本概念和定律。
1. 力矩力矩是刚体静力学中的重要概念,它描述了力对刚体产生转动的效应。
力矩等于力乘以作用点到旋转轴的距离,可以用以下公式表示:M = F × d其中,M表示力矩,F表示力的大小,d表示作用点到旋转轴的距离。
2. 杠杆原理杠杆原理是刚体静力学中的基本原理之一,它描述了力矩的平衡条件。
根据杠杆原理,如果一个杠杆系统在平衡状态下,力矩的总和为零:ΣM = 0即所有力矩的代数和等于零。
3. 平衡条件在刚体的静力学中,平衡条件是指物体在力的作用下保持平衡的条件。
根据平衡条件,刚体在平衡状态下,必须满足以下两个条件:(1) 力的合力为零,即ΣF = 0;(2) 力矩的总和为零,即ΣM = 0。
二、刚体的动力学动力学研究的是物体在力的作用下的运动学性质和规律。
对于刚体的动力学分析,我们需要了解以下几个基本概念和定律。
1. 动量和角动量动量是刚体动力学中的重要概念,它描述了物体的运动状态。
对于一个刚体,其动量等于质量乘以速度,可以用以下公式表示:p = mv其中,p表示动量,m表示质量,v表示速度。
角动量是刚体动力学中与转动相关的物理量,对于一个刚体,其角动量等于惯性矩乘以角速度,可以用以下公式表示:L = Iω其中,L表示角动量,I表示惯性矩,ω表示角速度。
2. 牛顿第二定律牛顿第二定律是刚体动力学的基本定律之一,它描述了力对物体的加速度产生的影响。
对于一个刚体,其受力等于质量乘以加速度,可以用以下公式表示:F = ma其中,F表示力,m表示质量,a表示加速度。
3. 动力学定律刚体的动力学定律包括动量定理和角动量定理。
多体动力学运动方程一、引言多体动力学是研究多体系统运动规律和动态行为的学科。
多体系统是由多个刚体或柔体通过约束联系在一起的复杂系统,广泛应用于机械工程、航空航天、车辆工程等领域。
多体动力学运动方程是多体动力学的基础,是描述多体系统运动规律的关键方程。
二、牛顿第二定律牛顿第二定律是描述物体运动规律的基本定律,表述为:物体加速度的大小与作用力的大小成正比,与物体的质量成反比。
数学表达式为:F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
三、角动量守恒定律角动量守恒定律表述为:在没有外力矩作用的情况下,一个转动系统的角动量保持不变。
数学表达式为:L=Iω,其中L表示角动量,I表示转动惯量,ω表示角速度。
四、动量守恒定律动量守恒定律表述为:一个孤立系统的总动量保持不变。
数学表达式为:Δp=0,其中Δp表示系统动量的变化量。
五、弹性力学方程弹性力学方程是描述弹性体内应力、应变和位移之间关系的方程。
对于小变形问题,弹性力学方程可简化为胡克定律:σ=Eε,其中σ表示应力,E表示弹性模量,ε表示应变。
六、接触与碰撞模型接触与碰撞模型是多体动力学中的一个重要问题,涉及到接触力、碰撞响应和能量损失等方面的计算。
常用的接触与碰撞模型有Hertz 接触模型、Persson接触模型等。
七、约束与约束力约束是描述多体系统中各物体之间相对运动的限制条件。
约束力是多体系统中的内力,用于保持各物体之间的相对位置关系。
常见的约束类型有方位约束、速度约束和加速度约束等。
八、相对运动与绝对运动相对运动是指两个物体之间的相对位置和相对速度。
绝对运动是指整个多体系统相对于某个参考系的位置和速度。
相对运动和绝对运动的关系是多体动力学中的一个重要问题。
九、运动学与动力学关系运动学主要研究多体系统的位置、速度和加速度等运动参数,而动力学则研究多体系统的受力、力矩和能量等动态参数。
运动学与动力学之间的关系是多体动力学中需要考虑的重要因素。
车辆系统刚柔耦合多体动力学的发展综述摘要:随着科技的发展,货物列车的轻量化设计成为趋势。
采用轻型部件可以显著地降低车辆的质量,达到了货车重载、低动力的目标。
轻型部件的刚度小,采用传统刚体模型不能准确模拟实际性能。
本文介绍了刚柔耦合多体动力学的发展,研究证明刚柔耦合模型可以比较准确的模拟实际车辆的性能。
关键词:重载货车、刚柔耦合、多体动力学1引言重载货车的大轴重转向架的低动力设计以及车体的轻量化设计都要求尽量地降低质量,所以在重载货车设计中应用了大量轻型部件。
传统的车辆动力学仿真计算将车辆中的各个部件均考虑为刚体,根据实际情况,刚体之间、刚体与固定坐标系之间用铰接、力元等联系起来,以此建立车辆动力学模型进行仿真计算。
由于轻型部件的刚度比以前的小,而车辆运行速度的提高,部件之间的作用力增大,所以这些部件在车辆运行的过程中会产生相对较大的弹性变形。
所以这种将所有部件全部考虑为刚体建立的模型不能准确地反映现代新设计的车辆的性能。
因此,将车辆结构中一些刚度比较小、在运行过程中可能发生弹性变形的一些部件考虑为柔性体,其它部件仍考虑为刚体,以此建立的车辆系统刚柔耦合多体动力学模型可以更准确的模拟实际车辆的性能。
这种方法在车辆动力学模拟及部件疲劳寿命预测中得到了广泛应用。
2刚柔耦合多体动力学原理多体系统是由若干刚体或柔体通过力元或铰连接而成的一个完整系统。
多体系统的基本元素包括:惯性体、力元、约束和外力(偶)。
多体系统动力学主要应用在机构的静力学分析、特征模态分析、线性响应分析、运动学分析和动力学分析等,主要是应用计算机技术进行复杂机械系统的动态仿真分析。
柔性多体系统动力学主要研究客体本身刚度较低、受冲击易发生变形或客体的附属部件刚度较大而本身刚度较低,在进行耦合之后,会产生弯曲、变形等特征的大型动力学系统,分析动力学特性时需要考虑其弹性振动的影响。
由于柔性体上任意两点的位移在受到外界激励的情况下会发生位移变化,所以,多柔体系统不但需考虑零部件之间连接元件的刚度、阻尼等特性,还需要考虑部件本身结构的变化特征。